
International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 5, May 2013
www.ijsr.net

High Performance Pipelined Design for FFT
Processor based on FPGA

A.A. Raut1, S. M. Kate2

1Sinhgad Institute of Technology, Lonavala, Pune University, India

2Sinhgad Institute of Technology, Lonavala, Pune University, India

Abstract: It is important to develop a high-performance FFT processor to meet the requirements of real time and low cost in many
different systems. So a radix-2 pipelined FFT processor based on Field Programmable Gate Array (FPGA) for Wireless Local Area
Networks (WLAN) is proposed. Unlike being stored in the traditional ROM, the twiddle factors in our pipelined FFT processor can be
accessed directly. This paper concentrates on the development of the Fast Fourier Transform (FFT), based on Decimation-In-Time
(DIT) domain, Radix-2 algorithm, this paper uses VHDL as a design entity, and their Synthesis by Xilinx Synthesis Tool on SPARTAN
kit has been done. The input of Fast Fourier transform has been given by a PS2 KEYBOARD using a test bench and output has been
displayed using the waveforms on the Xilinx Design Suite 12.1.The synthesis results show that the computation for calculating the 32-
point Fast Fourier transform is efficient in terms of speed. The implementation was made on a Field Programmable Gate Array (FPGA)
because it can achieve higher computing speed than digital signal processors, and also can achieve cost effectively ASIC-like
performance with lower development time, and risks. This results show that the processor achieves higher throughput and lower area
and latency.

Keywords: FFT; radix-2; FPGA; Butterfly; VHDL.

1. Introduction

This paper proposes the design of 32-points FFT processing
block. The work of the project is focused on the design and
implementation of FFT [13] for a FPGA kit. This design
computes 32-points FFT and all the numbers follow fixed
point format of the type Q8.23, signed type input format is
used. The direct mathematical derivation method is used for
this design.

In this project the coding is done in VHDL [3][8] & the
FPGA synthesis and logic simulation is done using Xilinx
ISE Design Suite 12.1. The Discrete Fourier Transform
(DFT) [5][7] plays an Important role in the analyses, design
and implementation of the discrete-time signal-processing
algorithms and systems it is used to convert the samples in
time domain to frequency domain. The Fast Fourier
Transform (FFT) is simply a fast (computationally efficient)
way to calculate the Discrete Fourier Transform (DFT). The
wide usage of DFT’s in Digital Signal Processing
applications is the motivation to Implement FFT’s. Almost
every branch of engineering and science uses Fourier
methods. The words "frequency," "period," "phase," and
"spectrum" are important parts of an engineer's vocabulary.
The Discrete Fourier transform is used to produce frequency
analysis of discrete non periodic signals. The FFT is another
method of achieving the same result, but with less overhead
involved in the calculations [1].

Figure 1: Radix-2 Decimation in Time Domain FFT Algorithm for
Length of 32 Signals

Transforms basically convert a function from one domain to
another with no loss of information. Fourier Transform
converts a function from the time (or spatial) domain to the
frequency domain. The mathematical formula used for the
Fourier transform is as follows

DFT is identical to samples of the Fourier transform at
equally spaced frequencies. Consequently, computation of
the N-point DFT corresponds to the computation of N
samples of the Fourier transform at N equally spaced

107

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 5, May 2013
www.ijsr.net

frequencies � k = �2 k/N. Considering input x[n] to be
complex, N complex multiplications and (N-1) complex
additions are required to compute each value of the DFT, if
computed directly from the formula given as

To compute all N values therefore requires a total N2
complex multiplications and N (N-1) complex additions.
Each complex multiplication requires four real
multiplications and two real additions and each complex
addition requires two real additions. Therefore a total of
4N2 real multiplications and N (4N-2) real additions are
required. Besides these multiplications and additions there
should be provision for storing N complex input sequences
and also to store N output values. Contrary to this by using
Decimation in Time [11] FFT radix-2 algorithm the number
of complex multiplications and additions will be reduced to
(N/2) log2N and Nlog2N to compute the DFT of a given
complex x[n]. Hence in this project the Decimation in Time
FFT radix-2 algorithm is implemented to compute the DFT
of a sequence.

2. Radix-2 DIT FFT Algorithm

The radix-2 algorithms are the simplest FFT algorithms. The
decimation-in-time (DIT) radix-2 FFT recursively partitions
a DFT into two half-length DFTs [13] of the even-indexed
and odd-indexed time samples. The outputs of these shorter
FFTs are reused to compute many outputs, thus greatly
reducing the total computational cost. The radix-2
decimation-in-time and decimation-in-frequency fast
Fourier transforms (FFTs) are the simplest FFT algorithms.
Like all FFTs, they gain their speed by reusing the results of
smaller, intermediate computations to compute multiple
DFT frequency outputs.

The radix-2 decimation-in-time algorithm rearranges the
discrete Fourier transform (DFT) equation into two parts: a
sum over the even-numbered discrete-time indices

�n=[0,2,4,…,N 2] and a sum over the odd-numbered indices
�n=[1,3,5,…,N 1] .

This is called decimation in time because the time samples
are rearranged in alternating groups and a radix-2[5]
algorithm because there are two groups. A basic butterfly
[13] operation is shown in Figure 2, which requires only N2
twiddle-factor multiplies per stage.

Figure 2: Basic butterfly computation in the decimation-in-

time FFT algorithm.

The same radix-2 decimation in time can be applied
recursively to the two length N2 DFTs to save computation.
When successively applied until the shorter and shorter
DFTs reach length-2, the result is the radix-2 DIT FFT
algorithm.

