
International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064 
 

Volume 2 Issue 5, May 2013 
www.ijsr.net 

Optimal Approach of Hybrid Genetic Algorithm for 
Web Service Selection Problem 

  
Kalpesh Lad

1
, Trupti Manik

2
 

 
1LD Collage of Engineering, Gujarat Technological University, 

Ahmedabad, Gujarat, India   
 

 
2 LD Collage of Engineering, Gujarat Technological University, 

Ahmedabad, Gujarat, India 
 

 

Abstract: Web Service composition is an important problem to formulate any business process. It’s all about creating an abstract web 
service using some existing web service. A web service may have many implementation having same functionality but with different 
Quality of Service (QoS) parameters. So, researchers are making effort to select the web service implementation as a part of web service 
composition so that composite web service gives best overall QoS values or optimal than any other possible composition. Some 
approaches have come up to address the same problem. The genetic algorithm, which we have considered, addresses the same problem. 
The genetic algorithm gives constrained driven approach to select the web service for composition. This approach gives much better 
result than its predecessor. But, it takes longer to execute. If the algorithm takes much time then the system will take much time to 
respond. This paper introduces an approach to converge the genetic algorithm in a lesser time. 

Keywords: Web Service, Constrained, Web Service Composition, Quality of Service.  

1. Introduction 

Web service technology is based on open XML standards 
(i.e. SOAP, WSDL, and UDDI) and has features such as 
interoperability, decoupling and just-in-time integration, 
which make it possible to build new value-added web 
services using existing web services. This is so called Web 
service composition [1]. 

A web service may have different implementation 
available by different providers. These implementations have 
the same functionality, but may have different Quality of 
Service (QoS) values. Like they may have different response 
time, reputation, price and availability, etc,. Thus, a 
significant research problem in the web service composition 
is how to select an implementation for each of the web 
services in the composite web service. Most of the time, a 
implementation of the web service is not better than other 
implementation of the same web service for all the QoS 
criteria. An implementation may be better than the other in 
terms of some QoS criteria, but may not be as good as other 
in terms of other QoS criteria. Thus, it’s almost impossible or 
difficult to have some implementation having good QoS 
values without compromising anything. Hence, the objective 
of the web service selection problem is to select the 
implementation of web service in such way that overall QoS 
is maximal. This web service selection problem is also called 
QoS-aware web service composition. 

In the web service selection there might be some web 
service implementations that are dependent on each other. 
When selecting an implementation for one web service, we 
must select a particular implementation for another web 
service in the composite web service. For example, when 
building a travel booking web service, if we select a 
particular travel insurance web service that only accepts 
payments made by Master cards, then we must select a 
payment web service that accepts Master cards. This kind of 

constraints is called dependency constraint. In addition, in 
the web service selection there might be some web service 
implementations that conflict with each other. When 
selecting an implementation for one web service, we must 
not select a particular implementation for another web 
service in the composite web service. For example, when 
building a travel booking web service, if we select a 
particular flight booking web service implementation that 
does not accept deposits made by Master cards, then we must 
not select an implementation for the payment web service 
that supports Master cards. This type of constraints is called 
conflict constraint. In the web service selection, both 
dependency constraints and conflict constraints must be 
considered [1]. 

Although various optimal web service selection problems 
have been intensively studied and different approaches have 
been proposed in past [1], [2], [3], [5], [6], [7], [8], [9], [10] 
the study on the optimal web service selection problem with 
constraints remains open. From the computational point of 
view, the web service selection problem is a typical 
constrained combinatorial optimization problem. Thus, 
genetic algorithms might be efficient and effective for 
solving the problem. The approach [1] in paper address the 
same problem. They have proposed a genetic algorithm to 
select the optimal constrained web services as a part of web 
service composition. This algorithm (HGA-Hybrid Genetic 
Algorithm) [1] is a hybrid one of its two predecessor penalty-
based genetic algorithm (PGA) [2] and the repairing-based 
genetic algorithm (RGA) [3]. The HGA algorithm has a local 
optimizer to improve the quality of the composition. It was 
not there in previous two algorithms. As this algorithm 
checks for all the alternatives of the service, it takes longer to 
generate result. Because of that, response time of the system 
is more. The new genetic algorithm checks only those 
alternatives which have possibility to improve the quality of 
population. Here we checked few alternatives; hence time for 

350



International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064 
 

Volume 2 Issue 5, May 2013 
www.ijsr.net 

infeasible alternatives is saved. The new algorithm has 
implemented and evaluation is done on the basis of some 
statistics.  

