
International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 5, May 2013
www.ijsr.net

Adopting Domain based Reuse for Large-scale
Company

Gowtham Gajala1, Nagavarapu Sateesh2

1Department of Information Technology, Kakatiya Institute of Technology & Science,

Warangal, Andhra Pradesh, India

2Department of CSEIT, Malla Reddy Institute of Technology,
Secunderabad, India

Abstract: Software is rarely built completely from scratch. To a great extent, existing software documents (source code, design
documents, etc.) are copied and adapted to fit new requirements. Yet we are far from the goal of making reuse the standard approach to
software development. Software reuse demands that existing components must be readily incorporated into new products. To be
able to reuse software components, it is necessary to locate the component that can be reused. Locating components, or even
realizing that they exist, can be quite difficult in a large collection of components. These components need to be suitably classified
and stored in a repository to enable efficient retrieval. Adopting domain based reuse requires sufficient company size to maintain
specialized groups. Component groups are responsible for developing reusable components.

Keywords: Reuse, Component, Software, Source code, Application group, Domain group.

1. Introduction

Software reuse is the process of creating software systems
from existing software rather than building them from
scratch. Software reuse is still an emerging discipline. It
appears in many different forms from ad-hoc reuse to
systematic reuse, and from white-box reuse to black-box
reuse. Many different products for reuse range from ideas
and algorithms to any documents that are created during the
software life cycle. Source code is most commonly reused;
thus many people misconceive software reuse as the reuse of
source code alone. Recently source code and design reuse
have become popular with (object-oriented) class libraries,
application frameworks, and design patterns. Software
components provide a vehicle for planned and systematic
reuse. The software community does not yet agree on what a
software component is exactly. Nowadays, the term
component is used as a synonym for object most of the time,
but it also stands for module or function. Recently the term
component-based or component-oriented software
development has become popular.

Software reuse has many technical and nontechnical aspects,
for example, ad-hoc reuse, institutionalized reuse, black-box
reuse, white-box reuse, source code reuse, design reuse. As
software companies increase their commitment to reuse, they
will pass from ad-hoc reuse with application groups only
through domain based reuse with domain groups and
application groups. Adopting domain based reuse requires
sufficient company size to maintain specialized groups.
Component groups are responsible for developing reusable
components. Domain groups are also responsible for the
development of reusable components; in addition, they have
to gain knowledge about their specific domain. Application
groups are obligated to develop applications by using
components created by these specialized groups.

2. Existing System

Large-scale reuse in an organization cannot be adopted
without organizational changes. Technology is an important
pre requisite for reuse, but people make it work. Reuse in an
organization can only be achieved when people cooperate.
Producing valuable and reusable software components is not
enough. We must ensure their transfer to the consumers.
Various models for organizations that support software reuse
exist. These models influence development practices and are
an indicator of reuse maturity in a software company. In
practice, a company might reflect some combination of these
models.

2.1 Ad-hoc reuse among application groups

Frequently companies use organizations based on projects. If
there is no explicit commitment to reuse then reuse can
happen in an informal and haphazard way at best. Most of
the reuse, if any, will occur within projects (see Fig. 1). The
reuse of components from different projects may occur but is
the exception.

Figure 1: Ad-hoc reuse

2.2 Repository-based reuse among application groups

The situation slightly improves when a component
repository is used and can be accessed by various application
groups (see Fig. 2). However, no explicit mechanism exists
for putting components into the repository and no one is
responsible for the quality of the components in this
repository. This can lead to many problems and hamper
software reuse. The repository-based reuse approach is based
on quantity because any components can be put into the
repository and there is no control over their quality and
usefulness. If no effort had been made to make the
components reusable, then re-users must be cautious. And as

Application
group

Application
group

381

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 5, May 2013
www.ijsr.net

there is no control over the input and no maintenance of the
components, re-users have to be cautious even when the
components had been prepared with high quality and
reusability in mind.

Figure 2: Repository-based reuse

2.3 Centralized reuse with a component group

In this scenario a component group is explicitly responsible
for the repository (see Fig. 3). The group determines which
components are to be stored in the repository, ensures the
quality of these components and the availability of necessary
documentation, and helps in retrieving suitable components
in a particular reuse scenario. This amounts to centralized
production and management of reusable software
components. Application groups are separated from the
component group, which acts as a kind of subcontractor to
each application group. An objective of the component
group is to minimize redundancy.

Figure 3: Centralized reuse

2.4 Domain-based reuse

The specialization of component groups amounts to domain-
based reuse (see in Fig. 4). Each domain group is responsible
for components in its domain, e.g., network components,
user interface components, database components.
Application groups may build their applications by
integrating components from different domains. This
organization yields to the acquisition of specific skills and
knowledge of specific software domains. One possible
drawback may be an overhead in communication between
project and domain groups.

Figure 4: Domain-based reuse

3. Proposed System

Systematic software reuse and the reuse of components
influence almost the whole software engineering process
(independent of what a component is). Software process
models were developed to provide guidance in the creation
of high-quality software systems by teams at predictable
costs. The original models were based on the conception that
systems are built from scratch according to stable
requirements.

When considering either with Centralized reuse with
component group or Domain-based reuse, the classification
is done without prior consideration of some constraints like
versions, input/output, time complexity, etc. If we try to
apply any of these constraints for Centralized reuse with
component group or Domain-based reuse, i.e., maintaining
versions for the components at Centralized reuse for a
component group reduces redundancy for component
identification. Or considering input constraints and wishing
for the desired/expected output constraints component makes
the user/developer of the component with reduced time in
reusability of the software. In this regard any large-scale
software company must consider certain constraints to
improve the efficiency of retrieval of the software
component for reuse.

