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Abstract: The light emitted by most lasers contains several discrete optical frequencies, separated from each other by 
frequency differences, which can be associated with different modes of the optical resonator. It is common practice to 
distinguish two types of resonator modes: “Longitudinal” modes differ from one another only in their oscillation 
frequency; and “Transverse” modes differ from one another not only in their oscillation frequency, but also in their field 
distribution in a plane perpendicular to the direction of propagation. Corresponding to a given transverse mode are a 
number of longitudinal modes which have the same field distribution as the given transverse mode but which differ in 
frequency. 
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1. Introduction 
 
To describe the electromagnetic field variations inside 
optical resonators, the symbol TEMmnq or TEMplq are 
used. The capital letters stands for “Transverse 
Electromagnetic Waves” and the first two indices identify 
a particular transverse mode, whereas q describes a 
longitudinal mode. Because resonators that are used for 
typical lasers are long compared to the laser wavelength, 
they will, in general, have a large number of longitudinal 
modes. Therefore, the index q, which specifies the number 
of modes along the axis of the cavity, will be very high. 
The indices for the transverse modes, which specify the 
field variations in the plane normal to the axis, are very 
much lower and sometimes may be only the first few 
integers. 
 
The spectral characteristics of a laser, such as linewidth 
and coherence length, are primarily determined by the 
longitudinal modes; whereas beam divergence, beam 
diameter, and energy distribution are governed by the 
transverse modes. In general, lasers are multimode 
oscillators unless specific efforts are made to limit the 
number of oscillating modes. The reason for this lies in 
the fact that a very large number of longitudinal resonator 
modes fall within the bandwidth exhibited by the laser 
transition and a large number of transverse resonator 
modes can occupy the cross section of the active material 
[1].  
 
1.1 Transverse Modes 
 
The output spot of the laser beam is termed the transverse 
electromagnetic mode (TEM). Transverse modes are 
defined by the designation TEMnm for Cartesian 
coordinates. The integers m and n represent the number of 
nodes or zeros of intensity transverse to the beam axis in 
the vertical and horizontal directions. In cylindrical 
coordinates the modes are labelled TEMpl and are 
characterized by the number of radial nodes p and angular 
nodes l. The higher the values of m, n, p, and l, the higher 
the mode orders. The lowest-order mode is the TEM00 
mode, which is a round mode with a a Gaussian-like 

intensity profile in cross-section, with its maximum on the 
beam axis. However it is possible to operate on a wide 
variety of other transverse mode configurations. In these 
configurations, the output spot will have a much more 
peculiar shape [2]. For mode with subscripts of 1 or more, 
intensity maxima occur that are off-axis in a symmetrical 
pattern. To determine the location and amplitudes of the 
peaks and nodes of the oscillation modes, it is necessary to 
employ higher-order equations, which either involve 
Hermit or Laguerre polynomials. The Hermit polynomials 
are used when working with rectangular coordinates, 
while Laguerre polynomials are more convenient when 
working with cylindrical coordinates. The transverse 
mode structure will be calculated using the paraxial 
approximation to the electromagnetic wave equations [2] 
[1]. 
 
2. The Paraxial Approximation  
 
In general electromagnetic wave equation for a laser 
material is given as  

 








∂

∂
+

∂

∂
+

∂

∂
=∇

tt

P

t
h

ξ
σµµ

ξ
εµξ




02

2

02

2

0
2

 (1) 

where ξ


 the electric intensity vector and P


is the electric 
polarization vector given by [3] 

 ξχε


0=P  (2) 
where χ is the complex susceptibility, σ is the 
conductivity, an εh is the electric permittivity of the host 
crystal alone [4]. 

The field ξ


 is basically a plane wave of the form 
)(

0
0zkwtje −ξ  and Equation (1) is often written in the phasor 

form 
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where mck εµω 0=
, εm = ε0εr, εr = 1 + χ and E

~
is the 

phasor representing the electric field. 
 
