
International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 4, April 2013

www.ijsr.net

Application for Detecting and Preventing SQL
Injection Attacks using Web Service

Anuja A. Patil1, Ketaki H. Pangu2

1,2Department of Computer Science, Bharati Vidyapeeth College of Engineering,

 Kolhapur, Maharashtra, India
 anujapatil294@gmail.com
 ketakipangu04@gmail.com

Abstract: Every cyber attack mostly targets the Databases through the firewalls that shield it. Like that SQL injection attacks can
target the databases. This type of attacks occurs due to poor input validation code, poor website administration as well as it takes
advantage of less security to the databases. In this case the attacker can take advantage of web services applications and can pass a
series of unwanted, malicious SQL statements as input and try to execute the back end of the system. So, the proposed model gives
methodology to detect and prevent the SQLIAs in databases using XPATH validation systems which is most efficient way.

Keywords: Database security, web application security, SQL injection attacks, Web Service

1. Introduction

Database security takes the highest priority so, in today’s life
the information is important and that is also residing in
databases. So database security is a big deal for today's
business assets and for that SQLIAs are most vulnerable
threats of database security through web services. e.g.
financial frauds, confidential information hacking, sabotage,
cyber terrorism etc. The SQLIAs is the hacking technique
where attacker can input the number of malicious SQL
statements from which it can executes the database as well as
the confidential information in it. So, now a days the
SQLIAs are the topmost threats in web security point of
view. Compromises of these applications represent a status
threat to organizations. In this attacker can direct attack on a
databases of the system and leak the confidential information
residing in it. The increasing of such a web applications can
occurs an increments of such attacks. It is very difficult to
implement and enforce a rigorous defensive coding
discipline. So, detect and prevent the SQL attacks by using
XPATH validation[1] can helps a lot.

2. Techniques of SQLIA’S

Most of the attacks can takes place in sequential manner,
depending of the attackers.

2.1. Tautologies

The tautology based attack is to inject code in one or more
conditional statements so that they always evaluate the true.
e.g. Attacker can submits the query like " 'or 1==1--"
so it can like as SELECT * FROM user_info WHERE
loginID=" or 1=1-- AND password="
The code injected in the conditional (‘OR 1=1) transforms

the entire WHERE condition into tautology query to execute
each row and column in table and returns all of them because
the query after “- -“ is considered as comment into the SQL.

2.2. Union

In union query an attacker can attack by injecting a statement
in the form of UNION SELECT <rest of injected query>
because an attacker are completely control on the injected
query i.e. second part of the query. The result of this attack is
that the database returns a dataset that is the union of the
results of the original first query and the result of the second
injected query.
e.g.

“select * from great where pin=222 union Select * from
great1 where 1=1”.

2.3. Stored Procedure

Once an attacker determines which backend database is in
use, SQLIAs can be crafted to execute stored procedures
provided by that specific database, including procedures that
interact with the operating system. It is a common
misconception that using stored procedures to write Web
applications renders them invulnerable to SQLIAs.
e.g.

‘create or alter procedure test’
 @uid varchar(30)
 as
 begin
 select pwd from login where unm=’’
 union select pwd from login
 where unm=@uid-- and pwd=’’
 end
 To run above query we use following syntax:
 exec test ‘unm’ .

2.4. Extended Stored Procedures

There is several extended stored procedures that can cause
permanent damage to a system. This Attack is used to stop
the service of the web server of particular Web application.
Stored procedures primarily consist of SQL commands,
while XPs can provide entirely new functions via their code.

193

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 4, April 2013

www.ijsr.net

Extended stored procedure can be executed by using login
form with an injected command as the,
LoginId:'; execmaster..xp_xxx; -- Password:[Anything]
 LoginId:'; execmaster.xp_cmdshell'iisreset';--
Password:[Anything]
select password from user_info where LoginId='';
exec master..xp_cmdshell 'iisreset'; --' and Password=''

2.5. Alternate Encoding

In this attack, the injected text is modified so as to avoid
detection by defensive coding practices and also many
automated prevention techniques. This attack type is used in
conjunction with other attacks. In other words, alternate
encodings do not provide any unique way to attack an
application; they are simply an enabling technique that
allows attackers to evade detection and prevention
techniques and exploit vulnerabilities that might not
otherwise be exploitable.
e.g.
SELECT * FROM user_info WHERE loginID=’secret’;
exec (char (0x73687574646f776e)) -- AND pass1=’’

3. Related Work

3.1 Intrusion detection system

An intrusion detection system (IDS) is a device or software
application that monitors network or system activities for
malicious activities or policy violations and produces reports
to a management station. Some systems may attempt to stop
an intrusion attempt but this is neither required nor expected
of a monitoring system. Intrusion detection and prevention
systems (IDPS) are primarily focused on identifying possible
incidents, logging information about them, and reporting
attempts. In addition, organizations use IDPSes for other
purposes, such as identifying problems with security
policies, documenting existing threats and deterring
individuals from violating security policies. IDPSes have
become a necessary addition to the security infrastructure of
nearly every organization. The technique builds models of
the typical queries and then monitors the application at
runtime to identify queries that do not match the model. In
their evaluation, Velour and colleagues have shown that their
system is able to detect attacks with a high rate of success.

