
International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 5, May 2013
www.ijsr.net

Indexing Frequent Subgraphs in Large graph
Database using Parallelization

Swati C. Manekar1, Manish Narnaware2

1, 2Computer Science & Engineering Department, G. H. Raisoni College of Engineering, Nagpur, Maharashtra, India

Abstract: Plenty of structural patterns in real world have been represented as graph like molecules, chemical compounds, social
network, road network etc. Mining this graph for extracting some useful information is of special interest and has many applications.
The application includes drug discovery, compound synthesis, anomaly detection in network, social network analysis for finding groups
etc. One of the most interesting problems in graph mining is graph containment problem. In graph containment problem ,given a query
graph q ,it is asked to find all graph in given graph dataset containing this query (query graph as subgraph).This means finding all
graph which is isomorphic to query graph. As in real world there is vast number of graph in graph dataset so this task of subgraph
isomorphism test become tedious, complex, time and space consuming. So it is necessary to create an index of graphs present in dataset
for cost efficient query processing. In this paper we proposed a time efficient graph indexing technique using discriminative frequent
subgraph as indexing feature for molecular datasets using parallel approach. We proposed a method which will find frequent subgraphs
using better pruning capability and executed in multithreaded environment in parallel manner. Our experimental studies conceal that
parallelization method for graph indexing which has a condensed index structure, achieves an order of degree better performance in
index construction, and significantly, outperforms state-of-the-art graph based indexing methods.

Keywords: Graph indexing, graph mining, frequent structure based approach, parallelization approach.

1. Introduction

Graph data has grown steadily in various scientific and
commercial areas. Chemical molecules, proteins and three-
dimensional mechanical parts are modeled as graphs. Graphs
also have broad applications in such areas as computer
vision and image processing. In recent years, a number of
data mining and management applications have been
designed in the context of graphs and structural data .Several
graph mining techniques have been developed to extract
useful information from graph representation .In order to
speed up graph queries, usually an index of the graph is
derived according to some predefined index features.

Graph indexing is often utilized by graph search algorithms
that look for a sub-graph within a graph database. Subgraph
Search is one of the most popular graph retrieval models. In
a graph dataset D, given a query graph q, a subgraph search
algorithm retrieves all graphs in D containing q as a
subgraph. This process of finding the subgraph isomorphic
to query graph in graph database is nontrivial, as subgraph
isomorphism problem is known to be NP-complete as shown
in [1]. To solve the subgraph search problem, subgraph
(subtree) features are commonly mined using several
methods to build a graph index. As shown in Figure 1, in a
9-graph dataset, three subgraph features are mined to build a
graph index. Given a query q containing features P1 and P3,
any supergraph of q should have both P1 and P3 as
subgraphs. Therefore, only graphs {G1, G2} = {G1, G2, G4,
G8} ∩ {G1, G2, G5, G6, G7} are candidate graphs that need
to be evaluated with subgraph isomorphism tests, and all the
other database graphs are directly filtered out. The query
processing time depends upon the number of subgraph
isomorphism tests, which, in turn, depends on the filtering
power of the feature set. As such an important aspect is a
choice of good features. One more example can be given as
a typical graph of router-level Internet consists of millions of
nodes making it impractical to perform many operations on
the whole graph. In such cases, graph indexing allows
operations to be more efficient.

Figure 1: Graph Index

As it is like given a graph database GDB (a set of graphs)
and a query graph Q, find those graphs in GDB that contain
Q. We can test graph containment (subgraph isomorphism)
for each graph in GDB that is sequentially scanning each
graph in database for checking isomorphism. But the
number of graphs in GDB can be extremely large, and also
the graphs may be large in size. Therefore, this sequential
approach is unfeasible .Unfeasible in the sense will require
much more time, so not efficient solution. It is inefficient to
perform a sequential scan on the graph database and check
whether Q is a subgraph of GDB. Sequential scan is very
costly because one has to not only access the whole graph
database but also check subgraph isomorphism which is NP-
complete.