4. Conclusion

In this paper we proposed the constraint based retrieval for
the software component reuse to improve the efficiency of
retrieval of the software component for reuse.

The software classification goes beyond source code
components and also covers aspects from the area of
distributed computing and emphasizes the importance of
open systems and standards. There is more to software
components than functions and classes. Like software reuse,
software components go beyond source code. Components
cover a broader range than frameworks and patterns do. We
give examples of successful component reuse and evaluate
them by using the suggested classification scheme.

Domain groups are also responsible for the development of
reusable components; in addition, they have to gain
knowledge about their specific domain. This approach
serves as an effective means to categorize components
and to retrieve the relevant components efficiently to
improve retrieval efficiency.

In future this proposal can be improved more by pertaining
the domain based reuse with considering time complexity or
even by the developer along with specific versions. In
addition with considering time complexity or even by the
developer along with specific versions, we can still work on
applying more multimedia effects like adding video output
for the searched output so as to make the registered user
more comfortable in selecting and downloading the searched
component.

Domain group

Repository

Domain group

Application
group

Application
group

Application
group

Application
group

Component group

Repository

Application
group

Application
group

Repository

382

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 5, May 2013
www.ijsr.net

References

[1] Gowtham Gajala, Implementation of attribute value &
faceted value classification scheme for constructing
Reuse Repository, in International Journal of Computer
Trends and Technology (IJCTT) - Volume4 Issue1 -
2013, ISSN: 2231-2803.

[2] Swathy Vodithala, P. Niranjan Reddy and M. Preethi, A
Resolved Retrieval Technique For Software
Components, in International Journal of Advanced
Research in Computer Engineering & Technology
Volume 1, Issue 4, June 2012, ISSN: 2278 – 1323.

[3] S. Henninger, “An Evolutionary Approach to
Constructing Effective Software Reuse Repositories”,
ACM Transactions on Software Engineering
Methodology, no 2, 1997, pp. 111-150

[4] Ruben Prieto-Diaz, “Implementing Faceted
Classification for Software Reuse”, Communication of
the ACM, Vol. 34, No.5, May 1991

[5] Gerald Kotonya, Ian Sommerville and Steve Hall,
“Towards A Classification Model for Component
Based Software Engineering Research”, Proceeding
of the of the 29th EUROMICRO Conference © 2003
IEEE

[6] William B. Frakes and Thomas. P. Pole, “An
Empirical Study of Representation Methods for
Reusable Software Components”, IEEE Transactions
on Software Engineering vol.20, no.8, Aug. 1994,
pp.617-630.

[7] Lars Sivert Sorumgard Guttorm Sindre and Frode
Stokke, “Experiences from Application of a Faceted
Classification Scheme” © 1993 IEEE, pp 116-124.

[8] Jeffrey S. Poulin and Kathryn P. Yglesias
“Experiences with a faceted Classification Scheme in
a Large Reusable Software Library (RSL)”, In The
Seventh Annual International Computer Software and
Applications Conference (COMPSAC’93), 1993,
pp.90-99

[9] Vicente Ferreira de Lucena Jr., “Facet-Based
Classification Scheme for Industrial Automation
Software Components”

[10] Ruben Prieto-Diaz, “Implementing Faceted
Classification for Software Reuse” © 1990 IEEE,
pp.300-304

[11] Klement J. Fellner and Klaus Turowski,
“Classification Framework for Business
Components”, Proceedings of the 33rd Hawaii
International conference on system Sciences- 2000, 0-
7695-0493-0/00 © 2000 IEEE

[12] Vitharana, Fatemeh, Jain, “Knowledge based
repository scheme for storing and retrieving business
components: a theoretical design and an empirical
analysis”, IEEE Transactions on Software Engineering,
vol 29, no. 7, pp, 649-664.

[13] William B. Frakes and Kyo Knag, “Software Reuse
Research: Status and Future”, IEEE transactions on
Software Engineering, VOL.31 NO.7, JULY 2005

[14] R. Prieto-Diaz and P. Freeman, “Classifying Software
for Reuse”, IEEE Software, 1987, Vol.4, No.1, pp.6-16.

[15] Rym Mili, Ali Mili, and Roland T. Mittermeir,
“Storing and Retrieving Software Components a
Refinement Based System”, IEEE Transactions of
Software Engineering, 1997, Vol.23, No.7, pp. 445-460

[16] Hafedh Mili, Estelle Ah-Ki, Robert Godin, and Hamid
Mcheick, “Another nail to the coffin of faceted
controlled vocabulary component classification and
retrieval”, Proceedings of the 1997 symposium on
software reusability (SSR’97), May 1997, Boston USA,
pp.89-98.

[17] Hafedh Mili, Fatma Mili, and Ali Mili, “Reusing
Software: Issues and Research Directions”, IEEE
Transactions on Software Engineering, Vol.21 No.6,
June 1995.

[18] Gerald Jones and Ruben Prieto-Diaz, “Building and
Managing Software Libraries”,© 1998 IEEE, pp.228-
236.

[19] Prieto-Diaz, Freeman, “Classifying Software for
Reuse”, IEEE Software, vol.4, mo.1, pp.6-16, 1997

[20] Nancy G. Leveson, Kathryn Anne Weis, “Making
Embedded Software Reuse Practical and Safe “12 th
ACM SIGSOFT, October, 2004

Author Profile

Gowtham Gajala received the M.Tech degree in
Software Engineering from Kakatiya Institute of
Technology & Science in 2010. Since then he started
his journey as Assistant Professor at KITS. His area of
interest is Software Engineering.

Nagavarapu Sateesh received the M.Tech degree in
Software Engineering from Kakatiya Institute of
Technology & Science in 2010. Since then he started
his journey as Assistant Professor at MRIT. His area of
interest is Software Engineering.

383