For deriving the transverse mode behaviour, consider the 
transverse variation to be given by U (x, y, z) so that the 

phasor expression for ( )zyxU ,,~
 has the form 
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where mck εµω 0=
. Now expand the first term of the 

equation ( ) zcjkezyxU −
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Rewriting this more conventionally, 
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In the paraxial approximation, it is assumed that the 
variation in the transverse structure with z is extremely 

small. Thus the term ( ) ( ) zcjkezyxUz −
∂∂ ,,~22

 is quite 
small in comparison with the remaining terms, and so the 
previous expression is written as 
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Substituting this back into the original phasor form for the 
wave equation and making the appropriate cancellations 
gives the full paraxial approximation to the wave equation 
as  
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and substituting in for kc yields 
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which is often termed the transverse wave equation. 
For propagation in free space, this is often written in a 
form that emphasizes its similarity to Schrodinger’s 

equation [5][6]. In this formalism, E~=Ψ and χ = σ = 0 
as 
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3. Mathematical Treatment of the 

Transverse Modes 
 
There are two distinct sets of solutions to the higher-order 
modes. These solutions depend on whether the laser has a 
square transverse geometry (excimers, waveguide CO2 

lasers, etc.) or circular transverse geometry (the majority 
of other lasers). For a circular transverse geometry, the 
general transverse wave equation is expressed in 
cylindrical coordinates as [5] 
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and has the general solution (where p is the radial integer, 
l is the angular integer, and r and φ are polar coordinates) 
[6] 
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where r2 = x2 + y2, w(z) is the 1/e beam radius (waist) as 
a function of z, where z is the propagation direction of the 
beam, w0 is the minimum beam waist, and R (z) is the 
beam radius of curvature. In cylindrical coordinates, the 
radial intensity distribution of allowable circularly 
symmetric TEMpl modes is given by the expression [6][1] 
[2] 
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 where ρ =2r2 (z)/w2(z), and r, φ are the polar coordinates 
in a plane transverse to the beam direction. The radial 
intensity distributions are normalized to the spot size of a 
Gaussian profile; that is, w(z) is the spot size of the 
Gaussian beam, defined as the radius at which the 
intensity of the TEM00 is 1/ e2 of its peak value on the 

axis. 
( )ρl

pL  is the generalized Laguerre polynomial of 
order p and index l. 
 
The intensity distribution given in (14) is the product of 
radial part and an angular part. For modes with l = 0 (i.e. 
TEMp0), the angular dependence drops out and the mode 
pattern contains p dark concentration rings, each ring 

corresponding to a zero of ( )ρ0
pL . The radial intensity 

distribution decays due to the factor exp (-ρ). The center 
of a pl mode will be bright if l = 0, but dark otherwise 
because of the factor ρl. These modes, besides having p 
zeros in the radial direction, also have 2l nodes in 
azimuth. The only change in a (pl) mode distribution 
comes through the dependence of the spot size w(z) on the 
axial position z. However, the modes preserve the general 
shape of their electric field distributions for all values of z. 
As w increases with z, the transverse dimensions increase 
so that the sizes of the mode patterns stay in constant ratio 
to each other. 
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Figure 1: (a) cylindrical and (b) rectangular transverse 

mode patterns 
 

 
Figure 2: Radial intensity distribution for TEM00, 

TEM01, and TEM10 modes 
 
From (14) it is possible to determine any beam mode 
profile. Figure-1 shows the cylindrical and rectangular 
transverse mode patterns. For cylindrical modes, the first 
subscript indicates the number of dark rings, whereas the 
second subscript indicates the number of dark bars across 
the pattern. For rectangular patterns, the two subscripts 
give the number of dark bars in the x and y directions. 
Figure-1a depicts various cylindrical transverse intensity 
patterns as they would appear in the output beam of a 
laser, and the area occupied by a mode increases with the 
mode number. A mode designation accompanied by a 
asterisk indicates a mode which is a linear superposition 
of two like modes, one rotated 900 about the axis relative 
to the other. For example, the TEM mode designated 01* 
is made up of two TEM0,1 modes [7][1][2]. The intensity 
distribution of the modes shown in Figure-1a can be 
calculated if we introduce the appropriate Laguerre 
polynomials into (14), i.e., from Rodrigues formula 
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A plot of the intensity distribution of the lowest-order 
TEM0,0 mode and the next two higher-order transverse 

modes, i.e., *01
TEM

, and TEM10 is shown in Figure-2. 

The radii are normalized to the beam radius w00 of the 
fundamental mode [6][2][1]. 
For a rectangular transverse geometry, the general 
transverse wave equation (11) has the general solution 
(where m and n are the mode numbers for the x and y 
directions, respectively [6][2][1] 
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where r2 = x2 + y2, w(z) is the 1/e beam waist (radius) as 
a function of z, w0 is the minimum beam waist at the 
location z0, and R(z) is the beam radius of curvature. 

