
International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 7, July 2013
www.ijsr.net

Matrix Convolution using Parallel Programming

Anirud Pande1, Rohit Chandna2

1, 2 Department of Computer Science & Engineering, Manipal Institute of Technology

Manipal, India

Abstract: The convolution theorem is used to multiply matrices of two different sizes i.e. matrices in which the number of rows in the
first matrix is not equal to the number of columns in the second matrix. In this study, the multiplication of 3*3 and 4*4 matrices was
done using MPI.A 3*3 matrix was taken as a filter which was multiplied with different matrices of sizes as big as 1000*1000 and was
implemented using OpenCL. Each element of the resultant matrix was calculated both parallelly and sequentially and their performance
and efficiency were compared on the basis of execution time.

Keywords: Convolution filter, Bitmap, OpenCL, Kernel

1. Introduction

The process to calculate the multiplication of two matrices
sequentially is lengthy. OpenCL & MPI allow us to calculate
the product in an efficient manner. The time taken to execute
the program is calculated both sequentially and parallelly
and a graph of time versus size of the matrix is plotted. This
graph depicts which method of execution is better.
Mathematical representation of convolution, (convolution
theorem), which gives the inverse Laplace transform of a
product of two transformed functions, is discussed.
Convolution filter, an application of convolution is also
discussed.

The paper examines the terminologies, benefits of open
computing language (OpenCL), sequential and parallel paths
of execution. It also discusses various OpenCL architecture
models and procedures to calculate each element. The
implementation of matrix multiplication using OpenCL,
message passing interface (MPI), syntax of various
commands used in MPI, and commands used for
initialization are discussed.

2. Theory

2.1 Mathematical Representation

For any x, y ϵ C(x* y)↔ X.Y1 (1)

Convolution is a simple mathematical operation which is
used by many common image processing operators. The
convolution theorem specifies that the applying convolution
is the same as a per-frequency multiplication in the
frequency domain i.e. if the basis for both the convolution
kernel and the image were to be changed to one that consists
of simple sine and cosine functions by applying a discrete
Fourier transform then we can take each of these
components, multiply them and get the same result. This
means that Fourier transform of the convolution kernel can
be taken and the dampened frequencies can be seen (those
having an amplitude<1), strengthen (>1) or leave unchanged
(=1).A maximum amplitude value of one indicates that each
of the different frequencies are independently attenuated, i.e.
the frequency components in an image can be filtered out.

The convolution of 2 functions f (t) and g(t) is denoted by
(f * g) (t) 2
Convolution theorem gives the inverse Laplace transform of
a product of two transformed functions:

L-1{F(s) G(s)} = (f * g)(t) (2)

Let f (t) and g (t) be two functions of t. The convolution of f
(t) and g (t) is also a function of t, denoted by (f * g) (t).

And is defined by the relation

�� ∗ ����� = � ��� − �� ���� ���

�� (3)

However, if f and g are both causal functions then f (t) and g
(t) are written as f (t)u (t) and g (t)u (t) respectively, so that

�� ∗ �� = � ��� − �� ��� − �� ���� ���� ��
�

��

= � ��� − �� ���� ��
�

��

Because of the properties of the step functions (u(t – x) = 0
if x>t and u(x) = 0 if x<0).

2.2 Convolution Filter

Convolution Filter is used to combine pixel data in a bitmap
with data from neighboring pixels to produce a given result.
A wide array of effects can be produced on a bitmap by
having control at the pixel level. These include things like
blurring, beveling, embossing, sharpening, and more. All are
possible using Convolution Filter. Convolution Filter’s
matrix does not have a set number of rows and columns. The
number of rows and columns depend on the type and
strength of the effect you are trying to achieve. Thus,
Convolution Filter looks at each and every pixel in a source
bitmap and as it does this, it uses the center value in the
matrix as the value of the current pixel being manipulated.
For example, in a 5 x 5 matrix, the center value is at (2, 2).
The values from the matrix are multiplied to the surrounding
pixels and the resulting values for all pixels are added to get
the value for the resulting center pixel. The formula used on
a 3 x 3 matrix convolution is:

dst (x, y) = ((src (x-1,y-1)*a0 + src (x,y-1)*a1 (4)
src(x, y+1) * a7 + src (x+1,y+1) * a8)/divisor) + bias (5)

Convolution Filter with a 3 x 3 matrix takes the pixel (x–
1, y–1) for the pixel located at (x, y) and multiplies it by the
value in the matrix located at (0, 0), and then adds the pixel
(x, y–1) multiplied by the value in the matrix at (0, 1), and

286

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 7, July 2013
www.ijsr.net

so on until all of the matrix values have been multiplied by
the corresponding pixel value. (This is done for each color
channel.) Finally, it finds out the sum, divides it by the value
of divisor, and adds the value of bias. Obviously the larger
your matrix, the longer this process takes. In image
processing, many operators are based on applying some
function to the pixels within a local window i.e. for finding
the value of an output pixel, a window is centered at that
location, and only the pixels falling within this window are
used when calculating the value of that output pixel.