 
The remainder of the paper is organized as follows. First 

of all, we formulate the research problem in Section II. Then, 
we review related work in Section III. After that, we present 
our new hybrid genetic algorithm and statistics results in 
Section IV. Finally, we conclude this this research in Section 
VI. 

2. Problem Formulation 

When building a new composite web service, the 
following process is usually is followed. First of all, we 
design a workflow for the composite web service. Fig. 1 is 
an example of workflow, which consists of 10 web services 
W1, W2, • • •, W10. Then, we get the information about all 
available implementations for each of the web services in the 
workflow. This can be done by using a web service 
discovery tool or a web service broker. The information 
includes their URLs, the inter-dependencies and mutual 
conflicts between the web service implementations, as well 
as their QoS values of interest. And then tool which uses 
genetic algorithm used to select the optimal combination of 
web service implementations accommodating the constraints. 

 
Figure 1An example of workflow for web service composition[1] 

In this problem formulation, we follow the terminologies 
used by the web service community. In the rest of paper, 
when we say abstract web service, we refer to a web service 
in a workflow and when say concrete web service; we mean 
the implementation of an abstract web service. In addition, in 
the problem formulation, we only consider five most popular 
QoS attributes. However, the problem formulation and the 
hybrid genetic algorithm can be easily extended to include 
any new QoS attributes or to exclude any of the five QoS 
attributes. 
We have taken [1],  

 a workflow of a composite web service, which 
contains a set of abstract web services W = {W1, 
W2, · · ·, Wn} where n is the total number of 
abstract web services in the workflow; 

 all the available concrete web services for each of 
the abstract web services 

{
(                   ) (                   )     

 (                   )
} 

where     represents the     concrete web service of 
abstract web service Wi and    is the total number 
of concrete web services of abstract web service 
Wi; 

 QoS values for response time, price, reputation, 
reliability and availability for each of the concrete 
web services     ,     

      
      

      
         

   
respectively, where         and           ; 

 weights for QoS criteria, c1, c2, c3, c4 and c5 for 
response time, price, reputation, reliability and 
availability, respectively, where c1 + c2 + c3 + c4 + c5 

= 1; 
 a set of conflicts between the concrete web services 

  {(           )|  if the      concrete web service 
is selected for abstract web service     ,then abstract 
web service     must not select the      concrete 
web service }, where           ,           
and            ; 

 a set of dependencies between the concrete web 
services D = {{(           )|  if the      concrete 
web service is selected for abstract web service     
,then abstract web service     must select the      
concrete web service}, where           , 
          and            ; 
 

a selection plan X = (x1,x2,...,x n), where xi is a concrete web 
service of abstract web service Wi and          such that 
 

 ( )   ∑ (
  
      ( )

  
      

   
   )

 

   

  ∑ (
  ( )    

   

  
      

   
   )

 

   
     ( ) [ ] 

 
is maximal, where    is the aggregated QoS value for criteria 
k, and       and        represent the possible maximal and 
minimal aggregated QoS values of criterion k, respectively, 
where       (the aggregated QoS values calculation 
follows the methods presented in [4]) Subject to all the 
constraints in C and D are satisfied. 

3. Related Work 

The exiting genetic algorithm HGA [1] utilizes local 
optimizer to improve the quality of individual in the 
population. The local optimizer goes through all the concrete 
service selection of the abstract web service. It tries the 
alternative by replacing existing one. If the modified version 
of the composition is better than the existing one, then 
composition plan is replaced with the new scheme. To check 
whether the new composition plan is better or not, it is 
necessary to compute fitness value and aggregated QoS 
value. Now, those alternatives have no possibilities to 
increase fitness value will be wasting time to compute 
aggregated QoS value and fitness value.  

