
International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 6, June 2013
www.ijsr.net

Parallel Content Matching in Publish or Subscribe
Systems

Suhas Doijad1, Medha Shah2

1Dept. of Computer Science and Engineering, Walchand College of Engineering, Sangli, Maharashtra, India
2Dept. of Computer Science and Engineering, Walchand College of Engineering, Sangli, Maharashtra, India

Abstract: Publish/Subscribe (Pub/Sub) system is the more optimized implementation of complex event processing system, in which
user gives the interest (subscriptions) and some other party publishes the event (e.g. Stock quotes). The main functionality of
Publish/Subscribe system is to send these events to subscribers whose subscriptions are related to the events. So the core of this system is
to match the events with the subscriptions. As two phase algorithm is good in spatial locality and performs better, its implementation is
proposed in this paper. The process of matching is parallelized using current cheaper and commonly available multi-core systems. Also,
different parallelization strategies are used to improve the throughput and to reduce the matching time. Performance of the system is
measured by taking processing time as a parameter. The results show that, the proposed technique gives more throughputs along with
speedup of 3.4x and efficiency of 40%.

Keywords: Publish/Subscribe system, Multi-core processors, Matching algorithm, Event processing, Stock quotes.

1. Introduction

The Publish/Subscribe system deals with filtering of each
event against the subscriber’s subscription. A subscription
shows subscriber’s interest related to a specific event and
publication resembles these events. The Publish/Subscribe
system performs the matching of events to that of
subscriptions and notifies the users according to their
interest. In this model both subscribers and publishers are
decoupled and connected only through the Publish/Subscribe
system (Message broker OR Middleware). Fig 1 shows a
scenario of Publish/Subscribe system (Stock Quotes). In this,
subscribers are the shareholders which want information
about their shares. Publishers are the stock providers (e.g.
BSE).

Figure 1: Publish/Subscribe System in stock quotes

Events are a set of predicates. Each predicate is a pair in the
form <attribute = value>. Similar to events, subscriptions are
also set of predicates in the form <attribute operator value>.
An event’s pair, (<attribute>p, <value> q); matches
subscription’s predicate (<attribute> x, <operator> y,
<value> z) only when p=x, and q <operator y> z.

There are two categories of Publish/Subscribe system, one is
topic-based and another is content-based. Attribute is used
for matching in topic-based Publish/Subscribe system while
value is used in content-based system. So, matching in
content-based system is more compute intensive task which
can be done with the use of recent multi-core processors
commonly available along with parallel programming
constructs like OpenMP.

The rest of the paper is organised as follows: Section 2
presents the related work about Publish/Subscribe systems.
Section 3 discusses the matching process along with
parallelization strategies. Section 4 demonstrates
experimental results. Finally section 5 concludes this paper.

2. Related Work

Several researchers have attempted to improve the
performance of content based Publish/Subscribe system
through parallelism [1], [2]. In [1] authors have implemented
parallel matching engine which is given in sequential form in
[3]. Many sequential algorithms are designed for content
based matching in [3], [4], [5] and [6]. Some of them are
amenable for parallelization. In [2] authors have shown
parallel implementation for Job Portals using threads.

Several approaches for XML message filtering for pub/sub
systems are given in [7], [8] and [9]. In [7] authors exploit
the parallelism found in XPath filtering systems using GPUs.
Current XML filtering research work could be classified into
three classes: top-down matching, bottom-up matching and
sequence-based matching. Different filters such as Yfilter
and Bfilter are reported in the literature [8] and [9].

The main functionality of Publish/Subscribe systems is the
matching algorithm. There are two types of matching
algorithms - two-phase algorithm and compilation method.
Two phase algorithm [5] works in two phases. First,
predicates in the events are evaluated against all the
predicates in all subscriptions. This forms an intermediate
result. Second, this intermediate result is used to compute
matched subscriptions. In compilation method, matching
algorithm forms a tree-like structure to match events with all
subscriptions. We use two-phase algorithm because it’s
simple storage and high performance.

