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Abstract: A Distributed Denial-of-Service (DDoS) attack is one in which a multitude of compromised systems attack a single target, 
thereby causing denial of service for users of the targeted system. The flood of incoming messages to the target system essentially forces 
it to shut down, thereby denying service to the system to legitimate users .The nature of the threats posed by DDoS attacks on large 
networks, such as the Internet, demands effective detection and response methods. These methods must be deployed not only at the edge 
but also at the core of the network. This paper presents methods to identify DDoS attacks by computing entropy and frequency-sorted 
distributions of selected packet attributes. The DDoS attacks show anomalies in the characteristics of the selected packet attributes. The 
detection accuracy and performance are analyzed using live traffic traces from a variety of network environments ranging from points 
in the core of the Internet to those inside an edge network. The results indicate that these methods can be effective against current 
attacks and suggest directions for improving detection of more stealthy attacks. We also describe our detection-response prototype and 
how the detectors can be extended to make effective response decisions. 
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1. Introduction 
 
Powerful DDoS toolkits are available to potential attackers, 
and essential networks are ill prepared for defence. The 
security community has long known that DDoS attacks are 
possible, but only in the past three years have such attacks 
become popular with hackers. As ominous as the threat is 
today, it will only worsen as tools are built to evade 
defences. Soon, DDoS floods will appear that are difficult 
to distinguish from legitimate traffic, and packet rates from 
individual flood sources will be low enough to escape 
notice by local administrators. To meet the increasing need 
for detection and response, researchers face these major 
issues: 
 
 A stand-alone router on the attack path should 

automatically recognize that the network is under attack 
and adjust its traffic flow to ease the attack impact 
downstream. 

 The detection and response techniques should be 
adaptable to a wide range of network environments, 
preferably without significant manual tuning. 

 Attack detection should be as accurate as possible. 
 False positives can lead to inappropriate responses that 

cause denial of service to legitimate users. False 
negatives result in attacks going unnoticed. 

 Attack response should employ intelligent packet 
discard mechanisms to reduce the downstream impact 
of the flood while preserving and routing the non-attack 
packets [4]. 

 The detection method should be effective against a 
variety of attack tools available today and also robust 
against future attempts by attackers to find detection.  
 

2. Related work 
 
These are demanding goals, but we contend that there are 
several reasons to believe that satisfactory detection and 
response methods can be designed. DDoS traffic generated 
by today’s tools often has packet crafting characteristics that 
make it possible to distinguish from normal traffic [3]. For 
example, in some configurations the Stacheldraht attack tool 
crafts packets so that the source port is random and the 
destination port is sequentially increased from one packet to 
the next [1][2][10]. Future DDoS tools may include 
improvements to packet crafting. However, we claim that 
these tools are unlikely to model legitimate traffic closely 
enough to produce crafted packets that do not distort 
statistical measurements of the composition of the traffic. 
Our hypothesis is that relatively simple statistical measures 
can be used to discriminate DDoS traffic from legitimate 
traffic in core routers with sufficient accuracy to mitigate 
the effect of the attack downstream. 
 
3. Proposed Work 
 
One common method of attack involves saturating the target 
machine with external communications requests, such that it 
cannot respond to legitimate traffic, or responds so slowly 
as to be rendered effectively unavailable. Such attacks 
usually lead to a server overload. In general terms, DDoS 
attacks are implemented by either forcing the targeted 
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computer(s) to reset, or consuming its resources so that it 
can no longer provide its intended service or obstructing the 
communication media between the intended users and the 
victim so that they can no longer communicate adequately. 
We have imposed some significant constraints on our DDoS 
defense development: no explicit coordination (e.g., 
pushback [5][6][7]) between defending network 
components, no built-in knowledge of applications or 
protocols, and no instrumentation at end hosts. These 
approaches are being actively explored in other research, 
and we believe that the techniques described here can 
complement these others in a comprehensive DDoS defense 
solution. 
 
3.1 Detection Algorithms 
 
Our detection algorithms measure statistical properties of 
specific fields in the packet headers at various points in the 
Internet. For instance, if a detector captures 1000 
consecutive packets at a peering point and computes the 
frequency of occurrence of each unique source IP address in 
those 1000 packets, then the detector will have a model of 
the distribution of the source address. Further computations 
with this distribution allow us to measure the randomness or 
uniformity of the addresses as well as the “goodness-of-fit” 
of the distribution with respect to prior measurements. 
 
3.2 Entropy 
 
Let an information source have n independent symbols each 
with probability of choice pi. 