Clearly, it is necessary to build graph indices in order to help
processing graph queries. The indexing process in a graph
matching methodology creates an index of the reference
graph vertices along with their attributes so that the future
referencing of the vertices for matching purpose becomes an
efficient process. The data structures used for indexing
usually determine the flow of the process. Many features,
such as frequent and discriminative subgraph (subtree)
features, δ−TCFG features and MimR (maximum
information and minimum redundancy) features are mined to
build the graph index and have certain significant filtering
capabilities.

426

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 5, May 2013
www.ijsr.net

2. Graph Indexing Techniques

As subgraph isomorphism test is NP Complete problem [1],
a filter and verification methods is generally applied to speed
up the query processing task. As filtering process is key
issue in most to improve the search efficiency many
indexing method have been proposed. Most of these
indexing methods can be grouped into three categories: path
based indexing, frequent subgraph based indexing and graph
decomposition based indexing.

Path-based indexing approach take path as the basic
indexing unit, categorized as path-based indexing approach.
For example GraphGrep [2] and Daylight [3] are Path-based
graph indexing methods. They use path expressions as
indexing features such as GraphGrep enumerates all paths in
the graph up to the length maxL. This means enumerating all
the existing paths in a database up to maxL length and
indexes them, where a path is a vertex sequence, V1, v2,
……, vk, s.t., is an edge. It uses the
index to identify every graph gi that contains all the paths
(up to maxL length) in query q. A significant feature of path-
based approaches is that paths can be manipulated easier
than trees and graphs and the index space is predefined: all
the paths up to maxL length are selected. For answering to
the structured or tree queries path based approach divide the
queries into paths of different length and then look into each
graph for these paths .Finally it collect all the graphs
containing this path and display results. Since the structural
information could be lost when breaking such queries apart.
So Yan et. al. indicated, path is a simple structure loosing
structural information of a graph [4]. In addition, the number
of paths in a graph database increases exponentially making
path-based methods impractical for very large graphs.

On the other hand structured based approach identifies
subgraphs to be indexed as an indexing feature. As as Yan
et. al. indicated that false positive ratio of path based
methods would be very high alternatively, structure-based
graph indexing approaches gIndex[4] first searches for the
frequent subgraphs in the graph, then indexes these frequent
structures. A case in the above paper discussed is that
frequent subgraph discovery increases complexity and
exponential number of frequent fragments may exist under
low frequency support. Therefore, in their study, they limit
the number of nodes and index frequent structures up to 10
nodes.

An alternative structural indexing approach to search and
process queries efficiently even in very large graphs As
indexing features, used commonly observed graph
structures: star, complete bipartite, triangle and clique. An
important feature of these structures is that each one is
comprised from the previous one where clique contains
complete bipartite structures and complete bipartite contains
star structures.

In structural indexing, they have indexed predefined
structures that are commonly observed in complex networks.
In particular, index star, complete bipartite, triangle and
clique structures in a given graph G = (V, E). An important
difference of their approach from the previous studies is that
they do not limit the size of subgraph considered in indexing.

They have indexed all maximal graphs that match the
structure formulation. For instance, a maximal clique is a
clique that cannot be extended by adding one more vertex
from the graph. However, the substructure size in indexing
may be limited when needed since maximal clique search is
known to be NPcomplete .In order to reduce computational
complexities; they have indexed the structures within the
original graph in a consecutive manner. They first identified
star structures, and then the complete-bipartite, triangle and
clique structures from the preceding one. But problem with
this method is that finding complete clique is a NP complete
problem also finding these types of structures having limited
applications [5].

The tree-based indexing involves a tree data structure. Graph
partitioning algorithms are used in order to obtain the
vertices at various levels of the tree. For example, Top-k
based subgraph matching algorithm uses a G-tree for index
construction. This algorithm uses a heap structure for the
matching process and to store the final result.

