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A Video Text Detection and Recognition System presented 
by Jie Xi, Xian-Sheng Hua, Xiang-Rong Chen, Liu 
Wenyin, and Hong-Jiang Zhang proposed a new system for 
text information extraction from news videos. They 
developed a method for text detection and text tracking to 
locate text areas in the key-frames.  
 
Xian-Sheng Hua, Pei Yin, Hong-Jiang Zhang in their paper 
efficient video text recognition using multiple frame 
integration presented efficient scheme to deal with multiple 
frames that contain the same text to get clear word from 
isolated frames.  
C´elineThillou and Bernard Gosselin proposed a 
thresholding method for degraded documents acquired 
from a low-resolution camera. They use the technique 
based on wavelet denoising and global thresholding for non 
uniform illumination. In their paper Segmentation-based 
binarization for color-degraded images they described the 
stroke analysis and character segmentation for text 
segmentation. They proposed the binarization method to 
improve character segmentation and recognition.  
 
S. Antani and D. Crandall in their paper Robust Extraction 
of Text in Video describes an update to the prototype 
system for detection, localization and extraction of text 
from documented video images. Rainer Lienhart and Frank 
Stuber presented an algorithm for automatic character 
segmentation for motion pictures in their paper ‘Automatic 
text recognition in digital videos’, which extract 
automatically and reliably the text in pre-title sequences, 
credit titles, and closing sequences with title and credits. 
The algorithm uses a typical characteristic of text in videos 
in order to enhance segmentation and recognition 
Zhong et al. used a CC-based method, which uses color 
reduction. They quantize the color space using the peaks in 
a color histogram in the RGB color space. This is based on 
the assumption that the text regions cluster together in this 
color space and occupy a significant portion of an image. 
Each text component goes through a filtering stage using a 
number of heuristics, such as area, diameter, and spatial 
alignment. The performance of this system was evaluated 
using CD images and book cover images.  
 
Kim segments an image using color clustering in a color 
histogram in the RGB space. Non-text components, such as 
long horizontal lines and image boundaries, are eliminated. 
Then, horizontal text lines and text segments are extracted 
based on an iterative projection profile analysis. Kim et al. 
used cluster-based templates for filtering out non-character 
components for multi-segment characters to alleviate the 
difficulty in defining heuristics for filtering out non-text 
components. 
 
3. Pre Processing 
 
To extract and utilize local text region information, a text 
region detector is designed to estimate the text confidence 
and the corresponding scale, based on which candidate text 
components can be segmented and analyzed accurately. 
 
3.1 Image Segmentation 
 
To segment candidate CCs from the gray-level image, the 
segmentation evaluation is always difficult as it is, for a 

part, subjective. Most of time, it is impossible to have a 
ground truth to be used with a representative measure. We 
define as clearly as possible what properly segmented 
means: the character must be readable; it must not be split 
or linked with other features around it. The thickness may 
vary a little provided that its shape remains correct. Figure 
2 shown the example of image segmentation. 
 
 Niblack’s local binarization algorithm is adopted due to 

its high efficiency and non-sensitivity to image 
degrading. The formula to binarize each pixel is defined 
as 

 
 
Where µr(x) and µr(y) are the intensity mean and standard 
deviation (STD) of the pixels within a -radius window 
centered on the pixel x and the smoothing term k is 
empirically set to 0.4. Different from other methods, where 
the radius of windows is fixed or chosen based on some 
simple rules, such as the gray-level STD, we calculate the 
radius from the text scale map which is more stable under 
noisy conditions. After local binarization, because we 
assume that within each local region, gray-level values of 
foreground pixels are higher or lower than the average 
intensity, connected components with 0 or 255 value are 
extracted as candidate text components and those of value 
100 are not considered further. Figure 2 show the resultant 
image of image segmentation. 
 

 
Figure 2: (a) original image (b) Segmented image 

 
3.2 Text Region Detector and confidence map 
 
If the input image is a gray-level image, the image is 
processed directly starting at discrete wavelet transform. If 
the input image is colored, then its RGB components are 
combined to give an intensity image. Usually, color images 
are normally captured by the digital cameras. The pictures 
are often in the Red-Green-Blue color space. Intensity 
image Y is given by: 
Y = 0.299R + 0.587G + 0.114B 
 
Image Y is then processed with 2-d discrete wavelet 
transform. The Y is actually Value component of the Hue-
Saturation-Value (HSV) color space. The RGB color image 
and its grayscale image. In this step, there is conversion 
from RGB color space into HSV color space, after that 
Value component is extracted from HSV color space using 
above expression. The noise of the image is reduced by 
using a median filtering that is applied on the above 
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grayscale image. After this filtering step, a great part of 
noise will be removed while the edges in the image are still 
preserved. 
 
3.2.1 Haar discrete wavelet transforms 
 
We are using Haar discrete wavelet transform which 
provides a powerful tool for modeling the characteristics of 
textured images. Most textured images are well 
characterized by their contained edges. It can decompose 
signal into different components in the frequency domain. 
We are using 2-d DWT in which it decomposes input 
image into four components or sub-bands, one average 
component(LL) and three detail components(LL, HL, HH). 
The detail component sub-bands are used to detect 
candidate text edges in the original image. Using Haar 
wavelet, the illumination components are transformed to 
the wavelet domain. This stage results in the four LL, HL, 
LH and HH sub image coefficients. The traditional edge 
detection filters can provide the similar result as well but it 
cannot detect three kinds of edges at a time. Therefore, 
processing time of the traditional edge detection filters is 
slower than 2-d DWT. The reason we choose Haar DWT 
because it is simpler than that of any other wavelets. Figure 
3 show the approximate text area in image. 
 