   (1) 
 
 Hence, entropy can be computed on a sample of 
consecutive packets.  Comparing the value for entropy of 
some sample of packet header fields to that of another 
sample of packet header fields from the same peering point 
provides a mechanism for detecting changes in the 
randomness. We have observed through experimentation 
that while a network is not under attack, the entropy values 
for various header fields each fall in a narrow range. While 
the network is under attack with current attack tools, these 
entropy values exceed these ranges in a detectable manner. 
The algorithm to compute entropy can be optimized to 
perform only a few simple computations per packet. In our 
implementation, the entropy of a source will be calculated 
through a sliding window of fixed width, W. The probability 
value pi in this algorithm is actually the frequency of 
occurrence of each unique symbol divided by the total 
number of symbols in the sample. The process of computing 
entropy of W packets is as follows: 
 
1. Compute the entropy of the first W packets with 
reference to a specific header parameter (e.g. source IP 
address). 
2. Isolate the term in the summation corresponding to the 
probability of the first symbol in the window (label this 
symbol with i=1) and also the value for the corresponding 
probability (pi-1). 
3. Slide the window so the new first term was previously the 
second term and the next W-1 consecutive terms are 
contained in the window. 

4. Isolate the term in the summation corresponding to the 
probability of the symbol acquired from shifting the 
window. 
5. Subtract off the terms isolated in steps 2 and 4 from the 
value computed in step 1. 
6. Re-compute the affected probabilities for the current 
window of data. That is, re-compute pi-1 and the probability 
of the symbol that was added by sliding the window. 
7. Using the values computed in step 6, add the two terms 
missing from the entropy summation back in and compare 
this new entropy value to the previous entropy 
computations. 
8. Repeat steps 2-7 to determine subsequent entropy values. 
 
A sophisticated attacker would likely attempt to defeat the 
detection algorithm by creating stealthy traffic floods that 
mimic the legitimate traffic the detector would expect. An 
attacker who knew that the entropy of various packet 
attributes was being monitored could build an attack tool 
that generates floods with tunable entropy levels. Through 
guesswork, penetration, or trial and error, the attacker could 
determine typical entropy levels seen at the detector and 
tune the flood to match. This may not be as easy as it 
sounds, particularly if there are multiple detectors deployed 
between the flood sources and the targets, as the typical 
entropy values seen by detectors in different network 
environments are likely to differ. The window size, W, is a 
tunable parameter that controls how much smoothing of 
short-term fluctuations the detector will do. Increasing W 
will reduce the variation in entropy and may reduce the rate 
of false positives resulting from brief and presumably 
insignificant anomalies. However, W should be kept small 
enough that attacks are detected quickly. We have found 
that a window size of 10,000 packets is a reasonable 
compromise in the network environments we have explored. 

 
3. 3 Chi Square Statistic 

Pearson’s chi-square ( 2) Test is used for distribution 
comparison in cases where the measurements involved are 
discrete values. For example, it could be used to test the 
distribution of TCP SYN flag values (0 or 1) or protocol 
numbers. The test works best when the number of possible 
values is small. In particular, a rule of thumb is that the 
expected number of packets in a sample having each 
possible value be at least five. However, this can often be 
achieved through “binning”, that is combining a set or range 
of possible values and treating them as one. For example, 
the chi-square test can be applied to service ports by 
considering four values: HTTP, FTP, DNS, and other. 
Similarly, packet lengths can be binned into ranges such as 
0-64 bytes, 65-128 bytes, 129-255 bytes, etc. For a sample 
of N packets, let B be the number of available bins. Define 
Ni as the number of packets whose value falls in the ith bin 
and ni as the expected number of packets in the ith bin 
under the typical distribution. Then the chi-square statistic 
is computed as follows: 

   (2)  
 
When the Ni and ni values are large and the N 
measurements are independent and drawn from the 
expected distribution, this value follows the well-known 
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chisquare distribution with B-1 degrees of freedom. These 
assumptions (in particular, independence) do not typically 
hold for packet field values even under normal conditions. 
Hence, comparison with the chi-square distribution is of 
limited utility. However, the chisquare statistic does provide 
a useful measure of the deviation of a current traffic profile 
from the baseline. 
 
A current-traffic profile, mapping packet attribute values to 
frequencies, is maintained as follows: 
 
1. For each packet that arrives, extract the value, v, of the 
desired attribute (e.g., source address).  
2. Apply exponential decay to the stored frequency for v 
based on its age (time since last update). 
3. Increment the frequency for v and store the current time 
(or packet count) as its last-update time. 
 
Periodically, this current-traffic profile is compared with a 
baseline profile using the chi-square statistic, as follows: 
 
1. Apply exponential decay to the stored current traffic 
frequencies, as above. 
2. Group the attribute values into bins based on frequency. 
For example, the 16 most common values might go in one 
bin, the next 64 in another, the next 256 in another, and the 
rest in another. 
3. Calculate the total frequency for each bin. 
4. Calculate the chi-square statistic, comparing these bin-
frequency totals with the bin frequency values in the 
baseline profile. 
 