In this paper new proposed genetic algorithm focuses on 
problem discussed above. It first check QoS parameters of 
the alternative Web Service. If it is better than existing 
selection then only go for fitness value else simply skip those 
alternatives. 

4. Proposed Genetic Algorithm 

This section elaborates our hybrid genetic algorithm. This 
hybrid genetic algorithm uses a local optimizer to improve 

351



International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064 
 

Volume 2 Issue 5, May 2013 
www.ijsr.net 

the individuals in the population and utilizes a knowledge 
based crossover operator. 

4.1 Genetic Encoding 

An individual in the population of our hybrid genetic 
algorithm represents a web service selection plan and it is 
encoded in an array of n integers x1x2...x n, where n is the 
total number of abstract web services in the workflow of the 
composite web service. In the genetic encoding scheme, each 
gene represents an abstract web service in the composite web 
service and a value of the gene represents concrete web 
services of the abstract web service. 
 

4.2 Fitness Function 

Infeasible individuals may have some schemata that are 
essential to build the optimal solution. If the infeasible 
individuals are excluded, the GA may not produce an 
optimal or near-optimal solution. Thus, the strategy adopted 
by our GA is to allow infeasible individuals in the 
population, but gives a penalty to their fitness values. The 
following two general guidelines are used when defining the 
fitness function: firstly, it should be guaranteed that an 
infeasible individual has less fitness value than any feasible 
individual. Secondly, an infeasible individual that violates 
more constraints should be more harshly penalized than an 
infeasible individual that violates less constraint. Equation 1 
gives the definition of the fitness function [1]. 

 

        ( )   {

         ( )        ( )   

     ( )  
 ( )

    
              

             ( ) 

where F(X) is the objective function defined in the problem 
formulation, V (X) stands for the total number of constraint 
violations in X, and Vmax is the maximal number of possible 
constraint violations. Thus, when V (X) equals to zero, it 
implies X is a feasible individual; otherwise, X is an 
infeasible individual. 
According to Equation 1, if an individual X is feasible, then 
its fitness value is given by the expression         ( ). 
If an individual X is infeasible, then its fitness value is 
calculated by the expression     ( )   ( )

    
 , in which the 

component  ( )

    
 is the penalty given to the infeasible 

individual X Thus, the more constraints that an infeasible 
individual violates, the more penalties it receives. 

4.3 Genetic Operator 

Different from the crossover operator used in the penalty 
based genetic (PGA) algorithm and the repairing-based 
genetic algorithm (RGA), the crossover operator used in the 
hybrid genetic algorithm is a knowledge-based one [1]. The 
knowledge-based crossover operator takes two parents, p1 
and p2, and produces two children c1 and c2. When 
producing c1, firstly the crossover operator identifies all the 
concrete web service selections in p1 that do not violate any 
constraints, and then copies these concrete web service 
selections to c1. The rest concrete web service selections in 
c1 are copied from p2. Fig. 2 illustrates the ideas. In the 
figure, we assumed that  

 
Figure 2 Knowledge-based crossover operator [1] 

every highlighted concrete web service selection does not 
conflict with any other concrete web service selection p1. 
Thus, those selections are copied to c1. Now, c1 has the 
concrete web service selection for abstract web services W1, 
W2, W3 and W5. For the rest abstract web services W4, W6, 
their concrete web service selections are copied from the 
corresponding concrete web service selections in p2. 

Similarly, when producing c2, firstly the crossover 
operator finds all the concrete web service selections in p2 
that do not violate any constraints, and copies them to c2. 
The rest concrete web service selections in c2 are copied 
from p1.  

The mutation operator [1] is the same as the mutation 
operator used in the penalty-based genetic algorithm (PGA) 
and the repairing-based genetic algorithm (RGA). It 
randomly selects a concrete web service selection for an 
abstract web service and replaces the concrete web service 
selection with an alternative concrete web service of the 
abstract web service. 

4.4 Local Optimizer 

Given an individual (candidate for the solution) which 
may or may not be feasible, the local optimizer is to optimize 
the individuals in the population. The local optimizer is used 
at the beginning of the genetic algorithm to improve the 
individuals in the initial population, which are randomly 
generated, and at the end of each generation to improve the 
individuals in the population. 