When applying the convolution operator, the function we
apply is merely a weighted average of the within-window
pixels. The function can be defined by providing a 5x5
weight- matrix if the window size is 5×5 pixels. So, at each
pixel in the image, we place this 5x5 matrix and perform
element-wise multiplications before summing up. This sum
is deemed the output value at that location. If we let x be the
image we want to filter, y the corresponding output image,
and let h be the convolution filter matrix, we have:

Y=h*x (6)

The convolution operator is linear, i.e. we get the same
result if we perform the convolution on two separate images
and sum their results as if we were to sum the two images
before we apply the convolution.

��1,1� = � � ���, ��. ��1 − �, 1 − ��
�

����

�

����

 =
��0,0�. ��1,1� � ��1,0�. ��0,1� �
 ��2,0�. ��−1,1� � ��0,1�. ��1,0� �
 ��1,1�. ��0,0� � ��2,1�. ��−1,0�
 +x �0,2�. ��1, −1� � ��1,2�. ��0, −1� �
 ��2,2�. ��−1, −1�

Hence, in convolution 2D with M×N kernel, it requires
M×N multiplications.

Figure 1: Multiplication of matrix procedure

Let us assume that the size of filter matrix h, is 3x3, and its
values are a, b, c, d, e, f, g, h, i

Figure 2: Depiction of finding an element of output matrix

Figure 3: Relation between source and destination pixel

In image filtering you should have a 2D filter matrix and the
2D image. Then you can take the sum of products for every
pixel of the image. Each product is the color value of the
current pixel or a neighbor of it, with the corresponding
value of the filter matrix. The center of the filter matrix has
to be multiplied with the current pixel and the other elements
of the filter matrix with corresponding neighbor pixels. This
operation where you take the sum of products of two 2D
functions, where you let one of the two functions move over
every other element of the other function is called
Convolution or Correlation. The difference between
Convolution and Correlation is that for Convolution you
have to mirror the filter matrix. But usually it’s symmetrical
anyway so there is no difference.

The 2D convolution operation requires a 4-double loop, so it
isn’t extremely fast, unless you can use small filters. Here
we will usually be using a 3*3 or 5*5 filters.

There are a few rules about the filter:
a) Size: Its size has to be uneven, so that it has a center

element, for example 3x3, 5x5 and 7x7.
b) Sum equal to 1: It doesn't have to, but the sum of all

elements of the filter should be 1 if you want the
resulting image to have the same brightness as the
original.

c) Sum greater than 1: If the sum of the elements is larger
than 1, the result will be a brighter image.

d) Sum smaller than 1: If it’s smaller than 1, a darker image.
e) Sum is equal to 0: If the sum is 0, the resulting image

isn't necessarily completely black, but it'll be very dark.

The image has finite dimensions. So for calculating a pixel
on the left side, there are no more pixels to the left of it

287

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 7, July 2013
www.ijsr.net

while these are required for the convolution. Either the value
0 can be used here, or it can be wrapped around to the other
side of the image. The wrapping around is preferred because
it can easily be done with modulo division.

The resulting pixel values after applying the filter can be
negative or larger than 255, if that happens then the resulting
values can be truncated so that values smaller than 0 are
made 0 and values larger than 255 are set to 255. The
absolute value can also be taken for negative values. The
convolution operation becomes a multiplication instead in
the Fourier Domain or Frequency Domain, so it is faster. In
the Fourier Domain, much more powerful and bigger filters
can be applied faster, especially if the Fast Fourier
Transform is used. It is not yet feasible to use image filters
for real time applications and games but they are useful in
image processing. Digital audio and electronic filters work
with convolution as well, but only in 1D.

2.3. OpenCL Basics

The Open Computing Language (OpenCL) is an open and
royalty-free parallel computing API that enables GPUs and
other coprocessors to work concurrently with the CPU, thus
providing additional raw computing power.