( )( )zwxmH 2  and ( )( )zwynH 2  are Hermit 

polynomial functions of ( )( )zwx2  and ( )( )zwy2  
given by Rodrigues formula  
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The values of low-order Hermit Polynomials are 
 H0(s) = 1; H1(s) = 2 v; H2(s) = 4 s2 – 2; H3(s) = 8 s3 – 
12 s. (19) 
In rectangular coordinates the intensity distributions of a 
(m, n) mode is given by 
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As before, w (z) is the spot size at which the transverse 
intensity decreases to 1/e2 of the peak intensity of the 
lowest-order mode. The function Hm(s) is the mth-order 
Hermit polynomial. At a given axial position z, the 
intensity distribution consists of the product of a function 
of x alone and a function of y alone. The intensity patterns 
of rectangular transverse modes are shown in Figure-1b. 
The m, n values of a single spatial mode can be 
determined by counting the number of dark bars crossing 
the pattern in the x and y directions. The fundamental 
mode (m = n = 0) in this geometry is identical with the 
fundamental mode in cylindrical geometry [2] [1]. 
 

 
Figure 3: Linearly polarized resonator mode 

configurations for square and circular mirrors. 
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Figure 4: Synthesis of different polarization 

configurations from the linearly polarized TEM01 mode 
 
According to Koechner, [1] the transverse modes shown 
in Figure-1 can exist as linearly polarized beams, as 
shown in Figure-3. By combining two orthogonally 
polarized modes of the same order, it is possible to 
synthesize other polarization configurations; this is shown 
in Figure-4 for the TEM0,1 mode.  
 
4. TEM0, 0 Gaussian Beam Propagation 
 
The lowest-order transverse mode is called the TEM0, 0 
modes, the 00-mode, the lowest-order mode, fundamental 
mode, or the Gaussian mode. This is the mode that is 
circular in transverse dimensions and has a Gaussian 
intensity profile. It is the mode that is most widely used in 
laser systems [8] [5] [6]. The decrease of the field 
amplitude with distance r from the axis in a Gaussian 
beam is described by Koechner [1] as: 
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Thus, the distribution of power density is  
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The quantity w is the radial distance at which the field 
amplitude drops to 1/e of its value on the axis and the 
power density is decreased to 1/ e2 of its axial value. The 
parameter w is often called the beam radius or “spot size” 
and 2w, the beam diameter. According to Koechner [1] 
the fraction of the total power of a Gaussian beam which 
is contained in a radial aperture of r = w, r =1.5w, and r = 
2w is 86.5 %, 98.9 % and 99.9 %. If a Gaussian beam is 
passed through a radial aperture of 3w, then only 10-6 % 
of the beam power is lost due to the obstruction. Therefore 
a radial aperture in excess of three spot sizes is means an 
“infinite aperture”. 
 
Although the intensity distribution is Gaussian in every 
propagating beam cross section, the width of the intensity 
profile changes along the axis. The Gaussian beam 
contracts to a minimum diameter 2w0 at the beam waist 
where the phase front is planer. If one measures z from 
this waist, the expansion laws for the beam assume a 
simple form. The spot size a distance z from the beam 
waist expands as a hyperbola, which has the form 
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Figure 5: Gaussian beam 

 
Its asymptotes are inclined at an angle Θ / 2 with the axis, 
as shown in Figure-5, and defines the far-field divergence 
angle of the emerging beam. The full divergence angle for 
the fundamental mode is given by  
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From these considerations it follows that at large 
distances, the spot size increases linearly with z, and the 
beam diverges at a constant cone angleΘ. The smaller the 
spot size w0 at the beam waist, the greater the divergence. 
 
At sufficiently large distances from the beam waist the 
wave has a spherical wave front appearing to emanate 
from a point on the beam axis at the waist. If R (z) is the 
radius of curvature of the wave front that intersects the 
axis at z, then 
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In a Gaussian beam the wavefront has the same phase 
across its entire surface. According to Koechner [1], 
sometimes the properties of a TEM00 mode beam are 
described by specifying a confocal parameter 

 λ

π 2
02 w

b =
 (26) 

where b is the distance between the points at each side of 

the beam waist for which 02)( wzw = (Figure-5). 
 