The local optimizer improves the fitness value of an 
individual by increasing its overall QoS value and reducing 
the number of constraint violations, if any, simultaneously. 
This is done by systematically checking all the concrete web 
service selections one by one to see if there exists an 
alternative concrete web service that gives the individual a 
better fitness value. If the fitness value is improved, then the 
current web service selection is replaced with the alternative 
concrete web service. According to the definition of the 
fitness function, when the fitness value of an individual 
increases either the overall QoS value increases, or the 
number of constraint violations, if any, decreases, or both. 
Thus, the local optimizer contributes to both maximizing the 
overall QoS value and minimizing the number of constraint 
violations of an individual. 

4.5 Algorithm Description 

As we discussed before, in this paper we have change the 
local optimizer to reduce the computation time. After 
checking that current web service selection has no 
constraints violation, we will try only those alternatives 
which have higher QoS value by prioritizing with weighted  

 

352



International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064 
 

Volume 2 Issue 5, May 2013 
www.ijsr.net 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

QoS values and numbers of constraints that web service 
have. If web service selection has number of constraints than 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 only those alternatives are tried which have lesser number of 
constraints. Thus, all infeasible individual are skipped and 
time to compute fitness value and aggregated QoS value will 
be saved. This will save considerable amount of time to 
produce the result. Existing algorithm is shown below. 
Listing 1 is local optimizer of the old scheme. Listing 2 is 
genetic algorithm for web service selection problem. Steps 
for proposed local optimizer is shown Listing 3. 

5. Evaluation 

The only difference between new and old scheme is in 
local optimizer. Some alternatives will be skipped in new 
scheme. But it brings considerable amount of time saving.  

Let’s take an example. It takes 20 milliseconds to compute 
fitness value of the individual.  If a problem submitted have 
5 individuals, each having 5 abstract web service and each 
abstract web service have 5 concrete web service and for 
each of them 5 alternatives are ignored means for them 
fitness value is not computed, then we can save at least 
20*5*5*5*5=12500 milliseconds. That’s considerable 
amount of time when we talking about the response on web. 

6. Conclusion 

The new scheme will not take all the alternatives into 
consideration of web services but will only consider the web 
services which match the selection criteria based on QoS 
parameters and constraint values. Hence the time to compute 
other things will be saved. And response time of the new 
genetic algorithm will be better than old one. 

Randomly generate a sequence of abstract web services, 

𝑊𝑥  𝑊𝑥     𝑊𝑥𝑛  

for x = x1 to xn do 
if the concrete web service selection at position x 
does not violate any constraints then 
 while each concrete web service w of Wx having 
no constraints do 
  Calculate the fitness value of the new web 
service selection plan; 
  if the new fitness value is greater than the 
best fitness value then 
   Update the web service selection plan; 
  end if 
 end while 
 Replace the concrete web service selection with 
the best alternative; 
else 
 while each concrete web service w of Wx do 
  Calculate the fitness value of the new web 
service selection plan; 
  if the new fitness value is greater than the old 
fitness value then 
   Replace the web service selection with 
alternative and exit; 
  end if 
 end while 
end if 

end for 
output X 

Listing 1 Local Optimizer [1] 

𝑊𝑋  𝑊𝑋  … 𝑊𝑋𝑛 

Step 1. Randomly Generate Sequence of abstract 
Web Services. 

Step 2. For all the abstract Web Service check 
following Step (Step 3). 

Step 3. Check if the concrete Web Service 
selection does have any constraints. 
       If 
No, then go to Step 4. 
       If 
Yes, then go to Step 5. 

Step 4. For each concrete Web Service try their 
alternatives having QoS criteria better 
than current (priorities with weight of 
QoS and number of constraints). 

a. Calculate new Fitness value. 
b. If it is better than previous then update 

selection plan else skip. 
Step 5. For each concrete web service try other 

alternatives having less number of 
constraints. 

a. Calculate new Fitness value. 
b. If it is better than previous then update 

selection plan else skip. 

