
International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 6, June 2013
www.ijsr.net

A Study: Volatility Forensic on Hidden Files

Cutifa Safitri1

1Department of Computer Science, International Islamic University Of Malaysia, 53100 Kuala Lumpur, Malaysia

Abstract: More and more forensic researchers gain findings by live investigating memory volatility. Forensic research on volatile data
is nowadays big area of interest. In the early days, investigators pulled the plug, but now it could be very interesting to capture the
volatile data of the system. Memory forensics and data carving are among methods that are usually used during volatile investigation.
Before pulled the plug, it is often desirable to capture volatile information that may not be recorded in a file system or image backup,
such as processes and the contents of memory. This data may hold clues as to the attacker’s identity or the attack methods that were
used. However, risks are associated with acquiring information from the live system. Any action performed on the host itself will alter
the state of the machine to some extent. In paper, an analysis of hidden process on volatility is conducted.

Keywords: RAM, Forensic, Volatility, Hidden Files.

1. Introduction

Forensic research of volatile data is nowadays a big area of
interest. In the early days investigators often pulled the plug
of the evidence PC, but now it could be very interesting to
capture the volatile data of a system. Memory forensics and
data carving are methods that are more and more used during
investigations [1].

Before pulled the plug, it is often desirable to capture
volatile information that may not be recorded in a file system
or image backup, such as processes and the contents of
memory. This data may hold clues as to the attacker’s
identity or the attack methods that were used. However, risks
are associated with acquiring information from the live
system. Any action performed on the host itself will alter the
state of the machine to some extent [2].

The volatile data is referred to as stateful information from
the subject system while it remains powered on. In this
project, the value of volatile data is not limited to process
memory associated with malware, but can include
passwords, Internet Protocol (IP) addresses, Security Event
Log entries, and either contextual details that can provide a
more complete understanding of the malware and its use on a
system.

In forensic methodology, the investigator must ensure that
enough information is collected to determine whether or not
an incident has occurred and should be sure to collect as
much volatile information as possible. The investigator also
must ensure that a minimum of activity will occur on the
“victim” system (reducing the changes made to the system
and the “footprint” left by the investigator or first
responder), ensure that data will not be written to the system,
and potentially untrusted executables on the system will not
be run [3]. If the investigator can capture the image on what
happened on that current time, it will lead the investigator on
what happened on that particular time. Since the size of
RAM keep increasing until up to 8 Gigabytes recently, the
attacker would not need hard disk as virtual memory to run
any malicious program on its targeted machine. It will be all
handled by the RAM. Now, the problem is what happened to
these hidden processes?

Malware send data to extension site and create a backdoor.
Some network open list tools such as pslist and netcat could
not detect the open network that created by malware. It
captures data from volatility memory which includes data on
unallocated space on RAM. Malware is always being
customized to avoid detection, to become bullet proof from
anti-viruses and to find the file that created by the mal-code.
The objective of this project is to reveal the hidden data that
might be caused by a malware, which intended to be hid by
the attacker.

The benefit of this research is to strengthen an investigation.
This is also to make aware that volatility is one of the critical
parts of an investigation. The resources of this project
investigation are supported by certified security
investigation.

2. Problem Description

Each process has their structure on the kernel’s memory
which called executive process. This executive process
(EPROCESS) contains much information, such us the
process name, the process ID name, the exe name and many
more. The EPROCESS work like a doubly linked list. The
Flink member of this structure points to the next entry
process while the Blink member points to the previous entry
(process).

Figure 1: FLink and Blink

The EPROCESS of the current running program will reside
inside RAM. The problem will arise when there is a hidden
process on RAM image that the investigator collected. Could
that process be found? When a process is being hid, it
disconnected from the doubly-linked list.

Figure 2: Broken Flink and Blink

71

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 6, June 2013
www.ijsr.net

Thus, when a program is listing processes, it skips over the
one that the attacker hid. This kind of technique is
commonly used by rootkits to conceal their processes. The
objective is to find the hidden process and gather the
information. The findings should answer why those
processes is being hid in the first place.