 
Figure 3: (a) original image (b) text region detector and 

confidence map 
 
4. Connected Component Analysis 
 
In connected component analysis (CCA) stage, a CRF 
model combining unary component properties and binary 
contextual component relationships is used to filter out 
non-text components. Here, we present a conditional 
random field (CRF) model to assign candidate components 
as one of the two classes (“text” and “non-text”) by 
considering both unary component properties and binary 
contextual component relationships. 
  
4.1 Brief introduction of CRF 
 
Conditional random fields (CRFs) are discriminative graph 
models which are designed for labeling tasks such as text 
identification and document image segmentation. The 
motivation to use CRFs to label the text region from video 
frames arises from the spatial inter-dependencies of 
different areas in images. For example, text blocks are 
sequential from left to right. By considering neighboring 
information of blocks, isolated noises among text blocks 
can be easily removed which leads to more satisfactory 
labeling results. Unlike other generative graphical models 
such as Markov random fields (MRFs) which require 
specifying the likelihood function; CRFs have a more 

flexible formulation. More formally, let X = {xi} be the 
observed features from candidate blocks, and Y = {yi} be 
random variables over corresponding labels. The joint 
distribution over the label yi given an observation xi has the 
form: 
 

 (1) 
 
where function A (・) is called associated potential which 
measures the confidence of label yi with observations, 
function I (・) is interaction potential which tends to 
smooth labels over entire graph G, λ and μ are parameters 
that control the influence from observations and 
neighboring nodes to center node i, and (i, j) €E means 
neighboring nodes of node I that are connected by edges E 
in the graph G. 
 
In our work, we use the topology for our CRFs. By making 
a Markov assumption, each gray node yi in the hidden layer 
exclusively corresponds to a detected block in the image 
and connects to its four nearest neighbors and their 
corresponding observations. In real images, the neighbor 
system of blocks is determined by Euclidean distance 
between them but may not necessarily be located as a grid. 
To integrate the predicted confidence of blocks into CRFs 
framework, we define the associated potential as: 
 

 (2) 
 
Where j runs over neighbors of node i including itself, pj is 
the posterior estimated by the SVM for node j, di, j is the 
spatial Euclidean distance between node i, j, and θ is the 
angle between centers of node i and j. The idea behind 
equation 2 is that if two neighboring nodes are close to 
each other and their separation is mostly horizontal, they 
have more influences on each other. 
 
4.2 Properties of CRF 
 
A. Unary Component Features 
 
To characterize single component’s geometric and textural 
properties, we use different types of unary component 
features such as Normalized width and height, Aspect ratio, 
Compactness. 
 
B. Binary Component Features 
 
To characterize the spatial relationship and geometric and 
textural similarity between two neighboring component 
and, we use different types of binary component features 
such as Shape difference, Overlap ratio, Scale ratio, Gray-
level difference.  

 
5. Text Grouping 
 
Text grouping is adjacent letters in order to form words. 
This task is one of the most difficult of text (word) 
extraction. In order to analyze the performance of a text 
extraction algorithm it is commonly recommended to 
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compute the precision and recall rates. The problem is that 
these performance parameters are so dependent on 
correctly classified words. There is several works which try 
to solve this issue. While the method proposed in is 
effective but too complicated because of training data 
necessity, the method proposed in is simpler but not 
effective. To merge adjacent letters in words we propose to 
use the following process which is based on the 
computation of distances between bounding boxes (BB) of 
letters detected in the previous step. The parameters used in 
this merging letters process are illustrated in Fig. 5. (B1, 
B2) represents the coordinates of the center of the two BBs 
of connected component.  
 
“B1 (y1a)” and “B1 (y2a)” (respectively, “B2 (y1a)” and 
“B2 (y2a)”) represent the coordinates of the first BB (of the 
second BB) in vertical direction, “Width1” and “Width2” 
represent the width of the two BBs studied. “Distance” 
represents the distance between the centroids of the two 
BBs considered along the horizontal direction. 
 

 
Figure 4: Parameters used in merging process 

 
This first step of merging is based on a merging of letters 
along almost horizontal line. Here we have limited our 
study to text images whose letters are relatively well 
aligned. The conditions for merging letters in detected 
regions are defined as below: 
 
 [B2 (y2a) >B1 (y1a)] & [B2 (y1a) <B1 (y2a)] 
 [Distance< 0.7 × Max (Width1, Width2)] 
 
Any pair of BB which supplies both above conditions is 
then merged in this step. Figure 6 show the bounding box 
(rectangle box) on each text in image. 
 

 
Figure 5: (a) Original image (b) localize text area in image 
 
6. Conclusion 
 
The given images to be convert to gray scale image and 
find segmented image from the gray scale image. 
Segmented image is decomposed by using Wavelet 
Transform. It will decompose the original image into four 

frequency sub bands for improve the contrast and 
resolution of the image and find approximation text area in 
the image with help of connected component graph. Then 
with the use of bounding box localize text in image. After 
that detect and localize texts by integrating region 
information into a robust CC-based method.  
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