183

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 6, June 2013
www.ijsr.net

3. Matching Process

3.1 Sequential Implementation

The Naive Algorithm is given in [4]. In this, each event is
evaluated against all subscriptions sequentially. A more
optimized algorithm, based on two-phase is presented in [1]
and [5]. In first phase (H Phase), table based data structure
[5] is used to store all predicates in subscriptions where as in
second phase (C Phase), counting is done. Counting is a
most efficient algorithm which does not require any
additional information [5]. The counting algorithm counts
the number of predicates satisfied by an event and checks
whether they are equal to total predicates in a subscription(
match) or not.

Another method that can be used in second phase is
clustering [3]. For clustering some additional information
such as statistics on predicate is required for making clusters.
So group of subscriptions will form a cluster, which is
accessed by an access predicate. If the access predicate is
satisfied then only the cluster associated with it will be
checked for its matching. So clustering depends upon how
the access predicate is chosen and number of subscriptions
which are associated with that access predicate. Generally
equality predicate (a predicate with ‘=’ operator in a
subscription) acts as an access predicate, because it’s easy to
check whether equality is achieved or not.

Figure 2: Two-phase matching Process

Fig. 2 shows the whole process. Event is matched with the
subscriptions in two phases (H phase and C Phase). H Phase
processes each predicate in an event. Hashing is used to get
an access of particular table. Each attribute is having a
separate table (as show in fig. 3) which stores all predicates
related to that attribute.

All satisfied predicates will be fetched and related bits in a
bit-vector are set to ‘1’. After processing all predicates in an
event, counting/clustering algorithm is used in C-Phase to
get all satisfied subscriptions.

For counting two tables are maintained. First is to store
number of predicates in a subscription and second is to store
satisfied predicates by an event. Finally both tables are
checked to get satisfied subscription/s by an event. But in
case of clustering, access predicate is checked, whether it is
satisfied or not with the help of bit vector. If a bit is ‘1’ for
an access predicate then it is satisfied, so the cluster
associated with that predicate is processed.

Fig. 3 shows the table based approach. In this, separate table
is made for each attribute occurred in subscriptions. Rows
are for different operators and columns are for values related
to that operator.

Figure 3: Table Based Data Structure

3.2 Parallel Implementation

Two parallelization strategies are given in [1]:

3.2.1 Single Event Collaborative Processing (SE-CP):
The matching time per event is reduced using SE-CP
implementation. In this, event is fragmented according to
predicates as a part and each part is evaluated separately.

Figure 4: SE-CP Implementation

Fig. 4 describes the working of SE-CP. For every event,
each thread takes a predicate and processes it and set bits in
bit-vector. After completing H-Phase all threads update the
global bit-vector. This global vector is further processed in

184

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 6, June 2013
www.ijsr.net

C-Phase by each thread separately. Synchronization is
required to carry out the updating of global bit-vector.

3.2.2 Multiple Event Independent Processing (ME-IP)
This strategy is used to increase the system’s throughput. As
multiple events are processed simultaneously, more and
more events are processed in less amount of time.

Figure 5:ME-IP Implementation

4. Experimental Results

Experimental results are taken on 8 cores Intel Core i7-2600
CPU running at 3.40 GHz. The operating system is Cent-OS
with kernel version 2.6.32. Compiler used is GCC 4.4.6.

Workload for the experimentation purpose is generated as
given in [1]. Both subscriptions and events are input to the
system. First subscriptions are loaded and then events. Total
100 different attributes along with more than 1450 different
predicates are used to generate subscriptions. The operators
taken are < (less than), ≤ (less than equal to), > (greater
than), ≥ (greater than equal to), = (equal to), and ≠ (not equal
to). The events are generated accordingly.

Figure 6: Matching time of sequential implementation

Fig. 6 shows the matching time required to match all the
subscriptions against the events for three sequential
algorithms. The naïve (Basic) algorithm performs matching
of events with subscriptions one by one. So time taken for
this approach is more as compared to two-phase algorithm

using counting. But for clustering in two-phase, time
required is more as the cluster size increases. The number of
subscriptions ranges from 5000 to 100000 along with 2000
events.

Fig. 7 shows the comparison of sequential and SE-CP
implementation. SE-CP technique depends upon how many
predicates are there in an event. So graph is plotted taking
number of predicates on x-axis versus time to match that
event with subscription on y-axis. The no. of predicates
ranges from 1 to 10.