Figure 3: Radix-2 Decimation-in-Time FFT algorithm for a

length- 8 signal

3. FPGA

The introduction of field programmable gate arrays
(FPGAs), has made it feasible to provide hardware for
application specific computation design. The changes in
designs in FPGA’s can be accomplished within a few hours,
and thus result in significant savings in cost and design
cycle. FPGAs offer speed comparable to dedicated and fixed
hardware systems for parallel algorithm. the 32-point FFT
proposed in this paper is been simulated and synthesized
using the Xilinx design suite 12.1 with the device family as
Spartan 3 (low power). The summary of the device
description of the vertex FPGA used is explained in the
table below

Table 1. Summary of FPGA Features

Device Family Spartan 3
Device XC3S200

Package vq100
Speed Grade -5

This is called decimation in time because the time samples
are rearranged in alternating groups and a radix-2 the
features of the Spartan 3 FPGA [2] used in this proposed
work with Xilinx Design Suite 12.1 are listed in the table
below.

Table 2: Summary Of Spartan 3 Features

108

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 5, May 2013
www.ijsr.net

Features Spartan 3
System gates 200K
Equivalent logic cells 4320
CLB array 480
Distributed RAM bits 30K
Blocked RAM Bits 216K
Dedicated Multipliers 12
DCMs 4
Maximum User I/O 173
Maximum Differential I/O Pairs 76

4. Software Simulation and Results

The proposed FFT block of signal length 32 is been
simulated and synthesized using the Xilinx Design Suite
12.1. The RTL block thus obtained for the decimation in
time domain radix -2 Fast Fourier transform algorithm is
shown

Figure 4: RTL view of a 32-point FFT

The RTL view of the butterfly structure obtained after the
simulation of the 32-point FFT block, Decimation in time
domain[11] is shown next and also the internal architecture
of the butterfly block is shown.

Figure 5: RTL View of a Butterfly Component Used In 32-

Point FFT

Figure 6: Internal Architecture of The Butterfly Component

The next are shown the simulation results of the 32-point
FFT block. The s is the given simulation result is the applied
input, its 32 complex numbers, y is the output in binary
format while y1 is same as y but its in "real" format, so we
can easily see the outputs in waveform.

Figure 7: Simulation results of the 32-point FFT

109

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 5, May 2013
www.ijsr.net

The final synthesis report is shown using the table below

Table 3: Summary Oo Spartan 3 Features Used In The 32-

Point Fast Fourier Transform
Device Utilization Summary (estimated values)

Logic Utilization Used AvailableUtilization
Number of Slices 1646 1920 85%

Number of 4 input LUTs 2884 3840 75%
Number of bonded IOBs 892 63 1415% Resource

overuse

Number of MULT18X18s 12 12 100%

Table4: Shows The Time Delay Of 32-Point Fft(Radix-2
Decimation In Time Domain)

Min. delay 42.58ns (22.515ns logic, 20.003ns route)
(53.0% logic, 47.0% route)

Total REAL time to Xst completion: 20.00 secs
Total CPU time to Xst completion: 19.77 secs
Total memory usage is 219856 kilobytes

References

[1] Sneha N.kherde, Meghana Hasamnis, “Efficient Design

and Implementation of FFT”, International Journal of
Engineering Science and Technology (IJEST), ISSN :
0975- 5462 NCICT Special Issue Feb 2011

[2] Ahmed Saeed, M. Elbably, G. Abdelfadeel, and M. I.
Eladawy,“Efficient FPGA implementation of FFT/IFFT
Processor”,INTERNATIONAL JOURNAL OF
CIRCUITS, SYSTEMS AND SIGNAL PROCESSING,
Issue 3, Volume

[3] 3, 2009
[4] Hardware Description Language. URL:

http://en.wikipedia.org/wiki/Hardware_description_lang
uage

[5] Very High Speed Integrated Circuit Hardware
Description Language.URL:
http://electrosofts.com/vhdl/

[6] Alan V. Oppenheim, Ronald W. Schafer with John R.
Buck, Discrete Time Signal Processing, Second Edition

110

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 5, May 2013
www.ijsr.net

[7] B. Parhami, Computer Arithmetic, Algorithms and
Hardware Designs, 1999

[8] James W. Cooley and John W. Tukey, An Algorithm for
the Machine Calculation of Complex Fourier Series

[9] Peter J. Ashenden, The Designer’s Guide to VHDL,
Second Edition.

[10] N. Weste, M. Bickerstaff, T. Arivoli, P.J. Ryan, J. W.
Dalton, D.J. Skellern", and T.M. Percivalt A 50 Mhz
16Point-FFT processor for WLAN applications.

[11] Saad Bouguezel, M. Omair Ahmad,“IMPROVED
RADIX- 4 AND RADIX-8 FFT ALGORITHMS”IEEE.
Department of Electrical and Computer Engineering
Concordia University 1455 de Maisonneuve Blvd. West
Montreal, P.Q., Canada.

[12] Ali Saidi ,” DECIMATION-IN-TIME-FREQUENCY
FFT ALGORITHM” Motorola Applied Research,
Paging and Wireless Data Group Boynton Beach.

[13] Rizalafande Che Ismail and Razaidi Hussin ”High
Performance Complex Number Multiplier Using Booth-
Wallace Algorithm” School of Microelectronic
Engineering Kolej University Kejuruteraan Utara
Malaysia.

[14] Bergland, G. D. "A Guided Tour of the Fast Fourier
Transform." IEEE Spectrum 6, 41-52, July 1969.

Author Profile

Atul Raut received the B.E. degrees in Electronics
and Telecommunications Engineering from Sinhgad
Institute of Technology in 2009. Currently he is doing
M.E. in same institute.

Prof. Sandeep M. Kate have completed ME
Electronics and working as Assistant Professor
in Sinhgad Institute of Technology, Lonavala,
Pune University, India. He guided several ME

students for project.

111

