
International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 5, April 2013
www.ijsr.net

Comparison Study of Parallel Computing with ALU
and GPU (CUDA)

Joe Johnson1, G. Vijayalakshmi2

1Computer Science and Engineering, SRM University, Chennai, Kattankulathur, Tamilnadu, India

2Assistant Professor, Computer Science and Engineering, SRM University, Chennai, Kattankulathur, Tamilnadu, India

Abstract: Computers with high performance and speed is taking over almost all the activities in the modern world of today, reducing
human effort hence forth Parallelization is a feature that is exploited to provide better performance computing these days. During the
execution of a C program, only sequential execution takes place resulting in wastage of time &other valuable system resources. This
project results in parallelizing the C program such that it is executed as parallel threads by all the cores of the processor or in the case of
GPU executing as threads which are passed to around 200 cores. NVIDIA's CUDA architecture provides a powerful platform for
writing highly parallel programs executed by GPU. This project is a comparison study between both ALU &GPU (CUDA)
parallelization which results in high performance parallel computing with much more efficiency than the conventional processing.

Keywords: CUDA, Hyper Threading, Parallel Computing.

1. Introduction

Introduction- Parallel computing is a form of computation in
which many calculations are carried out simultaneously,
operating on the principle that large problems can often be
divided into smaller ones, which are then solved
concurrently ("in parallel"). There are several different forms
of parallel computing: bit-level, instruction level, data, and
task parallelism. Parallelism has been employed for many
years, mainly in high-performance computing

Parallelization is a feature that is exploited to provide better
performance computing these days. During the execution of
a C program, only sequential execution takes place resulting
in wastage of time &other valuable system resources. This
project results in parallelizing the C program such that it is
executed as parallel threads by all the cores of the processor
or in the case of GPU executing as threads which are passed
to around 200 cores. NVIDIA's CUDA architecture provides
a powerful platform for writing highly parallel programs
executed by GPU. This project is a comparison study
between both ALU &GPU (CUDA) parallelization which
results in high performance parallel computing with much
more efficiency than the conventional processing.

Some of the major limitation constraint for the Smart phones
is as follows:

1. Execution Time constraint
2. CPU Cycle constraint
3. Memory constraint
4. GPU Cycle constraint

In further sections we are going to describe methods by
which parallelism can be exploited.

2. ALU Parallel Execution

While execution of c/c++ program even though processor
might have more than 1 core (dual core=2 cores, quad
core=4 cores), it will presume execution sequentially

resulting in wastage of GPU time and other valuable
resources. This project deals with exploiting the parallel
elements in the program and executing it in a parallel
manner. Here we find out the dependency’s present in the
program, mainly in the variable being used using different
algorithms, we insert tags or directives stating which all
variables or lines can be executed in parallel and the rest
which should be executed sequentially. So if while executing
in a quad core machine 4 threads can be processed
simultaneously. Thus decreasing the execution time to
quarter of the real execution time and increasing the usage of
resources.

Figure 1: Distributed computing

3. GPU Parallel Execution

CUDA is a parallel computing platform and programming
model created by NVIDIA.NVIDIA graphics processing
units (GPUs) in fig1.3 implement the CUDA architecture
and programming model. The CUDA platform is accessible
to software developers through CUDA-accelerated libraries,
compiler directives (such as OpenACC), and extensions to
industry-standard programming languages, including C, C++
and Fortran. C/C++ programmers use 'CUDA C/C++'
(C/C++ with CUDA extensions to express parallelism, data
locality, and thread cooperation).CUDA is a plat form

209

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 5, April 2013
www.ijsr.net

dependant architecture, CUDA architecture can be
implemented along with the OpenMP API which includes

tags to the program thus making it a parallel executable by
the GPU.