Randomly create an initial population of PopSize individuals, 
 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛; 
for each individual in Population do 

optimize it using the local optimizer and then 
calculate its fitness value using the fitness function 
end for 
find the best individual best in the initial population and store 
its fitness value into best fitness; 
while termination condition is not true do 

for ∀𝑥∈ 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 do 
calculate its fitness value, F(x); 
if the fitness value is greater than best 

fitness then 
best = x; 
best fitness = F(x); 

end if 
end for 

select individuals from Population using the 
roulette selection strategy and pair them up; 

for each pair of the selected parents do 
probabilistically use the crossover operator to 

produce two children, child1 and child2; 
probabilistically use the mutation operator to 

mutate child1 and child2; 
replace the parents with the children; 

end for 
end while 

output best. 

Listing 2 A hybrid genetic algorithm for the web service 

Selection Problem [1] 

Listing 3 Modified Local Optimizer 

353



International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064 
 

Volume 2 Issue 5, May 2013 
www.ijsr.net 

In future, new genetic algorithm will be compared more 
precisely with HGA, RGA and PGA. 

References 

[1] L. Ai and M. Tang, ―A hybrid genetic algorithm for 
the optimal constrained web service selection 
problem in web service composition‖, IEEE 
Congress on Evolutionary Computation, Barcelona 
Spain, 2010. 

[2] ——, ―QoS-based web service composition 
accommodating inter-service dependencies using 
minimal-conflict hill-climbing repair genetic 
algorithm,‖ in Proc. IEEE Fourth International 
Conference on e-Science, Dec. 2008, pp. 119–126. 

[3]  ——, ―A penalty-based genetic algorithm for QoS-
aware web service composition with inter-service 
dependencies and conflicts,‖ in Proc. International 
Conference on Computational Intelligence for 
Modeling, Control and Automation,, Dec. 2008, pp. 
738–743. 

[4] M. Jaeger, G. Rojec-Goldmann, and G. Muhl, ―QoS 
aggregation for web service composition using 
workflow patterns,‖ in Proc. The 8th IEEE 
International Conforence on Enterprise Distributed 
Object Computing Conference, Sept. 2004, pp. 
149–159. 

[5] E. Maximilien and M. Singh, ―A framework and 
ontology for dynamic Web services selection,‖ 
IEEE Internet Computing, vol. 8, no. 5, pp. 84–93, 
Sept.-Oct. 2004. 

[6] K. Verma, R. Akkiraju, R. Goodwin, P. Doshi, and 
J. Lee, ―On accommodating inter service 
dependencies in web process flow composition,‖ in 
Proc. AAAI Spring Symposium on SWS, 2004, pp. 
37–43. 

[7] L. Zeng, B. Benatallah, A. Ngu, M. Dumas, J. 
Kalagnanam, and H. Chang, ―QoS-aware 

middleware for web services composition,‖ IEEE 
Transactions on Software Engineering, vol. 30, no. 
5, pp. 311– 327, May 2004. 

[8] G. Canfora, M. Di Penta, R. Esposito, and M. L. 
Villani, ―An approach for QoS-aware service 
composition based on genetic algorithms,‖ in Proc. 
the 2005 conference on Genetic and evolutionary 
computation., New York, NY, USA: ACM, 2005, 
pp. 1069–1075. 

[9] D. Ardagna and B. Pernici, ―Adaptive service 
composition in flexible processes,‖ IEEE 
Transactions on Software Engineering, vol. 33, no. 
6, pp. 369–384, June 2007. 

[10] T. Yu, Y. Zhang, and K.-J. Lin, ―Efficient 
algorithms for web services selection with end-to-
end qos constraints,‖ ACM Trans. on Web, vol. 1, 
no. 1, p. 6, 2007. 

Author Profile 

 

Kalpesh Lad received the B.E. degree in 
Information Technology from Dharmsinh Desai 
Institute of Technology in 2011. Now he is 
studying his Master of Engineering from LD 
Collage of Engineering, Ahmedabad since 
2011. Now he is doing his dissertation in Web 
Service Composition. 

 

 

Trupti Manik received the B.E degree in 
Information Technology from Shri S’ad Vidya 
Mandal Intitute of Technology in 2009 and 
M.E. degrees in Computer Science and 
Engineering from Parul Institute of Technology 
in 2012. Presently she is working as Asst. 
Professor at L.D. College of Engineering.  

 
 

 

354