 

 
Figure 1: Architecture diagram 

The baseline profile can be maintained as decaying averages 
of the current-traffic bin frequencies. Each time the current-
traffic bin frequencies are computed, the average is updated 
as follows: 
 
1. Exponential decay is applied to the stored bin frequency 
averages, using a significantly longer half-life than is used 
for the current-traffic profile. 
2. The new set of bin frequencies is multiplied by and the 
result is added to the decayed average. The user can tune the 
detector by modifying the following parameters: traffic 

profile half-life, baseline profile half-life, bin definitions 
and hash function range. Values in the current-traffic profile 
whose frequencies decay below a certain threshold can be 
purged without substantially affecting the chi-square 
computation. This purging reduces memory consumption 
and processing requirements. For packet attributes such as 
IP addresses that have a very large range, a hash of the 
attribute's value may be used instead of the value itself in 
order to reduce memory consumption and processing 
requirements in the worst case (many distinct values). When 
the baseline frequency value for a given bin is very low, the 
chi-square statistic may be excessively influenced by that 
bin's value. Ideally, the bins will be defined such that this is 
unlikely, but as a fallback, low-value bins can be 
automatically merged with adjoining bins prior to 
computing the chi-square statistic. 
 
It is unlikely that an outside attacker without access to the 
detector itself or a large fraction of its network neighbors 
will know the exact characteristics of network traffic 
typically seen by the detector. Therefore, we hypothesize 
that the attack traffic will differ from typical traffic in 
measurable ways. 
 
4. Result and Analysis 
4.1 Detector Evaluation: 
 
The chi-square and entropy detectors were built as Snort pre 
processors, operating on every IP datagram received by 
Snort prior to stream reassembly and other packet 
manipulation. The two detectors can be individually enabled 
and configured in the snort. Configuration file and can 
trigger alarms through Snort’s modular alerting facility. In 
addition to issuing alerts, these plug-ins record data to log 
files in the Snort log directory. The entropy detector logs 
periodically computed entropy values for each packet 
attribute specified in the initialization file (e.g., source and 
destination IP addresses and TCP/UDP ports, datagram 
length, and TCP window size). The chi-square detector logs 
the periodically computed chi-square statistics for each of 
the specified packet attributes, along with the current and 
baseline bin frequency values used to compute those 
statistics. This data can be useful for manual or automatic 
detector tuning and alert threshold setting [8][9]. 

 
4.1.1 Network Trace Data 
 
A critical element of evaluating these detectors is exposing 
them to traffic from a variety of network environments. This 
allows us to determine how stable the traffic statistics 
monitored by the detectors are in those environments, and 
how effectively the detectors can identify DDoS attack 
traffic in different contexts. 
 
For this purpose, we obtained several publicly available 
network traces as well as some traces collected specifically 
for our experiments. These traces are not known to contain 
substantial DDoS attacks, so we treat them as consisting of 
legitimate traffic. To test the effects of DDoS attacks, we 
simulate these attacks by overlaying the kind of attack 
traffic generated by some existing DDoS attack tools onto 
the traces at various concentrations [10].  
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Figure 2: Probability distribution of source IP address in 

low-rate DDoS attack (only attack traffic) scenario 
 

 
Figure 3: Probability distribution of source IP address in 

normal network traffic (attack free) scenario 
 
Ideally, we would make use of traces containing identifiable 
periods during which actual DDoS attacks were in progress, 
but few of these are publicly available. The traces used were 
drawn from a variety of network environments, as described 
below, and most have IP addresses that have been 
transformed via an unknown but one-to-one function for 
privacy purposes. This address re-mapping is irrelevant to 
the currently implemented detectors, since they make no 
assumptions about relationships between different IP 
addresses. 
 
4.2 Detector Performance 
 
Since we are proposing to use these detection methods in 
high-speed core routers, it is imperative that they have low 
computational cost, especially for the operations that must 
be carried out for each packet. The prototype Snort detector 
implementation exhibits adequate performance for its 
purposes: on a 1GHz Pentium-III-based machine, a Snort 
process running a single chi-square detector observing 
source addresses can process 240,000-270,000 packets per 
second (pps) offline. (The Snort infrastructure without any 
plugins can handle 435,000 pps.) Adding chi-square 
detectors for four additional packet attributes brings 
performance down to around 100,000 pps. A single-
attribute entropy detector can manage about 294,000 pps, 
while adding six others yields 130,000 pps. These speeds 
are roughly in the OC3 range. Improving performance is a 
primary goal of future detector development. We expect to 
achieve improved performance by implementing some 
optimizations that approximate the true frequency profile 
while reducing or eliminating floating-point operations in 

the packet-handling code. Most of the partitioning and 
computation of chi-square and entropy values can be 
handled asynchronously in background processes that 
should not impede the packet-handling fast path. 
 
