The Order of the Set of Idempotent Elements of Semigroup of Partial Isometries of a Finite Chain

R. Kehinde¹, A. D. Adeshola²

Department of Mathematics and Statistics, Bowen University, P. M. B. 284, Iwo, Osun State, Nigeria

Department of Statistics and Mathematical Sciences, Kwara State University, Molete, P. M. B. 1530, Ilorin, Nigeria

Abstract: This paper lists, investigates and establishes the order of the set of idempotent elements of the semigroup of Partial Isometries of a finite chain.

Keyword: Idempotent elements, Partial Isometries, Chain, Semigroup.

1. Introduction

Let $X_n = \{1, 2, 3, ..., n\}$ and I_n be the partial one-to-one transformation semigroup on X_n under composition of mappings. Then I_n is an **inverse** semigroup (that is, for all $\alpha \in I_n$ there exist a unique $\alpha' \in I_n$ such that $\alpha = \alpha \alpha' \alpha$ and $\alpha' = \alpha' \alpha \alpha'$). The importance of I_n (more commonly known as the symmetric inverse semigroup or monoid) to inverse semigroup theory may be likened to that of the symmetric group S_n to group theory. Every finite semigroup S is embeddable in I_n . Let $X_n = \{1, 2, ..., n\}$. A (partial) transformation α : Dom $\alpha \subseteq X_n \rightarrow Im \alpha$ is said to be **full** or **total** if $Dom \alpha = X_n$; otherwise it is **strictly partial.** The height of α is $h(\alpha) = |Im \alpha|$, the width or breadth of α is $b(\alpha) = |Dom \alpha|$, the right(left) waist of α is $w^+(\alpha) = \max(Im \alpha) [w^-(\alpha) = \min(Im \alpha)]$, the collapse and fix of α are denoted by $c(\alpha)$ and $f(\alpha)$ and defined by $c(\alpha) = |C(\alpha)| = |\bigcup_{t \in Im \alpha} \{t\alpha^{-1} : |t\alpha^{-1}| \ge t\alpha^{-1}\}$ $2|, f(\alpha) = |F(\alpha)| = |\{x \in X_n : x\alpha = x\}|$ respectively, where $Im \alpha$ is the image of α and $Dom \alpha$ is the domain of α . A transformation $\alpha \in I_n$ is said to be an isometry or distance-preserving if $(\forall x, y \in Dom \alpha)$ |x - y| = $|x\alpha - y\alpha|$. It is well known that a partial transformation ε is idempotent ($\varepsilon^2 = \varepsilon$) if and only if $Im \varepsilon = F(\varepsilon)$.

2. Methodology

The methodology is: (i) listing the idempotent elements of the semigroup in Domain/Image of α and (ii) investigating and establishing its order as follows: Let $DI_n = \{\alpha \in I_n: (\forall x, y \in X_n) | x - y| = |x\alpha - y\alpha|\}$ be the subsemigroup of I_n consisting of all partial isometries of X_n for $n = 1, 2, 3, 4, \dots$ then

$$E(DI_1) \text{ on } X_1 = \{1\} \text{ has } 2 \text{ elements i.e} \begin{pmatrix} 1\\1 \end{pmatrix} \text{ and } \emptyset.$$

$$E(DI_2) \text{ on } X_2 = \{1, 2\} \text{ has } 4 \text{ elements i.e}$$

$$\begin{pmatrix} 1 & 2\\1 & 2 \end{pmatrix}, \begin{pmatrix} 1\\1 \end{pmatrix}, \begin{pmatrix} 2\\2 \end{pmatrix}, \emptyset \text{ with} |Im \alpha| = 2$$

Dom α Im α	{1	,2}				
{1,2}	$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 2\\2 \end{pmatrix}$				
$ Im \alpha = 1$						
Dom α Im α	{	1}	{2}			
{1}	($\binom{1}{1}$				
{2}			$\binom{2}{2}$			

and \emptyset . $E(DI_3)$ on $X_3 = \{1, 2, 3\}$ has 8 elements with: $|Im \alpha| = 3$.

	-)
Dom α Im α	{1, 2, 3}
{1, 2, 3}	$\begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$

$ Im \alpha = 2,$								
Dom α Im α	{1, 2}	{2, 3}	{1, 3}					
{1, 2}	$\begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}$							
{2, 3}		$\begin{pmatrix} 2 & 3 \\ 2 & 3 \end{pmatrix}$						
{1,3}			$\begin{pmatrix} 1 & 3 \\ 1 & 3 \end{pmatrix}$					

$ Im \alpha = 1,$								
Dom α Im α	{1}	{2}	{3}					
{1}	$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$							
{2}		$\binom{2}{2}$						
{3}			$\binom{3}{3}$					

and Ø. $E(DI_4)$ on $X_4 = \{1, 2, 3, 4\}$ has 16 elements with: $|Im \alpha| = 4$,

Dom α Im α	$\{1, 2, 3, 4\}$				
$\{1, 2, 3, 4\}$	$(1 \ 2 \ 34)$				
	$(1 \ 2 \ 34)$				