2.3.1 Benefits of OpenCL
A primary benefit of OpenCL is considerable acceleration in
parallel processing. OpenCL uses the resources available in
the system by taking all computational resources, such as
multi-core CPUs and GPUs, as peer computational units and
correspondingly allocating different levels of memory.
OpenCL also complements the existing OpenGL
visualization API by sharing data structures and memory
locations without any copy or conversion overhead. A
secondary benefit of OpenCL is that it is cross-vendor
software portable. This low-level layer draws an explicit line
between hardware and the upper software layer. All the
hardware implementation specifics, like drivers and runtime
are made invisible to the upper-level software programmers
through the use of high-level abstractions. This allows the
developer to use the best hardware without having to
reshuffle the upper software infrastructure. The change from
proprietary programming to open standard also helps in the
acceleration of general computation in a cross-vendor
fashion.

2.3.2 Open CL Architecture

(a) The Platform Model
The OpenCL platform model describes a host connected to
one or more OpenCL devices. The fig 4 given below shows
the platform model consisting of one host with multiple
processing elements. A host is any computer which consists
of a CPU and a standard operating system. An OpenCL
device is a collection of one or more compute units(cores)
and such devices can be GPU, DSP, or a multi-core CPU. A
compute unit consists of one or more processing elements.
The processing elements execute instructions as SIMD
(Single Instruction Multiple Data) or SPMD (Single
Program, Multiple Data). SPMD instructions are executed
on general purpose devices like CPUs whereas SIMD

instructions need a vector processor such as a GPU or vector
units in a CPU.

Figure 4: The Platform Model

(b) The Execution Model
The OpenCL execution model consists of two components:
Kernel and Host Programs. Kernels are the basic unit of
executable code that run on one or more OpenCL devices.
Kernels are like a C function which can be data or task
parallel. The host program defines devices context, and
queues kernel execution instances using command queues. It
is executed on the host system. Kernels are queued in-order,
but can be executed in-order or out-of-order.

Kernel: An index space is defined when a kernel is queued
for execution by the host program. Each independent
element of execution in this index space is called a work-
item which executes the same kernel function but on
different data. The N-dimensional index space can be N=1, 2
or 3. Work-items can be grouped together into work-groups.
Local index space defines the size of work-group. All work-
items in the same work-group are executed together on the
same device. This allows work- items to share local memory
and synchronization.

Host Program: The host program sets up and manages the
execution of kernels on the OpenCL device through use of
context. Using OpenCL API, the host can create and
manipulate the context by including the following resources:

• Devices: A set of OpenCL devices used by the host to

execute kernels.
• Program Objects: Objects that implement a kernel or

collection of kernel.
• Kernels: The specific OpenCL functions that execute on

the OpenCL device.
• Memory Objects: A set of memory buffers common to

the host and OpenCL devices.

Figure 5: The Execution Model

288

International Journal of Science and Research (IJSR), India

(c) Memory Model
The OpenCL memory models define four regions of
memory accessible to work-items when a kernel is executed.
The figure given below shows the region of memory
accessible by host and the compute device.
It is a region in which all work-items and work
read and write access on both the compute device and the
host. This region of memory can be allocated only by the
host during runtime.

• Constant Memory: It is a region of global mem

stays constant throughout the execution on the kernel.
Work-items have only read access to this region, while
the host is permitted both read and write access.

• Local memory: It is a region of memory used for data
sharing by work-items in a work-group. All work
in the same work-group have read and write access.

• Private memory: It is a region that can be accessed by
only one work-item.

In most cases, host memory and compute device memory are
independent of one another. To ensure memory managem
between host and the compute device, this process en
queues read/write commands in the command queue.

Figure 6: The Memory Model

3. Methodology

3.1 Basic Multiplication Method

‘a’ is an m*n matrix, with elements x0,x
another n*m matrix with elements y0
product is:
 �� = ∑ �����

���
��� (7)

3.1.1 Sequential Way
for (i = 0; i<m; i ++)
{
 Y[i]=0;
/*for each element of the row and each element of x*/
for (j=0; j<n; j ++)
 Y[j] + = a[i][j] 56 * x[j];
}

3.1.2 Parallel Way
We divide the iteration of the outer loop among the threads.
To compute y [0], process 0 need to execute the code:

International Journal of Science and Research (IJSR), India Online ISSN: 2319

Volume 2 Issue 7, July 2013
www.ijsr.net

The OpenCL memory models define four regions of
items when a kernel is executed.