Figure 7: SE-CP Implementation

Figure 8: ME-IP Implementation

Fig. 8 represents time required for sequential and parallel
implementation of two-phase algorithm. ME-IP
implementation is considered here. So, as system has
multiple cores, multiple events are processed simultaneously
increasing system’s throughput.

Figure 9: Comparisons of counting and clustering algorithm

185

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 6, June 2013
www.ijsr.net

Fig. 9 shows difference between counting and clustering
algorithm for 1000 to 10000 number of subscriptions.
Initially clustering shows better performance than counting.
This is because initially number of clusters and size of each
cluster are less, so matching time is also less. But as the
number of subscriptions increases both, number of clusters
and size of each cluster, increases.

Figure 10: Events processed per second

Fig. 10 shows the throughput of ME-IP. As the number of
threads used in a system increases, more number of events is
processed in a second. So there is a linear increase in
throughput. For a single thread, around 200 events are
processed per second whereas for 8 threads (default number
of threads in i7 processors with multi-threading) 1019 events
per second are processed.

5. Conclusion

In this paper, we have presented table based approach to
store the subscriptions for its high performance. Also, two
parallelization strategies (SE-CP and ME-IP) which are
useful in Publish/Subscribe systems are presented. ME-IP
increases throughput whereas SE-CP improves matching
time. The results show that, use of 8 core system increases
throughput from 200 to 1019 events per second. There are
two algorithms which can be used, i) counting and ii)
clustering for final matching. The performance of clustering
algorithm depends upon the way clustering is done along
with size of the clusters. In future we will focus on
implementing other approaches for storing subscriptions
which are amenable to parallelism.

References

[1] A. Farroukh, E. Ferzli, N. Tajuddin, and H. Jacobsen

“Parallel event processing for content-based Publish/
Subscribe systems,” In Proceedings of the Third ACM
International Conference on Distributed Event-Based
Systems, page 8. ACM, 2009.

[2] Patel Kuldip L. Savalia Jay M et.al. “Parallelization of
complex event processing on GPU” in 2011.

[3] F. Fabret, H.-A. Jacobsen, D. Shasha st.al. “Filtering
algorithms and implementation for very fast
publish/subscribe systems”, in SIGMOD, 2001.

[4] Françoise Fabret , François Llirbat , João Pereira et.al.,
“Efficient Matching for Content-based
Publish/Subscribe Systems “,in 2000.

[5] G. Ashayer, H. K. Y. Leung, and H.-A. Jacobsen
“Predicate matching and subscription matching in
publish/subscribe systems,” In Proceedings of the 22nd
International Conference on Distributed Computing
Systems, ICDCSW ’02, pages 539–548, Washington.

[6] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M.
Kermarrec, “The Many Faces of Publish/subscribe,”
ACM Comput. Surv., vol. 35, pp. 114–131, June 2003.

[7] Roger Moussalli, Vassilis J. Tsotras, et.al, “Efficient
XML Path Filtering Using GPUs”,in Second
International Workshop on Accelerating Data
Management Systems using Modern Processor and
Storage Architectures (ADMS‟11), 2011.

[8] Yang Cao , Chung-Horng Lung , Shikharesh
Majumdar, “A Peer-to-Peer Model for XML
Publish/Subscribe Services” in 9th Annual
Communication Networks and Services Research
Conference, IEEE 2011.

[9] L. Dai, C.-H. Lung and S. Majumdar. “BFilter – A
XML Message Filtering and Matching Approach in
Publish/ Subscribe Systems”, in Proc. of the IEEE
GLOBECOM, Dec. 2010.

Author Profile

Suhas Doijad received B.E. degree in Computer
Science and Engineering from Shivaji University,
Maharashtra, India, in 2011. Currently pursuing
Masters in Computer Science and Engineering from
Walchand college of Engineering, an autonomous

institute, Maharashtra, India.

Medha Shah is an Assistant Professor in the
Department of Computer Science and Engineering at
Walchand College of Engineering, Sangli,
Maharashtra, India. She has completed M.E. in
Computer Science and Engineering in 2008. She is

currently pursuing Ph.D in Computer Science and Engineering
from Walchand College, Sangli, Maharashtra, India.

186