$ Im \alpha = 3,$												
Dom α Im α	{1	, 2,	3}	{1	, 2,	4}	{1	, 3,	4}	{2	, 3,	4}
{1, 2, 3}	(1	2	3)									
	1	2	3)									
$\{1, 2, 4\}$				(1)	2	4)						
				\1	2	4)						
$\{1, 3, 4\}$							(1	3	4)			
							$\backslash 1$	3	4)			
$\{2, 3, 4\}$										(2	3	4)
										\backslash_2	3	4)

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

$ Im \ \alpha = 2,$								
Dom α Im α		{1, 3}	{1, 4}	{2, 3}	{2, 4}	{3, 4}		
{1, 2}	$\begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}$							
{1, 3}		$\begin{pmatrix} 1 & 3 \\ 1 & 3 \end{pmatrix}$						
{1,4}			$\begin{pmatrix} 1 & 4 \\ 1 & 4 \end{pmatrix}$					
{2, 3}				$\begin{pmatrix} 2 & 3 \\ 2 & 3 \end{pmatrix}$				
{2, 4}					$\begin{pmatrix} 2 & 4 \\ 2 & 4 \end{pmatrix}$			
{3, 4}						$\begin{pmatrix} 3 & 4 \\ 3 & 4 \end{pmatrix}$		

$ Im \alpha = 1,$									
Dom α Im α	{1}	{2}	{3}	{4}					
{1}	$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$								
{2}		$\binom{2}{2}$							
{3}			$\binom{3}{3}$						
{4}				$\begin{pmatrix} 4 \\ 4 \end{pmatrix}$					

and \emptyset . $E(DI_5)$ on $X_5 = \{1, 2, 3, 4, 5\}$ has 32 elements, $E(DI_6)$ on $X_6 = \{1, 2, 3, 4, 5, 6\}$ has 64 elements and $E(DI_7)$ on $X_7 = \{1, 2, 3, 4, 5, 6, 7\}$ has 128 elements. The tables of elements of $E(DI_5)$, $E(DI_6)$ and $E(DI_7)$ were constructed the same way.

3. Results

The results are shown in the triangle of numbers below and we prove a theorem that establishes the order of the set of Idempotent elements of the semi group.

Γ in the second seco									
n/Im α	0	1	2	3	4	5	6	7	$\sum_{n=1}^{\infty} F(n; Im \alpha)$
0	1								1
1	1	1							2
2	1	2	1						4
3	1	3	3	1					8
4	1	4	6	4	1				16
5	1	5	10	10	5	1			32
6	1	6	15	20	15	6	1		64
7	1	7	21	35	35	21	7	1	128

Triangle of numbers $F(n; Im \alpha)$

Then $|E(DI_n)| = 2^n$. Proof. $E(DI_n)$ is a subsemigroup of I_n because $|E(DI_n)| = |E(I_n)|$. In I_n , idempotents are partial identities i.e $id = \begin{pmatrix} 1 & 2 & \dots & n \\ 1 & 2 & \dots & n \end{pmatrix}$. Also an element α is idempotent i.e $\alpha^2 = \alpha$ if $F(\alpha) = Im \ \alpha(= Dom \ \alpha)$. Idempotents are like the power set which are subset of a set e.g if |A| = n then $|P(A)| = 2^n$. It is also obvious and without loss of generality that idempotents are special case of binomial theorem which says $\sum_{r=0}^n {n \choose r} x^r y^{n-r} = (x + y)^n = 2^n$ if x = y = 1. i.e $\sum_{r=0}^n {n \choose r} = 2^n$.

Theorem: Let $E(DI_n)$ be the idempotent elements of DI_n .

References

- J. M. Howie, "Products of Idempotents in certain semigroups of order-preserving Transformations", Proceedings Edinburgh Mathematical Society (2) 17: (1971), 223-236.
- [2] J. M. Howie and B. R. Mcfadden, "Idempotent rank in finite full transformation Semigroups", Proceedings Royal Society Edinburgh Sect. A114: (1990) 161-167.
- [3] J. M. Howie, "Semigroup of Mappings", Technical report series. King Fahd University, Dhahran, Saudi Arabia (2006).
- [4] Laradji and A. Umar, "On certain finite semigroups of order-decreasing transformations", 1. Semigroup Forum 69: (2004) 184-200.
- [5] Laradji and A. Umar, "Combinatorial results for semigroups order-preserving partial transformations", Journal of Algebra (2004c). 278: (2004) 342-359.
- [6] Umar, "On semigroups of partial one-one orderdecreasing finite transformations", Proc. Roy. Soc. Edinburgh, 123A: (1993) 355-363.
- [7] R. Kehinde, "Some algebraic and combinatorial properties of semigroups of Injective Partial Contraction Mappings and Isometries of a Finite Chain", (2012). Ph. D thesis, University of Ilorin, Ilorin, Nigeria.
- [8] R. Kehinde and S. O. Makanjuola, "On the idempotent elements of semigroups of injective contraction mappings. Journal of Mathematical Sciences", (2009). Vol.20, No.4: (2009) 339-348.