A laser operating at the TEM00 mode will have a beam 
divergence according to Eq. (24). For a plane wavefront 
incident upon a circular aperture of diameter D, the full 
cone angle of the central (Airy) disc, defined at the first, 
minimum of the Fraunhofer diffraction pattern, is given by 

 DP
λ44.2

=Θ
 (27) 

the energy contained within this angle is about 84 % of the 
total energy transmitted by the aperture. 
Equations (24) and (27) are often confused, because 
various conventions have been adopted by different 
authors, with the equation 
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DR
λ22.1

=Θ
 (28) 

which represents the half-cone angle of the Fraunhofer 
diffraction pattern, and also happens to be the “Rayleigh 
criterion” for the angular resolution of an optical 
instrument. 
 
In laboratory work, a beam size is often obtained by 
measuring the diameter of the illuminated spot with a 
scale. This is not the spot size 2w0 as defined by Eq. (23). 
There is no obvious visual cue to the magnitude of the 
spot size in the appearance of the illuminated spot. Thus, 
“spot size” and “size of the illuminated spot” are totally 
different concepts. The former is a property of the laser 
cavity; the latter is a subjective estimate. To measure the 
spot size, the illuminated spot is scanned with a 
photodetector behind a small pinhole. The resulting curve 
of intensity versus position of the pin-hole will yield a 
Gaussian curve from which the spot size ω0 be extracted 
by mathematical methods [7] [6]. 
 
5. Mode Selection 
 
Many applications of solid-state lasers, such as 
micromachining, nonlinear optical experiments, 
holography, and range finding, quite often require 
operation of the laser at the TEM00 mode since this mode 
produces the smallest beam divergence, the highest power 
density, and hence, the highest brightness. Furthermore, 
the radial intensity profile is uniform and uniphase. The 
latter property, i.e., the spatial coherence of the TEM00 
mode, is particularly important for holographic 
applications. Focusing a fundamental-mode beam by an 
optical system will produce a diffraction-limited spot of 
maximum power per unit area. In many applications it is a 
high brightness (power/unit area/ solid angle) rather than 
large total emitted power that is desired from the laser. 
 
Transverse mode selection generally restricts the area of 
the laser cross section over which oscillation occurs, thus 
decreasing the total output power. However, mode 
selection reduces the beam divergence so that the overall 
effect of mode selection is an increase in the brightness of 
the laser. For example, the beam diameter and beam 
divergence for a TEMpl mode increases with the factor 
Cpl, which means that for the same output power the 
brightness decreases by a factor of (Cpl)-4 for the higher-
order modes. 
 
Most practical lasers tend to oscillate not only in higher-
order transverse modes, but in many such modes at once. 
Because of the fact that higher-order transverse modes 
have a larger spatial extent than the fundamental mode, a 
given size aperture will preferentially discriminate against 
higher-order modes in a laser resonator. As a result, the 
question of whether or not a laser will operate only in the 
lowest-order mode depends on the size of this mode and 
the diameter of the smallest aperture in the resonator. If 
the aperture is much smaller than the TEM00 mode size, 
large diffraction losses will occur which will prevent the 
laser from oscillating. If the aperture is much larger than 

the TEM00 mode size, then higher-order modes will have 
sufficiently small diffraction losses to be able to oscillate. 
 
The diffraction losses caused by a given aperture and the 
transverse mode selectivity achievable with an aperture of 
radius a. The mode selectivity is strongly dependent on 
the resonator geometry, and is greatest for a confocal 
resonator and smallest for the plane-parallel resonator. 
The resonators of laser operating in the TEM00 mode will 
have Fresnel numbers on the order of approximately 0.5 to 
2.0. For Fresnel numbers much smaller than these, the 
diffraction losses will become prohibitively high, and for 
much larger values of N mode discrimination will be 
insufficient. 
 
6. Conclusion 
 
These predictions are in agreement with the experimental 
observations. For example, typical ruby and Nd:YAG 
lasers have cavity lengths of 50 to 100 cm and TEM00 
operation typically requires the insertion of an aperture in 
the cavity with a diameter between 1 an d2 mm. Without 
an aperture, a 50-cm-lomg resonator with a 0.62-cm-
diameter Nd:YAG rod as the limiting aperture will have a 
Fresnel number of 19. In ruby lasers, where oscillator rods 
of 15-mm diameter are not uncommon, the Fresnel 
number would be 160 for the same resonator length. 
 
Because the TEM00 mode has the smallest beam diameter 
of all the resonator modes, a number of techniques have 
been developed to increase the TEM00 mode volume in 
the active material, which is normally considerably larger 
in diameter than the mode size. A resonator designed for 
TEM00 mode operation will represent a compromise 
between the conflicting goal of large mode radius, 
insensitivity to perturbation, good mode discrimination, 
and compact resonator length. 
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