
International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 7, July 2013
www.ijsr.net

A Novel Approach to Optimal Implementation of
UART-SPI Interface in SOC

1Ashok Kumar Filix, 2CH. Srinivasa Rao, 3S. Madhava Rao

M. Tech Student, MLE College, Singarayakonda, Prakasam, A.P, India

Associate Professor, MLE College, Singarayakonda, Prakasam, A.P, India
Associate Professor, MLE College, Singarayakonda, Prakasam, A.P, India

Abstract: System level verification with scalable and reusable components provides a solution and to develop a complete environment
with constrained random testing functional, coverage and assertions. This paper details the design and implementation of SoC’s UART-
SPI Interface. The UART-SPI interface provides usage for the universal asynchronous receiver/transmitter (UART) to serial peripheral
interface (SPI). The SPI bus is assort synchronized serial peripheral interface, it causes MCU to carry on the communication with each
kind of peripheral by the serial mode to exchange the information. .This paper introduces the procedure of delivering the information
from CC2430 with wireless transceiver function interface to the C8051F120 by serial peripherals interface.

Keywords: UART, SOC, MCU

1. Introduction

An UART is a device allowing the transmission and
reception of information, in a serial and asynchronous
way. Universal Asynchronous Receiver and Transmitter
are used asynchronous serial data communication between
remote embedded systems. The UART can be used to
control the process of breaking parallel data from the PC
down into serial data that can be transmitted. It consists of
one receiver module and transmitter module. UART has
been an important input/output tool for decades and is still
widely used. UARTs are used for communication between
two devices [1]. SPI stands for Serial Peripheral Interface.
It is a synchronous protocol that allows a master device to
initiate communication with slave devices.

SPI is a full duplex, serial bus commonly used because of
its simple hardware interface requirements and protocol
flexibility. SPI consists of two blocks. The SPI master and
the SPI slave, the SPI Master which is being used in this
design implements the master functionality of the SPI
protocol. SPI protocol specifies four signal wires MISO -
master out slave in (output from master), MISO - master
in slave out (output from slave), SCLK - serial clock
(clock output from master) and SS - slave select (active
low, output from master) [2].The SPI Master block
generates the control signals to interface to external slave
devices using the serial data out port (MOSI), serial data
in port (MISO), output clock (SCLK) and slave select
(SS) [10] .The SS signal must be used if more than one
slave exists in the system. This signal is most often active
low, so a low on this line will indicate the SPI is active,
while a high will signal inactivity. UART-to-SPI
interfacing block that is the middle block joins the UART
and SPI master. It helps the interconnection between these
two interfaces.

The main advantage is, the UART- SPI interface [9] can
fit in any application where an SPI device has to be used.
As the UART-SPI interface can be used to communicate
to SPI slave devices from a PC with UART port it can be
used for typical applications like interfacing of EEPROM,
flash memories and sensors [8].

2. System-on-Chip

The empirical law of Moore does not only describe the
increasing density of transistors permitted by
technological advances. It also imposes new requirements
and challenges, Systems complexity increases at the same
speed. Now-a-days systems could never be designed using
the same approaches applied 20 years ago. New
architectures are and must be continuously conceived. It is
clear now that Moore's law for the last two decades has
enabled three main revolutions. The first revolution in the
mid-eighties was the way to embed more and more
electronic devices in the same silicon die; it was the era of
System on Chip [8]. One main challenge was the way to
interconnect all these devices efficiently. For this purpose,
the Bus interconnect structure was used for the VLSI
subsystem.

A system usually has an embedded user interface as a
form of software and encompasses many components
inside, not only the hardware but also the software that
constitutes the system. Such a complicated entity can be
handled only with computer-aided design tools, automatic
synthesis of the physical layouts, and sound software
engineering knowledge. In addition, the system functions
to achieve a specific goal, as a whole, are usually
described in algorithms that should satisfy user
requirements in time.