3. Literature Review and Case Study

Forensic is becoming an important part in the security field;
evidence of the related crime is spread across the drive.
Some attacker prefer to reside the evidence in the ram
memory since its volatile, thus the evidence is gone when the
machine power is off.

Forensic is growing and find a way to retrieve information
before the machine turned off. A live digital forensic is
conducted to retrieve volatile information. But studies on the
tools used have told that different investigator has different
point of view and the tools used is also vary. A comparison
on the tools has shown that some tools make major changes
in every keystroke.

Again, forensic is growing into digital forensics in virtual
environment. The idea is to create a virtual machine from an
image of the machine to be investigated. Some tools are
developed to support this investigation. This approach is
considered powerful but takes a lot of additional resources
since virtual computer uses real hardware components
present in the computer it runs on. Thus, recent research
comes out with offline analysis, the ram forensic.

As the RAM is getting bigger and bigger, many files and
process running is stored inside the RAM. Memory inside
computer is becoming targeted place to run malicious files.
We cannot imagine what are the things stored inside our
memory. All the important sources and current state of the
machine is all stored in the single memory. Imagine if we
dump the whole memory including BIOS memory, an
investigator can predict what did happened during incident.
Based on the current information demand, I am focusing my
project into volatility offline analysis.

RAM forensic start from dumping the whole memory and
conduct offline analysis based on the information gathered
from the synopsis report and the unusual things happened in
the machine [4]. Volatility has broad libraries to detect
evidence from the image. Start from the malware detection,
open port, files accessed, keyboard buffer and encryption
files.

Since every tool has their function, this paper would like to
propose a literature to detect any hidden file that the attacker
hides after the incident. The importance of the volatility in
hidden files is to reveal the facts and give relevant
information for hard disk investigation.

After go through any reliable sources and read the past
literature, this project is fits under digital forensic media and
tool expansion [5]. The growing volatility tools is Volatility
Framework [6], it is one of the largest open source project
for digital forensic. The tool was build using python and

already provides a python libraries developed by many
forensic developer tools [7]. It is mainly used for the
extraction of digital artifacts from RAM [8]. There are
several capabilities offered by this tool.

3.1 Scope

The paper focus on the way of findings the hidden process in
memory forensic, thus a guideline will be made. The
findings process is conducted to retrieve as much as possible
information from the PC.

3.2 Resource Requirements

The resource requirements that are required in this paper are:
1. A computer for developing and running the application.

Personal Computer (PC) is used to develop and run the
application. In the system PC, the main application will
be installed.

2. Microsoft XP Service Pack 2 as the operating system.
This software is an operating system to support the
development and implementation of the main
application.

3. LiveKD, it allows to run the Kd and Windbg Microsoft
kernel debuggers, which are part of the Debugging
Tools for Windows package, locally on a live system

3.3 System Requirements

System requirement; general requirement regarding the
concept, performance and interface, required in this paper
are:
1. The PC is used and acts as the infected PC, which will be

investigated.
2. Enable to grab the current process.
3. Provide and ensure to list the hidden process to the

investigator.
4. Display information about the hidden process.
5. Provide the guideline on how to get the hidden process.
6. Information providing: the guideline must provide step by

step information about how to get the hidden process, and
let the investigator acquires the information they need. The
investigator can retrieve information by sending command
through the livekd

3.4 System Architecture

In this paper, the system architecture is use to assist and
complete the flow on how the student way of thinking about
this project. The architecture uses are:
1. Case diagram: Provide a graphical overview of the

functionality provided by a system in terms of actor, their
goals and any dependencies between those use cases.

2. Activity diagram: Is a loosely defined diagram technique
for showing workflows of stepwise activities and actions,
with support for choice, iteration and concurrency.