One of the recent indexing technique is neighborhood based
method, which is employed by TALE [9], GADDI [8] and
SAPPER [7]. During indexing, it is ensured that not only the
vertex labels are stored, but the neighborhood of a vertex is
also stored thus ensuring that the structural information is
taken into consideration. Since the number of neighbors can
be large in a very dense graph, normal storage strategies may
prove to be inefficient. To tackle the storage issue, a hashing
based methodology called bloom filter is used. TALE and
SAPPER use bloom filter [6] for storing the index. GADDI
focuses on a slightly different neighborhood approach called
NDS (Neighbor Discriminating Substructure) distance for
indexing. The NDS distance of a pattern P is defined as the
number of matches of P present in an induced subgraph of
neighboring vertices. An array is used for each of the
vertices of the induced subgraph to store the NDS distances.

In indexing for multileveled graph using SAPPER algorithm
plus some enhancement to accommodate multiple labels for
vertices and edges given in paper [10]. Data structure used
here is List. Indexing done in the five part 1)Labels of the
vertex 2)Degree of the vertex 3)labels of neighbors 4)Labels
of edges to neighbors 5)the labels of second level neighbors
stored in bloom filter. Approached used here in this paper
can be explained as follows;

Firstly the entire reference graph is loaded into primary
memory then indexing process is stated. Data Structure used
for storage is array, array (1) – Storing vertex information,
array (2) – Storing edge information. Two phases for
indexing is used first is vertex processing and second is edge
processing. In vertex processing firstly a data structure is
initialized, then for each vertex, vertex labels are inserted
along with initialization of neighbor list structure. Now in
edge processing each edge entry is traversed first then
updates the neighbor lists corresponding vertices with the
label of its neighbors .Update labels of the edge connecting
these neighbors and also update vertex identifiers of these
neighbors. After this one label for edge and neighbor vertex
stored in neighbor list and finally edge processing
completed. Labels of second level neighbors are stored in
bloom filter for each vertex.

427

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 5, May 2013
www.ijsr.net

In graph decomposition based indexing technique, graph
decomposition is applied directly to replying queries of
isomorphism and subgraph isomorphism [11], [12] .Graph
decomposition is applied before going for graph
isomorphism testing. Two short coming with these method
are one is that they have to enumerate all connected
subgraphs and hence complexity is exponential to graph size
which is to be decomposed and other is frequent information
in decomposition results are not improving the efficiency of
graph similarity search.

One more method uses both graph decomposition method
and frequent subgraph method for indexing graph[13] Here a
graph is decomposed into set of k-Adjacent trees and
decomposed result are indexed by a K-AT index. It store
more structural information as compared to normal graph
decomposition (breakdown) methods.

So in this paper we proposed an indexing method which uses
frequent subgraphs an indexing feature for very large
database .By using a proper pruning strategy and parallel
approach it minimize the time required to construct an index.

3. Proposed Indexing Method

The main aim of Graph Indexing is to reduce the set of
graphs without loss of result, means graph indexing must
promise pruning non promising graphs.

The graph indexing technique must not be very expensive
i.e. it should not take much time and memory to create index.
Secondly it should have higher pruning capability without
loss of result, and finally it should not generate false answer.
To deal with the problem of space we used parallel and
distributed approach with multiple processors with their
individual memory running in parallel to give good speed.
For high pruning capability we used close fragment pruning
with the loss less result.

User can define the support to index all frequent subgraphs
usually low-support large fragments may be indexed well by
their smaller subgraphs. Especially, it will be always chosen
the (absolute) minSup to be 1 for size-0 fragment to ensure
the completeness of the indexing. This method having two
rewards first one is that the number of frequent fragments so
obtained is much less than that with the lowest uniform
minSup, and second one is low-support large fragments may
be indexed well by their smaller subgraphs; thereby it will
not miss useful fragments for indexing by using frequent
fragments with the size-increasing support constraint, one
has a smaller number of fragments to index. However, the
number of indexed fragments may still be huge when the
support is low. For example, 1,000 graphs may easily
produce 100,000 fragments of that kind. It is both time and
space consuming to index them. To overcome this parallel
and distributed approach has been used in our approach. This
can be explained as follows,

 Identify Frequent Structures in the database; the frequent

structures are sub graphs that appear quite often in the
graph database.