3. UART Design Method

An UART (Universal Asynchronous Receiver/
Transmitter) is the microchip with programming that
controls a computer's interface to its attached serial
devices. UART is an integrated circuit designed for
implementing the interface for serial communications. It
provides the computer with the RS-232C Data Terminal
Equipment (DTE) interface so that it can "talk" to and
exchange data with modems and other serial devices [I].
As part of this interface, the UART also: Converts the
bytes it receives from the system along parallel circuits
into a single serial bit stream for outbound transmission
On inbound transmission, converts the serial bit stream

78

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 7, July 2013
www.ijsr.net

into the bytes that the system handles. Adds a parity bit (if
it's been selected) on outbound transmissions and checks
the parity of incoming bytes (if selected) and discards the
parity bit Adds start and stop delineators on outbound and
strips them from inbound transmissions May handle other
kinds of interrupt and device management that require
coordinating the on-chip communication of operation with
high speed devices. Wait until the incoming signal
becomes '0 ' (the start bit) and then start the sampling tick
center. When the center reaches 7, the incoming signal
reaches the middle position of the start bit. Clear the
center and restart.

Figure l: UART Block diagram

The UART includes both transmitter and receiver. The
transmitter is a special shift register that loads data in
parallel and then shifts it out bit-by-bit. The receiver shifts
in data bit-by-bit and reassembles the data byte • Wait
until the incoming signal becomes '0 ' (the start bit) and
then start the sampling tick center. When the center
reaches 7, the incoming signal reaches the middle position
of the start bit. Clear the center and restart.

When the center reaches 15, we are at the middle of the
first data bit. Retrieve it and shift into a register. Restart
the center. Repeat the above step N-I times to retrieve the
remaining data bits. If optional parity bit is used, repeat
this step once more. Repeat this step M more times to
obtain the stop bits

4. SPI Design

SPI stands for Serial Peripheral Interface.SPI is a
synchronous protocol that allows a master device to
initiate communication with a slave device. Data is
exchanged between these devices. SPI is implemented by
a hardware module called the Synchronous Serial Port or
the Master Synchronous Serial Port. This module is built
into many different micro devices. It allows serial
communication between two or more devices at a high
speed and is reasonably easy to implement. SPI is a
Synchronous protocol.

The clock signal is provided by the master to provide
synchronization. The clock signal controls when data can
change and when it is valid for reading [5). Since SPI is
synchronous, it has a clock pulse along with the data. RS-
232 and other asynchronous protocols do not use a clock
pulse, but the data must be timed very accurately. Since
SPI has a clock signal, the clock can vary without
disrupting the data. The data rate will simply change along
with the changes in the clock rate. This makes SPI ideal

when the microcontroller is being clocked imprecisely,
such as by a RC oscillator.

SPI is a Master-Slave protocol. Only the master device
can control the clock line, SCK. No data will be
transferred unless the clock is manipulated. All slaves are
controlled by the clock which is manipulated by the
master device. The slaves may not manipulate the clock.
The SSP configuration registers will control how a device
will respond to the clock input. SPI is a Data Exchange
protocol [2). As data is being clocked out, new data is also
being clocked in. When one "transmits" data, the
incoming data must be read before attempting to transmit
again. If the incoming data is not read, then the data will
be lost and the SPI module may become disabled as a
result. Always read the data after a transfer has taken
place, even if the data has no use in your application. Data
is always “exchanged” between devices. No device can
just be a "transmitter" or just a "receiver" in SPI.
However, each device has two data lines, one for input
and one for output. These data exchanges are controlled
by the clock line, SCK, which is controlled by the master
device. Often a slave select signal will control when a
device is accessed. This signal must be used for when
more than one slave exists in a system, but can be optional
when only one slave exists in the circuit.

As a general rule, it should be used. This signal is known
as the SS signal and stands for "Slave Select." It indicates
to a slave that the master wishes to start an SPI data
exchange between that slave device and itself. The signal
is most often active low, so a low on this line will indicate
the SPI is active, while a high will signal inactivity. It is
often used to improve noise immunity of the system. Its
function is to reset the SPI slave so that it is ready to
receive the next byte.

Figure 2: SPI Block Diagram

An UART is a device allowing the transmission and
reception of information, in a serial and asynchronous
way. Universal Asynchronous Receiver and Transmitter
are used asynchronous serial data communication between
remote embedded systems. The UART can be used to
control the process of breaking parallel data from the PC
down into serial data that can be transmitted. It consists of
one receiver module and transmitter module. UART has
been an important input/output tool for decades and is still
widely used. UARTs are used for communication between
two devices. SPI stands for Serial Peripheral Interface. It
is a synchronous protocol that allows a master device to
initiate communication with slave devices.

