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Abstract: Laplace transform is employed to solve the following three problems of Newtonian fluid flow on an infinite plate: (i) Stokes’ 
first problem for suddenly started plate and suddenly stopped plate, (ii) flow on an infinite plate, (iii) Ekman layer problem. Solutions 
are compared with those of Laplace transform and similarity methods. The results reveal that the method is very effective and simple. 
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1. Introduction  
 
He Laplace transform is a widely used integral transform 
with many applications in physics and engineering. 
Denoted , it is a linear operator of a function  with 

a real argument  that transforms  to a function 

 with complex argument . This transformation is 
bijective for the majority of practical uses; the most-
common pairs of  and  are often given in tables for 
easy reference. The Laplace transform has the useful 
property that many relationships and operations over the 
original  correspond to simpler relationships and 
operations over its image  . 
 
The Laplace transform is a mathematical tool based on 
integration that has a number of applications. It particular, it 
can simplify the solving of many differential equations. We 
will find it particularly useful when dealing with non-
homogeneous equations in which the forcing functions are 
not continuous. This makes it a valuable tool for engineers 
and scientists dealing with “real-world” applications. By the 
way, the Laplace transform is just one of many “integral 
transforms” in general use. Conceptually and 
computationally, it is probably the simplest. If you 
understand the Laplace transform, then you will find it much 
easier to pick up the other transforms as needed. 
 
Inverse Laplace transform methods have a long history in 
the development of time-domain fluid line models. This 
paper presents a study combining the new Laplace-domain 
input/output (I/O) model derived from the network 
admittance matrix with the Fourier series expansion 
numerical inverse Laplace transform (NILT) to serve as a 
time-domain simulation model. A series of theorems are 
presented demonstrating the stability of the I/O model, 
which is important for the construction of the NILT method. 
 
The Laplace Transform is defined by 
 

                              (1) (1) 

In this work, we apply Laplace Transform to solve some 
Newtonian fluid flow problems. Solutions are compared  
 
with those of Sumudu Transforms and similarity methods. 
The results reveal that the proposed method is very effective 
and simple. 
 
2. Stokes’ first problem 
 
Consider a Cartesian coordinate system with the x-axis 
along an infinitely long flat plate, and an incompressible 
viscous fluid occupying the half-space . Since the 
fluid is viscous, we expect that the plate’s effect diffuses 
into the fluid. If the motion of the boundary is in the x-
direction, it may be reasonably assumed that the motion of 
the fluid will also be in that direction. Thus the only non-
zero velocity component will be  and this velocity 

component will be a function of  and  only. Therefore 
 

 (2) 
 
Then the pressure will be independent of , since  is 

independent of  , so will  be independent of . That is, 
the pressure will be constant everywhere in the fluid. Using 
these properties of the flow field, the governing equations 
reduce to the following linear partial differential equation 
[7,12] 
 

 (3) 

 
2.1 Suddenly started plate 
 
Initially, both the plate and the fluid are at rest. Suddenly, 
the plate is jerked into motion in its own plane with a 
constant velocity and continues to translate with this 
velocity for  Since the fluid is viscous, we expect that 
with the passage of time, the motion of the plate will be 
communicated to fluid. Thus, the boundary conditions for 
the problem under consideration are 
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 (4)  
 
We have the governing equation, initial condition, boundary 
conditions; therefore, the problem is well posed. We utilize 
the Laplace Transform method reducing the two variables 
into single variable, i.e. transferring partial differential 
equation into ordinary differential equation. This procedure 
will greatly reduce the difficulties of treating the original 
differential equation. 
 
A whole set of governing equation, initial conditions and 
boundary conditions are prescribed, and this problem can be 
solved by Laplace Transform technique. The Eq. (3) and the 
boundary conditions take the following forms 
 

 (5) 
 
The general solution to Eq. (5) is 
 

 (6) 
 
Using boundary conditions to solve the arbitrary constants A 
and B , then substitute values of these constants into Eq. (6) 
we get 
 

 (7) 
 
Taking inverse Laplace Transform, the velocity profile is 
 

  

 (8) 
 
Where  (9) 

is the complementary error function. The values of the 
complementary error function are tabulated in Table 2. 
 