 Prune redundant frequent structures to maintain a small set
of discriminative structures.

 Create an inverted index between frequent structures and
graphs in the database.

 Enumerate structures in the graph database build an
inverted index between structures and graphs.

 A graph or structure is frequent if its support i.e.
occurrence frequency no less than the minimum support
threshold.

Indexing feature used here is frequent structures as they are
the quality candidates not losing the structural information
giving lossless results. This whole process of indexing is
parallelized to achieve time efficiency.

We are using molecular database as an input. First step is to
represent molecules as attributed graph. DFS is used to get
into the search tree which will ensure that each vertex get
covered in the graph. Now the next step is generation of
candidate subgraphs i.e. so called pattern growth. This can
be done by extending a fragment by adding node or edge. If
it is closing ring then adding an edge only otherwise adding
a node.

For finding Frequent Subgraphs it is important to review
how a graph database is searched for frequent subgraphs:
Starting from the seed node or user defined node for which
all possibilities must be tried a subgraph is extended by
adding a node or edge in every step. Condition here is that in
this stepwise extension process one requires that at least one
node which is a part of an added edge must already be there
in subgraph. These means that the search is restricted to
connected subgraphs which are necessary for most
applications. In its most basic form the search considers all
possible extensions of the current subgraph by an edge and,
if necessary, a node. The set of extensions can be reduced by
exploiting a canonical description used in gSpan. Note that,
as a consequence of the above, the search produces a
numbering of the nodes in each subgraph: the steps in which
these nodes are added corresponds to node indexes and
similar in case of edges also edges are also associated with
the indexes in the order in which they are added. This search
generates a spanning tree of the subgraph, which is improved
by additional edges. Depth-first and breadth-first search are
straightforward systematic methods for constructing a
spanning tree of a graph. Other alternatives include a
spanning tree construction that first visits all neighbors of a
node (like breadth-first search), but then chooses the next
node to extend in a depth-first search manner.

As in extending search tree, may generate duplicate
subgraphs, so to avoid redundant search Canonical form
pruning, closed subgraph pruning is used.

For calculating the support embeddings are stored .The
support of the fragment (Sub graph) is determined by simply
counting the number of different molecules the embedding
refers to. As for large data input frequent fragment can be
very large in size so only discriminative fragments are
derived which give compact index. Discriminative fragments
are those fragments which are high in active molecules, low
in inactive molecules.
After identifying all frequent discriminative subgraph an
inverted index has been created between these subgraphs and
the graphs in database.

428

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 5, May 2013
www.ijsr.net

This whole process can be summarized in the form of flow
char as shown below;

The simultaneous use of more than one CPU or processor
core to execute a program or multiple computational threads
give higher speed of execution. So this process of finding
frequent subgraphs in the database is divided into multiple
threads and executed on different processors in parallel
fashion .Ideally, parallel processing makes programs run
faster because there are more engines (CPUs or Cores)
running it. So we have divided a program of graph miner
(finding frequent fragments) in such a way that separate
CPUs or cores can execute different portions without
interfering with each other. Parallel processing provide faster
execution time so higher throughput. Overall execution time
for creating the index of graph got reduced. The parallel
processing architecture for creating graph index can be
shown in fig. 3.

Figure 2: Graph Indexing Flow Chart

Figure 3: Parallel Processing Module

Here the miner program is collection of the different
methods for finding frequent discriminative fragments in the
graph along with the pruning strategies for avoiding
irrelevant candidate answers.