SPI is a full duplex, serial bus commonly used because of
its simple hardware interface requirements and protocol
flexibility. SPI consists of two blocks. The SPI master and
the SPI slave, the SPI Master which is being used in this
design implements the master functionality of the SPI
protocol. SPI protocol specifies four signal wires MISO -

79

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 7, July 2013
www.ijsr.net

master out slave in (output from master), MISO - master
in slave out (output from slave), SCLK - serial clock
(clock output from master) and SS - slave select (active
low, output from master) [2].The SPI Master block
generates the control signals to interface to external slave
devices using the serial data out port (MOSI), serial data
in port (MISO), output clock (SCLK) and slave select
(SS) .The SS signal must be used if more than one slave
exists in the system. This signal is most often active low,
so a low on this line will indicate the SPI is active, while a
high will signal inactivity. UART-to-SPI interfacing block
that is the middle block joins the UART and SPI master. It
helps the interconnection between these two interfaces.

 The main advantage is, the UART- SPI interface can fit
in any application where an SPI device has to be used. As
the UART-SPI interface can be used to communicate to
SPI slave devices from a PC with UART port it can be
used for typical applications like interfacing of EEPROM,
flash memories and sensors.

5. Interfacing

The UART-to-SPI interface can be used to communicate
to SPI slave devices from a PC with a UART port. SPI is a
full duplex, serial bus commonly used in the embedded
world because of its simple hardware interface
requirements and protocol flexibility. SPI devices are
normally smaller in size (low 110 counts) when compared
to parallel interface devices. The interfacing diagram is
shown below.

It consists of three blocks, the UART interface, the
UART-to-SPI control block, and the SPI master interface.
The internal UART-to-SPI control blocks stitches the
Core UART and SPI master. The SPI master block
generates the control signals to interface to external slave
devices. This interface communicates with the slave
devices using the serial data out port (MOSI), serial data
in port (MISO), output clock (SCLK), and slave select
ports (SS_N [7:0]). There are three internal registers in the
design: control register, transmit register, and receive
register. The control register sets the different control bits,
the transmit register sends the TX data to the SPI bus, and
the receive register receives the Rx data from the SPI bus.
After every reset, data received from the external UART
go to the control register.

The control register sets the different control bits, the
transmit register sends the TX data to the SPI bus, and the
receive register receives the Rx data from the SPI bus [6].
After every reset, data received from the external UART
go to the control register. The control bit positions are
given in table which is shown below

7

SS

6 5 4

CPOL

3

CPHA

2

CLK
DIV

1 0

When the UART-to-SPI communicates to any of the slave
devices, it enables only the corresponding slave select
signal. Only one slave device should be transmitting data

during a particular data transfer. Slave devices that are not
selected do not interfere with SPI bus activities during that
period [7]. Other slave devices ignore the clock signal and
keep the MISO output pin in a high impedance state,
unless the slave select pin is enabled. The SPI_OR_MEM
hardcoded value sets the operation mode: when
SPI_OR_MEM is set to 1, the slave select signal SS _ Nx
will be asserted Low for a I-byte (8 bit) transaction only;
when SPI_OR_MEM is set to 0, the SPI slave device will
be treated as a SPI memory, and the SS_Nx signal can be
asserted Low for multiple bytes of data [3). This mode is
required when performing the page/sector mode of
operations with memories.

The slave select will be Low for the command byte,
address bytes, and data bytes [10). When SPI_OR_MEM
is set to 1, the command byte OxOI is used for read
operation and the command byte Ox02 is used for write
operation shown in table2.

Table 2: Commands

Operation Description

Read OxOI command byte is sent over UART Tx, Enabling
data read from the UART Rx line.