3.2 Combined static and dynamic analysis

AMNESIA[2] is a model-based technique that combines
static analysis and runtime monitoring. In its static phase,
AMNESIA uses static analysis to build models of the
different types of queries an application can legally generate
at each point of access to the database. In its dynamic phase,
AMNESIA intercepts all queries before they are sent to the
database and checks each query against the statically built
models. Queries that violate the model are identified as
SQLIAs and prevented from executing on the database. In
their evaluation, the authors have shown that this technique
performs well against SQLIAs. The primary limitation of
this technique is that its success is dependent on the accuracy
of its static analysis for building query models. Certain types
of code obfuscation or query development techniques could

make this step less precise and result in both false positives
and false negatives.

4. Proposed Techniques

This Technique is used to detect and prevent SQLIA’s with
runtime monitoring [3]. The solution insights behind the
technique are that for each application, when the login page
is redirected to our checking page, it was to detect and
prevent SQL Injection attacks without stopping legitimate
accesses.

 Figure 1. Proposed Architecture

The technique consists of three models namely:

4.1. Active Guard Filtration Model

In this module, susceptibility characters or meta characters
are detected to prevent the malicious attacks from accessing
the database.
Following patterns are detected by it:

4.1.1. Tautology

a. ‘or 1=1- -
b. ’or 1=1- -
c .’or 1=1 or ‘a’
d. ’or 1=1/*

4.1.2. Union Query

a. Union select * from tablename where columnname=value
- - -
4.1.3. Delete Query

a. a ‘,delete from tablename - -

4.1.4. Drop Query

a. a ‘drop table tablename - -
b. a’ drop database databasename - -

4.2. Service Detector Filtration Model

It validates user input from X_path validator where the
sensitive data’s are stored from the database at the second
level filtration model.

194

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 4, April 2013

www.ijsr.net

4.3. Web Service Layer

Web service builds two types of execution process that are
DB_2_Xml generator and XPATH_ Validator. DB_2_Xml
generator is used to create a separate temporary storage of
Xml document from database where the Sensitive data’s are
stored in XPATH_ Validator, The user input field from the
Service Detector compare with the data existed in XPATH_
Validator, if the data’s aresimilar XPATH_ Validator sends a
flag with the count iterator value = 1 to the Service Detector
by signifying the user data is valid.

5. Evaluation

Both the protected and unprotected web Applications are
tested using different types of SQLIA’s; namely use
ofTautologies, Union, Piggy-Backed Queries, Inserting
additional SQL statements, Second-order SQL injection and
various other SQLIA s. Table 1 shows that the proposed
technique prevented all types of SQLIA s in allcases.

Table 1: SQLIA’S Prevention Accuracy
SQL Injection

Types
Unprotected Protected

1.tautologies
Not

Protected
Prevente

d

2.union
Not

Protected
Prevente

d

3.stored procedure
Not

Protected
Prevente

d
4.alternate encoding Not

Protected
Prevente

d

6. Conclusion

SQL Injection Attacks attempts to change the web
application parameters to alter the SQL database. There are
some procedures that they prevent these attacks and increase
the strength of coding. This is one of the good attempts to
prevent the SQL Injection Attacks.

7. Acknowledgement

I express my deep sense of gratitude and appreciation
towards my research guide Prof. A. M. Patravale for his
continuous inspiration and valuable guidance in throughout
my dissertation work.

8. References

[1] Indrani Balasundaram and Dr. E. Ramaraj , “An
 Approach to Detect and prevent SQL Injection
 Attacks using Web Service”.
[2] William G . J . Hal fond and Alessandro Orso ,
 “AMNESIA: Analysis and Monitoring for
 Neutralizing SQL Injection Attacks”.
[3] W. G. J. Halfond and A. Orso, “Combining Static
 Analysis and Runtime Monitoring to Counter SQL
 Injection Attacks”.

Author Profile

Anuja Patil, the final year student of the Bharati
Vidyapeeth’s College of Engineering, Kolhapur,
Maharashtra, India; persuing Computer Science and
Engineering degree(2013).

Ketaki Pangu, the final year student of the Bharati
Vidyapeeth’s College of Engineering, Kolhapur,
Maharashtra, India; persuing Computer Science and
Engineering degree(2013).

195