4. Discussion

The memory forensic study is divided into two main
category (or perspectives) which are the affected PC and the
investigator. To complete the scenario, some memory image
containing malware is needed.

72

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 6, June 2013
www.ijsr.net

For the environment for the affected PC, there are some of
software needs to be installed in this environment. The
Windows XPSP2 is installed inside the QEMU Manager.
QEMU is a popular emulation environment for Windows
and Linux.

Figure 3: QEMU Manager

Inside this QEMU Manager, the livekd is execute all the
debugger commands that work on crash dump files to look
deep inside the system.

This subsection describes list of the commands that will be
executed by investigator with using livekd. The result from
each command is displayed with the figures along with the
description for each result. The flow chart below simplifies
the action taken by the investigator in order to find the
hidden process.

The second and most important environment is the
investigator’s environment. Following will describes list of
the commands that will be executed by investigator with
using livekd. The result from each command is displayed
with the figures along with the description for each result.
The flow chart beside simplifies the action taken by the
investigator in order to find the hidden process.

4.1 List all loaded objects

Using the first step in the flow chart, first we will list all
loaded objects such as processes, threads and drivers. By the
kernel debugger, we can display the process list with
command:

The list of the current process running will appear with its
Cid. By grab the Cid numbers we may get the detail of the
process block.

Figure 4: List all loaded objects

Flow Chart: Investigator Guideline

Yes

No

No

Yes

Stop

Search for the string system.
Validate and check the values for the

system EPROCESS structure.

Stop &
analyze

Search for two processes. Verify

whether the FLINK and BLINK entries

point to each other.

Process
find

List all loaded objects (processes,
threads and drivers)

Start

List all threads that are waiting for
processor cycles

Compare with list enumerated from doubly
linked list (cross view detection)

Process
find

Pattern matching technique

Stop &
analyze

kd > !process 0 0

73

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 6, June 2013
www.ijsr.net

4.2 List all threads that are waiting for processor cycles

In the contents of the Executive Thread Block, one of the
key content is ALPC information, which contents message
ID that the thread is waiting for and address of message. The
kernel debugger command below dumps a subset of the
information in the thread data structures [3].

Some key elements of the information displayed by the
kernel debugger cannot be displayed by any utility. In this
case, for threads in a wait state, the list of objects the threads
is waiting for.

Figure 5:!thread

4.3 Compare with list enumerated from doubly linked list

If there are no idle processors when a thread wants to run,
Windows compares the propriety of the thread running (or
the one in the standby state) on the thread’s ideal processors
to determine whether it should preempt that thread.

4.4 Pattern matching technique

Now we already on the fourth step of the flow chart. On the
first step we already list all loaded objects by using
command:!process 0 0 Using that command giving us the
details of all processes runs, in this pattern matching
techniques two important details from the processes is the
CID and PEB, which we will using it now.

By run this command we will get the detail of the process
block, along with their token id. As pictured in the output
below, the process running with using Cid 0190, which
belongs of processes names cmd.exe. In the end of the
process, it displayed “not impersonating”. It is a clue since a
thread can assume a different security context than that of its
process. This mechanism is called impersonation.

When a thread is impersonating, security validation
mechanisms use the thread's security context instead of that
of the thread's process. When a thread isn't impersonating,

security validation falls back on using the security context of
the thread's owning process.

It's important to keep in mind that all the threads in a process
share the same handle table, so when a thread opens an
object-even if it's impersonating-all the threads of the
process have access to the object.

Figure 6: Process with CID 0190

After we run this command, another detail that we got is the
token id. As pictured above, the cmd.exe has a token id
which is e21d94e0. To look into the token details, we can
run the command below:

The Security reference monitor (SRM) uses an object called
a token (or access token) to identify the security context of a
process or thread. A security context consists of information
that describes the privileges, accounts, and groups associated
with the process or thread.