Write Ox02 command byte is sent over UART Tx, followed
by the data to be written

6. Simulation Results

The Interface of UART - SPI in SOC has been
synthesized using the Xilinx 10.2. The optimal power
calculations are published in table3 and the simulation
results are shown in figure 4 respectively. The optimal
frequency is 239 MHz

80

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 7, July 2013
www.ijsr.net

7. Conclusion and Future Scope

The Interface of UART - SPI in SOC will come very
effective in many applications. The communication in the
SOC architecture makes easy as they have been connected
with a bus. In future as of more applications will add into
the subsystem the routing architecture plays a vital role in
the system and it can be implemented in NOC.

References

[1] Design and simulation of UART serial

communication module based on VHDL - Fang Yi-
Yuan, Chen Xue, IEEE Explore, may 2011.

[2] Design and test of general purpose SPI master/slave
IPs on OPB Bus- systems signals and devices, 7th
international multi conference, 2010.

[3] A.K Oudjida et ai, Master-Slave wrapper
communication protocol: A case-study, Proceedings
of the 1'1 IEEE International Computer Systems and
Information Technology Conference ICSIT'05, PP
461-467, 19-21 July 2006.

[4] F. Leens, "An Introduction to SPI Protocols,"IEEE
Instrumentation & Measurement Magazine, pp. 8-
13, February 2009.

[5] A.K. Oudjida et ai, FPGA Implementation of I2C &
SPI protocols A Comparative Study". Proceedings of
the 16th edition of the IEEE International Conference
on Electronics Circuits and Systems ICECS, pp.507
-510, Dec 13-16 2009.

[6] REN Yu-fei,ZHANG Xiang,CHENG Nai-ping
(Department of Optical and Electrical Academy of
Equipment Command &Tech, Beijing 101416,
China); Design and Realization of Two-way
Transmission SPI Interface; Telecommunication
Engineering; 2009.

[7] Zhang Rui;A Method to Realize DSP
Communicating with Other Device by SPI Interface
Protocol [J]; International Electronic Elements;
2003-08.

[8] A micro- FT- UART for safety critical SOC
basedApplications,
www.doi.ieeecomputersociety.org.

[9] www.xilinx.com/support/documentation/ipdocument
ation/xpspi.pdf

[10] www.actel.com/documents/uART_to_SPCAN.pdf.
[11] www.nxp.com/documents/datasheet/SCI6IS752SCI

6IS762.pdf.
[12] www.xilinx.com/support/anembeddedprocessorperip

hera/other.html.
[13] Zou, Jie Yang, Jianning Design and Realization of

UART Controller Based on FPGA
[14] Frank Durda Serial and UART Tutorial.

uhclem@FreeBSD.org
[15] Motorola Inc., “SPI Block Guide V03.06,” February

2003.
[16] “OPB Serial Peripheral Interface (SPI) (V1.00e),”

Xilinx Logicore, DS464 July 2006
[17] R. Gallo, M. Delvai, W. Elmenreich, and A.

Steininger, “Revision and Verification of an
Enhanced UART,” IEEE International Workshop on
Factory Communication Systems, pp. 315-318, Sept.
2004.

Author Profile

Ashok Kumar Filix received B.Tech (ECE) from
Rao & Naidu Engineering, JNT University in 2010
and is pursuing M.Tech (VLSI &ES) Degree from
Malineni Lakshmiah Engineering College, JNTUK.
He is member of IAENG, Hong Kong. He

participated in National Work Shop on VLSI DESIGN at Vignan
University. He participated in faculty development program on
DIGITAL SYSTEM DESIGN USING HDL at Malineni
Lakshmiah Engineering College.

81

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 7, July 2013
www.ijsr.net

CH. Srinivasa Rao received B.Tech. Degree in
Electronics and Communications Engineering from
ACHARYA NAGARJUNA University in 1991, M.
E. in Electronic instrumentation from Andhra
University. He is working as an ASSOC. professor

in MLE College .His research interests includes wireless VLSI
and Embedded systems.

S. Madhava Rao received B.Tech. degree in
Electronics and Communications Engineering from
JNTU University in 2002 and M. Tech. degree in
VLSI & Embedded Systems from JNTUK
University, Kakinada. He is working as an ASSOC.

professor in MLE College. His research interests include
wireless VLSI and Embedded systems. He is the author of more
than 13 papers.

82