4. Conclusion

The different approaches for graph indexing having some
advantages and drawbacks. In order to speed up graph queries,
usually an index of the graph is derived according to some
predefined index features. Graph indexing is used for efficient
graph mining. As many graph data sets are defined on
massive node domains in which the number of nodes in the
underlying domain is very large the indexing techniques
implement require more time. The performance of the graph
indexing has been enhanced and speeded up by using
parallelization approach by running the program in parallel
on two processors.

References

[1] S. A. Cook, “The complexity of theorem-proving
procedures,” in STOC, 1971, pp. 151–158

[2] D. Shasha, J. T. L. Wang, and R. Giugno. Algorithmics
and applications of tree and graph searching. In
Symposium on Principles of Database Systems, pages
39–52, 2002.

[3] C. A. James, D. Weininger, and J. Delany. Daylight
theory manual daylight version 4.82. Daylight chemical
information systems, 2003.

[4] X. Yan, P. S. Yu, and J. Han. Graph indexing: A
frequent structure-based approach, 2004.

[5] Hakan Kardes¸ and Mehmet Hadi G¨unes. Structural
Graph Indexing for Mining Complex Networks. 2010
IEEE 30th International Conference on Distributed
Computing Systems Workshops.

[6] B. Bloom, “Space/time trade-offs in hash coding with
allowable errors,” Communications of the ACM, vol.
13, no. 7, pp. 422–426, 1970.

[7] S. Zhang, J. Yang, and W. Jin, “Sapper: subgraph
indexing and approximate matching in large graphs,”
Proceedings of the VLDB Endowment, vol. 3, no. 1-2,
pp. 1185–1194, 2010.

[8] S. Zhang, S. Li, and J. Yang, “Gaddi: distance index
based subgraph matching in biological networks,” in
Proceedings of the 12th International Conference on

429

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 5, May 2013
www.ijsr.net

Extending Database Technology: Advances in Database
Technology. ACM, 2009, pp. 192–203.

[9] Y. Tian and J. Patel, “Tale: A tool for approximate large
graph matching,” in Data Engineering, 2008. ICDE
2008. IEEE 24th International Conference on. IEEE,
2008, pp. 963–972.

[10] Varun Krishna , NNR Ranga , Suri G Athithan,
MuGRAM: An Approach for Multi-labelled Graph
Matching. Centre for Artificial Intelligence and
Robotics Bangalore, India. 978-1-4673-0255-
5/12/$31.00c 2012 IEEE.

[11] D. Eppstein, “Subgraph Isomorphism in Planar Graphs
and Related Problems,” J. Graph Algorithms and
Applications, vol. 3,no. 3, pp. 1-27, 1999.

[12] J.P. Kukluk, L.B. Holder, and D.J. Cook, “Algorithm
and Experiments in Testing Planar Graphs for
Isomorphism,” J. Graph Algorithms and Applications,
vol. 8, no. 3, pp. 313-356, 2004.

[13] Guoren Wang, Bin Wang, Xiaochun Yang,” Efficiently
Indexing Large Sparse Graphs for Similarity Search”
IEEE TRANSACTIONS ON KNOWLEDGE
ANDATA ENGINEERING, VOL. 24, NO. 3, MARCH
2012

Author Profile

Swati Manekar is undergoing her Maters Degree in Computer
Science and Engineering in G H Raisoni College of Engineering,
Nagpur. She has completed her undergraduate degree in year 2009
in Computer Engineering First Class. Her research interests are
Graph Mining and Distributed & parallel processing.

Manish Narnaware has completed his Masters Degree in year
2010 from department of Computer Science and Engineering,
VNIT Nagpur, with first class. He did undergraduate degree in year
2002 from VNIT Nagpur. He has around 4 years of professional
experience. His research interests are distributed & parallel
processing, Computational Mathematics. Best paper published by
him is “practical approaches of image encryption/scrambling using
3D Arnolds Cat map” on CNC 2012, Springer Link Digital Library.

430