The figure given below shows the region of memory
accessible by host and the compute device. Global Memory:

items and work-groups have
read and write access on both the compute device and the
host. This region of memory can be allocated only by the

Constant Memory: It is a region of global memory that
stays constant throughout the execution on the kernel.

items have only read access to this region, while
the host is permitted both read and write access.
Local memory: It is a region of memory used for data-

oup. All work-items
group have read and write access.

Private memory: It is a region that can be accessed by

In most cases, host memory and compute device memory are
independent of one another. To ensure memory management
between host and the compute device, this process en-
queues read/write commands in the command queue.

The Memory Model

,x1,x2 ….xn-1& ‘d’ is
0,y1,y2 ….yn-1. Dot

/*for each element of the row and each element of x*/

We divide the iteration of the outer loop among the threads.
To compute y [0], process 0 need to execute the code:

Y[0]=0;
for(j=0;j<n;j++)
Y [0]+=a [0][j]*x[j];

3.2 Implementation

3.2.1 OpenCL Implementation
Convolution is the treatment of a matrix by another one
called the kernel. The convolution matrix filter uses the
image to be treated as the first matrix. The image is a bi
dimensional collection of pixels in rectangular coordinates.
Only 3*3 matrices will be considered as they are mostly
used and are enough for all the effects we want. The second
matrix has a variable size. Then the matrices are converted
to 1-D array and the two array of numbers, which are
generally of different sizes bu
multiplied. It produces a third array of numbers of the same
dimensionality. This can be used in image processing to
implement operators whose output values are simple linear
combinations of certain pixel values.

3.2.2 Message Passing Interface (MPI)
In this code we multiply an n*n matrix with an m*m matrix
using convolution theorem. m+2 processes are there that
compute each elements of final matrix in parallel.

(1) Initialization
MPI_Init (&argc,&argv):This function
message passing interface by passing arguments on
command line. They are 0 by default.
MPI_Comm_size(MPI_COMM_WORLD,&totalnodes):Thi
s function gives total number of processes. First parameter is
communicator. Second parameter contains the t
of processes.
MPI_Comm_rank(MPI_COMM_WORLD
function gives the rank of the process, which is 1 less than
total number of processes.

(2) Steps
Two matrices are input in process 0 of rank 0. Then the size
of padded matrix c is sent to process 1 using MPI_Send
method. This initializes all elements of c to 0, which is
(m+2) * (m+2) matrix. This is received by the 0
MPI_Recv method, which adds the elements of matrix b to
matrix c. Hence only outer elements of c are 0.
m*m size output matrix d using same procedure as given
above. Then find out each element of the resultant matrix.
First send the size of the output matrix & padded matrix
(using MPI_Send) to all the processes. Different processes
calculate the elements of output matrix and return the result
to process 0, using MPI_Recv.
That is how output will be received from m processes
concurrently.

(3) Commands Syntax

(a)MPI_Send()
It performs a blocking send.
Synopsis:intMPI_Send(void *buf,
MPI_Datatypedatatype, intdest, int
tag,MPI_Commcomm)
Input Parameters:
buf: initial address of send buffer (choice)

Online ISSN: 2319-7064

Implementation
Convolution is the treatment of a matrix by another one
called the kernel. The convolution matrix filter uses the
image to be treated as the first matrix. The image is a bi-
dimensional collection of pixels in rectangular coordinates.

*3 matrices will be considered as they are mostly
used and are enough for all the effects we want. The second
matrix has a variable size. Then the matrices are converted

D array and the two array of numbers, which are
generally of different sizes but of the same dimension are
multiplied. It produces a third array of numbers of the same
dimensionality. This can be used in image processing to
implement operators whose output values are simple linear
combinations of certain pixel values.

Passing Interface (MPI)
In this code we multiply an n*n matrix with an m*m matrix
using convolution theorem. m+2 processes are there that
compute each elements of final matrix in parallel.

MPI_Init (&argc,&argv):This function initializes the
message passing interface by passing arguments on
command line. They are 0 by default.
MPI_Comm_size(MPI_COMM_WORLD,&totalnodes):Thi
s function gives total number of processes. First parameter is
communicator. Second parameter contains the total number

MPI_Comm_rank(MPI_COMM_WORLD & mynode):This
function gives the rank of the process, which is 1 less than

Two matrices are input in process 0 of rank 0. Then the size
sent to process 1 using MPI_Send

method. This initializes all elements of c to 0, which is
(m+2) * (m+2) matrix. This is received by the 0th process by
MPI_Recv method, which adds the elements of matrix b to
matrix c. Hence only outer elements of c are 0. Initialize the
m*m size output matrix d using same procedure as given