2.2 Suddenly stopped plate 
 
In this case, initially, the fluid and plate are moving with 
uniform speed  and the plate is suddenly decelerated to 
zero velocity. Therefore, the boundary conditions are 

  (10)  
 
Taking Laplace Transform of Eq. (3) and the boundary 
conditions and using initial condition, we get  
 

 (11) 
 
The general solution of the non-homogeneous differential 
Eq. (11) is  
 

 (12)  
 
Using boundary conditions, we obtain  
 

 (13) 

Taking inverse Laplace Transform to obtain 
 

 (14) 

 
The solutions given by Eqs. (8) and (14) are identical to 
those given by Sumudu Transforms and similarity methods 
[6,7,12]. 
 
It is obvious from Eqs. (8) and (14) that in both cases, the 
plate’s effect diffuses into the fluid at a rate proportional to 
the square root of the kinematics viscosity. It is customary to 
define the shear layer thickness as the point where the wall 
effect on the fluid has dropped to 1 percent: in the first case 
(suddenly started plate), where  in the second 

case (suddenly stopped plate), where  these 

both correspond to  Then 

the shear layer thickness in these flows is, approximately, 

 (15) 

For example, for air at with 

 after  min. 
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Table 1: Numerical Values of the complementary error 
function 

    
0 1.0 1.1 0.11980 

0.05 0.94363 1.2 0.08969 
0.1 0.88754 1.3 0.06599 
0.15 0.83200 1.4 0.04772 
0.2 0.77730 1.5 0.03390 
0.25 0.72367 1.6 0.02365 
0.3 0.67137 1.7 0.01621 
0.35 0.62062 1.8 0.01091 
0.4 0.57161 1.9 0.00721 
0.5 0.47950 2.0 0.00468 
0.6 0.39615 2.5 0.000407 
0.7 0.32220 3.0 0.0000221 
0.8 0.25790 3.5 0.00000074 
0.9 0.20309 4.0 0.00000001 
1.0 0.15730  0.0 

 
3. Flow on an Infinite Plate 
 
Consider the flow of a viscous fluid flow on an infinite plate 
under a constant pressure. If  is the direction of 

main flow then  The continuity 
equation is simply 
 

  

 
If  is taken normal to the plate, then we conclude 

that . The equations of motion reduce to one 
equation which is [8] 
 

 (16) 

 
Taking no-slip condition 
 

 (17) 
 
and denoting the wall shear as 
 

 (18) 

 
The Laplace Transform of Eq. (16) and use of conditions 
(17) and (18) yields 
 

 (19) 

 
and the inverse Laplace Transform of the above equation 
gives 
 

 (20) 

 
The Eq. (20) shows that the distribution of velocity is linear 
in . This result is identical to the analytical solution [8].  
 
 

4. Ekman Layer Problem 
 
Consider a viscous fluid on a surface when the surface is 
rotating at a constant angular velocity , e.g., the Earth. We 
consider the surface to be almost flat and fluid to have a 
horizontal free surface. We introduce rectangular Cartesian 
coordinate system on the free surface with  at the 

free surface and  along the normal to the free 
surface. Let the free surface be subjected to a constant 
shearing force  along the . Since the motion is 
steady, the velocity distribution is 
 

 (21) 
 
Further, by absorbing the centripetal and the body forces, a 
modified pressure P [8] is defined as 
 

 (22) 

where  is the body force potential  and  
is the perpendicular distance of a point from the axis of 
rotation. Since the velocity distribution is a function of  
only, we have 
 

 (23) 

 
Thus, the governing equations are [8] 
 

 (24) 
 
The pressure gradient in the -direction is balanced by the 
Coriolis force [8], i.e., 
 

 (25) 

Note that  where  is the angle between the 

vector  and the unit vector  along the  
 
Taking Laplace Transform of Eq. (24) and using the 
following conditions 
 

 (26) 

And   (27)  

Where   

We  obtain  

                     (28) 
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Coupling Eqs. (28), we get 
 

            (29) 
 
Separating variables, we get from (29) that 
 

      (30)  

 (31) 
 
Taking inverse Laplace Transform of the Eqs. (30) and (31) 
and simplifying the resulting equations to obtain 
 

            (32) 
 
It is worth mentioning again that these solutions are identical 
to analytical solutions [8]. At a depth 

 the velocity vector is 

 
        (33) 

 
Thus, at a depth  the velocity vector has decreased by a 

factor of  and its direction has become opposite to that 
at the free surface. The depth 
 

          (34) 

is a measure of the Ekman layer thickness. 
 
5. Conclusion 
 
In this communication, we successfully applied Laplace 
Transform to solve three Newtonian fluid problems. The 
results are identical to those given in the literature. It gives a 
simple and a powerful mathematical tool. The results reveal 
that the method is very effective and simple. 
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