The security mechanisms in Windows use two token
components to determine what objects can be accessed and
what secure operations can be performed. One component
comprises the token's user account SID and group SID
fields. The SRM uses SIDs to determine whether a process
or thread can obtain requested access to a securable object,
such as an NTFS file.
The second component in a token that determines what the
token's thread or process can do is the privilege array. A
token's privilege array is a list of rights associated with the
token. An example privilege is the right for the process or
thread associated with the token to shut down the computer.

By including security information in tokens, Windows
makes it convenient for a process or thread to create objects
with standard security attributes, because the process or
thread doesn't need to request discrete security information
for every object it creates.

The investigator can indirectly view token contents with
Process Explorer's security tab of its process properties
dialog box. The dialog box shows the groups and privileges
included in the token of the process the investigator
examine.

kd > !thread

kd > !process [with the cid]

kd > !token [with the token id]

74

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 6, June 2013
www.ijsr.net

Figure 7: GUI for Token Credentials

The last step of the pattern matching is by checking the
process Process Environment Block. The PEB is interesting
to attackers is because the memory pages where the PEB
resides are both Writeable and eXecutable. Since the PEB
has always been in a fixed location, attackers have the option
of copying their shellcode to a known address in the PEB
and then transferring execution to that location. This
technique can be useful when an arbitrary memory overwrite
is possible but the payload is difficult to locate – such as for
heap overflows.
Last time the kernel debugger! Process command displays a
subset of the information in an EPROCESS block. Take the
PEB value and run the following command:

It will give result of the ImageBaseAddress which contain
base address of section, and the ProcessHeaps which is the
first byte after PEB.
We will use the example of the windbg.exe; it has peb value
of 7ffd8000.

Figure 8: The !PEB value for 7ffd8000.

Take the peb value will give us:

Figure 9: The !PEB result

5. Conclusion and Future Enhancement

The first step in responding to an incident is to have a policy
for doing so. A corporate security policy that addresses how
incidents will be handled is extremely important because it
provides a roadmap for investigators. In some cases, the
investigator may pull the plug and image the whole drive
then start the investigation. This option, however, requires a
great deal of interaction from the investigator- documenting
commands, starting and restarting the PC, ensuring that all of
the necessary commands are run when copying files, etc.
Other option exist, such a more forensically sound
methodology called volatility collection. As a computer
program will get the process run off of the system after
unplugging the electricity, this methodology gives additional
and critical information to the investigator, including hidden
files. Additionally, this methodology also allows for all of
the necessary and significant data to be collected quickly,
while decreasing the potential for mistakes.

Regardless of the methodology used, the goal should be the
same. When investigating an incident, the primary focus
should be to determine what happened through the collection
and analysis facts. Filling in gaps by speculation can be just
as useless as if an investigation had not been done at all.

 References

[1] Beek, C. "Virtual Forensics." Ten ICT the

Professionals.
[2] Scarfone, K., T. Grance, et al. (2008). Computer

Security Incident Handling Guide.
[3] Carvey, H. (2005). Windows Forensics and Incident

Recovery, Addsion Weasley.
[4] Russinovich, M. E. and D. A.Solomon (2010).

Windows Internals Microsoft.
[5] Recommendations of the National Institute of Standards

and Technology. Computer Security Division,
Information Technology Laboratory, National Institute
of Standards and Technology Gaithersburg, MD
20899-8930, NIST SPecial Publication 800-61.

[6] The Volatility Framework: Volatile memory artifact
extraction utility framework, application reftreived
from
https://www.volatilesystems.com/default/volatility.

[7] Technical White Paper Generic Anti-Exploitation
Technology for Windows. e. D. Security.

[8] TMurgent, T. (2003). "Processor Affinity Multiple CPU
Scheduling."

Author Profile

Cutifa Safitri received her B.CS (Honored) from
International Islamic University Malaysia in 2011 and
currently enrolled in M.IT at Kulliyyah of Information
and Communication Technology, International Islamic
University Malaysia.

kd > !peb [with the peb id]

75