Then find out each element of the resultant matrix.
First send the size of the output matrix & padded matrix
(using MPI_Send) to all the processes. Different processes

he elements of output matrix and return the result
to process 0, using MPI_Recv.
That is how output will be received from m processes

intMPI_Send(void *buf, int count,
intdest, int

initial address of send buffer (choice)

289

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 7, July 2013
www.ijsr.net

count: number of elements in send buffer (nonnegative
integer)
datatype: datatype of each send buffer element (handle)
dest: rank of destination (integer)
tag:message tag (integer)
comm.: communicator (handle)

(b)MPI_Recv()
It is a blocking receive for a message.
Synopsis: intMPI_Recv(void *buf, int count,
MPI_Datatypedatatype, int source, inttag,MPI_Comm
comm, MPI_Status *status)
Output Parameters:
buf: initial address of receive buffer (choice)
status: status object (Status)
Input Parameters
count: maximum number of elements in receive buffer
(integer)
datatype: datatype of each receive buffer element (handle)
source:rank of source (integer)
tag: message tag (integer)
comm: communicator (handle)

(c) MPI_Finalize()
This function tests if work of a process is finished.

4. Analysis

4.1 Sequential Execution

Table 1:Sequential execution of OpenCL code

Matrix Dimension Kernel Execution Program Execution

4*4 28.532 0.331
 27.626 0.305
 24.908 0.339

10*10 36.231 0.892
 38.043 0.636
 36.684 0.589

50*50 554.790 1.526
 367.293 1.446
 432.056 1.576

100*100 1389.464 2.192
 1803.404 3.200
 1526.689 3.213

500*500 31083.139 55.309
 32685.008 53.880
 45005.403 53.945

1000*1000 127867.354 227.709
 136517.536 174.916
 126118.296 198.392

Figure 7: A simple line graph showing relation between
Kernel execution time and size of matrix in sequential and

parallel execution
4.2 Parallel Execution

Table 2: Parallel execution of OpenCL code

Matrix Kernel Execution Program Execution
4*4 77.897 0.381

 36.684 0.301
 66.575 0.368

10*10 50.724 0.670
 44.836 0.666
 47.100 0.367

50*50 294.831 0.835
 224.633 1.016
 253.618 1.084

100*100 885.851 1.858
 911.665 2.551
 893.550 3.102

500*500 37559.453 50.396
 21312.962 51.545
 17800.806 51.337

1000*1000 82606.974 165.967
 83834.304 127.658
 80695.361 126.406

290

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 7, July 2013
www.ijsr.net

Figure 8: A simple line graph showing relation between
Program execution time and size of matrix in sequential and

parallel execution.

Above estimates show that for matrices of small sizes such
as 4*4 and 10*10 sequential execution takes less time,
whereas for large size matrices such as 500*500 and
1000*1000, parallel execution takes less time than compare
to sequential execution.

5. Conclusion

Executing matrix multiplication for matrices of small sizes
sequentially rather than parallelly takes less time. With
increasing size of the matrices, it takes less time to execute
the code parallelly rather than sequentially, therefore parallel
execution of code is more efficient for data of large sizes.

References

[1] Convolution Theorem original form [Online].

Available:https://ccrma.stanford.edu/~jos/st/Convolutio
n_Theorem.html

[2] Engineering Mathematics: Open Learning Unit Level,
The Laplace Transform.

[3] Convolution Matrix, Generic filters [Online].
Available:http://docs.gimp.org/en/plug-in-
convmatrix.html

[4] Convolution Based Filters [Online].Available:
http://www.imageprocessingbasics.com/image-
convolution-filters/

[5] Image Filtering [Online]. Available:
http://lodev.org/cgtutor/filtering.html

[6] Image Convolution with CUDA by Victor
Podlozhnyuk.

[7] Surrounding Theorem: Developing Parallel Programs
for Matrix-Convolutions by KentoEmoto,

[8] KiminoriMatsuzaki, Zhenjiang Hu, and Masato
Takeichi, Department of Mathematical Informatics,
University of Tokyo.

[9] MPI Details [Online]. Available:www.khronos.org

Author Profile

Anirud Pande is a 4th year B Tech Computer Science
Engineering student at Manipal Institute of
Technology, India. He is currently doing internship
from National Informatics Center, Delhi.

Rohit Chandna is a 4th year B Tech Computer
Science Engineering student at Manipal Institute of
Technology, India. He is currently doing internship
from Indiareads, Noida.

291