4.3 Response 
 
Our defence approach involves response modules that use a 
characterization of the attack provided by the detection 
module to take defensive measures. The response module 
classifies individual packets as benign or suspect based on 
the attack characteristics provided by the detector. Once 
identified, the suspect packets are subjected to rate limiting 
or packet-filtering methods based on the intensity of the 
attack or pre-defined response policies. In the case of 
stealthy DDoS attacks, the response module should 
communicate with the detector and share the data structures 
and statistical models maintained by the detector to identify 
the attack packets with high confidence; the prototype 
described below does not yet offer such 
coordination[11][12]. 
 
4.3.1 Prototype DDoS Response Module 
 
The current response prototype is implemented on a Linux 
router as a kernel module. It uses netfilter and Linux 
Advanced Routing and Traffic Control (LARTC) to filter 
and rate-limit packets [4]. An API is provided to take alerts 
from the detection module and generate filter rules to be 
issued to the response module. We have also produced an 
extension to the Linux iptables mechanism that provides 
similar functionality, for better integration with iptables-
based router/firewall configurations. Currently, the response 
module implements three packet-filtering rules. They are 
constant, random and allow. These filter rules are 
automatically generated by the Snort-based DDoS detector 
when it issues an alert. When the detector module detects a 
DDoS flood, it uses its detection algorithms and the 
statistical models to characterize the DDoS packets. The 
characteristics of the DDoS packets are used to form one of 
the three packet filter rules. The detector can then insert the 
packet filtering rules using the /proc file system interface. 
These rules will filter out the DDoS attack packets. Once 
the detector determines that the attack has subsided, it can 
remove the appropriate filtering rules. 
 
 
(a) Constant Filter Rule 
 
A constant filter rule is used to drop packets that match the 
values specified in the rule to the values of the protocol 
header fields in the packet. This filter rule can be applied to 
the IP header fields, TCP source and destination ports, UDP 
source and destination ports and ICMP type and code fields. 
For example, the rule “const {daddr=10.1.1.10 protocol= 6 
dport=80 sport=31137};” will drop TCP packets going to 
the particular destination IP address 10.1.1.10 and TCP 
destination port 80 from the TCP source port 31137. A 
number of such constant filter rules can be applied to the 
response module. If none of the constant filter rules match 
the values of the header fields, the packet is allowed to pass. 
 
(b) Random Filter Rule  
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A number of DDoS attack tools create packets with random 
values in the header fields. That is, a random number 
generator is used to assign a value to certain fields in the 
header. In such a case, a random filter rule can be specified 
to drop packets with random values in the header 
field[13][14]. The random filter rule can be applied to the IP 
header fields, TCP source and destination ports, UDP 
source and destination ports, and ICMP type and code 
fields. Random filter rules can be applied in the following 
cases: 
 A packet has only one random item in the header field. 

For example, the rule “rand {saddr};” will drop packets 
with only random source IP addresses. 

 A packet with more than one random item in the header 
field. For example, the rule “rand {tot_len saddr 
protocol};” will drop packets with random values for 
total IP packet length, source IP address and IP 
protocol. 
 

5. Conclusion and Future Extensions 
 
The focus thus far has been on detection and response 
algorithms and the implementation of these algorithms in 
software. At issue is whether these algorithms can reliably 
detect and respond to DDoS attacks. Against today’s 
relatively unsophisticated DDoS toolkits, our prototype 
detector is able to determine that the network is under attack 
and deploy accurate filtering rules.  
 
 

 
Figure 4: Variations of information distance and 

divergence as well as divergence by inappropriate measure 
along with the value of the order  , the Kullback–
Leibler distance and divergence as well as the divergence 

by inappropriate Measure while . 
 
The filtering effort is immediate and reduces the impact of 
the attack downstream almost instantly. Because baseline 
measurements and thresholds can be established 
automatically, and because detectors can generate filtering 
rules automatically based on the traffic statistics they 
gather, the system is adaptable to a wide range of network 
environments with minimal manual tuning.  
 

 
Figure 5: Variations of distance of the information and 
Kullback – Leiblermetrics in increasing DDoS attack 

intensity quickly 
 

While our initial goal was to provide effective defence 
against existing DDoS tools, we are continuing to explore 
techniques for better defence against future stealthy attacks. 
Future research and development will focus on tighter 
integration of detection and response modules. In the 
current implementation, detectors generate concise 
recommended rules for responders to impose, and there is 
no further detector/responder coordination. In a more tightly 
coupled detection/response system, the individual packet 
classification decisions made by the responder could make 
use of the rich data structures maintained by the detector.  
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