Figure 1.2: Compute capability table (version of CUDA supported) by GPU and card. Also available directly from Nvidia

Figure 1.3: CUDA Processing Flow

Objective of the project is to provide high performance
computing using exploiting parallelism of ALU and GPU
computing. This project is implemented using light weight
threads. Threads use atomic operations in a global memory
space shared by all threads. This project is to implement
automatic parallelizing of C program for both ALU and GPU
(CUDA) execution. This enables a comparison study
between ALU parallel processing and GPU parallel
processing with CUDA implemented with the help of
OpenMP API. This comparison study helps to check in to
the improvement in parameters which is associated with
parallel computing like

 Execution Time
 RAM Usage
 Memory Usage
 Cycle Usage

4. Proposed System Architecture and
Implementation Method Details

ALU parallel processing and GPU parallel processing were
considered as two ends of a line but, it is possible to combine
them in such a way that high parallelism can be achieved in

execution phase. For this a synchronous performance
between the ALU and GPU is expected. During the
implementation of ALU parallel execution the program is
being Re-Engineered using parallel concepts so that during
execution it can be divided in to treads and executed by
powerful multiple cores of the CPU.

The components are as follows
 Host(ALU)
 Device(NVIDIA GPU)

The main constraints to be considered when implementing
the CUDA are
 Data transfer constraint
 Processing constraint
 Result write back constraint

When CUDA execution is initiated the address and data to
be processed are transferred from the host (ALU) to the
device (GPU).The next step is the execution in which
threads are processed as blocks by the GPU cores. Last step
is to write back the result to the host (ALU) and display the
output.

5. Results

First frame shows the System Monitor when the program is
being executed in Serial mode. We can observe that in this
Dual core machine only single core is used at a time Which
results in

 More Execution Time
 Wastage of CPU Cycle
 Resource under utilization

210

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 5, April 2013
www.ijsr.net

Next frame shows the System Monitor when the program is
being executed in parallel. We can observe that in this Dual
core machine both the cores are being used up at the same
time decreasing the

 Execution Time
 Delays

While the factors increased are
 CPU utilization
 Speed of execution
 Cycle usage

Next frame shows the program being executed in parallel
using CUDA. We can observe that in this Dual core machine
with NVIDIA GPU is processing the results with much more
efficiency and less time

6. Conclusion
The graph shows the results plotted when the program is
being executed in Serial mode, Parallel mode and CUDA
mode. The resulting graph shows that the following factors
are affected by the implementation.

 Execution Time
 Delays
 CPU utilization
 Speed of Execution
 Transfer Time

We can conclude that the results can be more efficiently got
when GPU Execution is Implemented comparing to normal
ALU execution

211

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 5, April 2013
www.ijsr.net

References

[1] J. Nickolls et al., ‘‘Scalable Parallel Programming with

CUDA,’’ ACM Queue,vol. 6, no. 2, Mar./Apr. 2008, pp.
40-53.

[2] E. Lindholm et al., ‘‘NVIDIA Tesla: A Unified
Graphics and Computing Architecture,’’ IEEE Micro,
vol. 28, no. 2, Mar./Apr.2008, pp. 39-55.

[3] NVIDIA, NVIDIA CUDA Programming Guide,2009;
http://developer.download.nvidia.com/compute/cuda/2_
3/toolkit/docs/NVIDIA_CUDA_Programming_Guide_2
.3.pdf

[4] Modern Compilers: Theory and Practice, Shankar
Balachandran, Dept. of CSE, IIT Madras

[5] W.R. Mark et al., ‘‘Cg: A System for Programming
Graphics Hardware in a C-like Language,’’ Proc.
Special Interest Group on Computer Graphics
(Siggraph), ACM Press, 2003, pp. 896-907.

[6] X. Tian, A. Bik, M. Girkar, P. Grey, H. Saito, and E. Su,
“Intel OpenMP C++/Fortran Compiler for Hyper-
Threading Technology: Implementation and
Performance”, Intel Technology Journal, Q1, 2002.
(http://www.intel.com/technology/itj)

[7] NVIDIA, ‘‘NVIDIA’s Next Generation CUDA
Compute Architecture,’’ 2009;
http://www.nvidia.com/content/PDF/fermi_white_paper
s/NVIDIA_Compute_Architecture_Whitepaper.pdf.

[8] J. Nickolls and D. Kirk, ‘‘Graphics and Computing
GPUs,’’ Computer Organization and Design: The
Hardware/Software Interface, D.A. Patterson and J.L.
Hennessy, 4th ed., Morgan Kaufmann, 2009, pp. A2-
A77.

Author Profile

Joe Johnson received the B.Tech. and M.Tech
degrees in Computer Engineering from Rajagiri
School of Engineering Technology and SRM
University in 2011 and 2013, respectively.

212

