
International Journal of Science and Research (IJSR), India Online ISSN: 2319‐7064

Volume 2 Issue 4, April 2013
www.ijsr.net

Efficient Framework to Mitigate DDoS Attacks and
Response System

1Saravanan S, 2P.Siva kumar

1Assistant Professor, Department of IT
PSNA College of Engineering & Technology,

Dindigul, Tamil Nadu, India
ssaravananme@gmail.com

2Assistant Professor, Department of IT
PSNA College of Engineering & Technology,

Dindigul, Tamil Nadu, India
sivakumar.paulraj@gmail.com

Abstract: A Distributed Denial-of-Service (DDoS) attack is one in which a multitude of compromised systems attack a single target,
thereby causing denial of service for users of the targeted system. The flood of incoming messages to the target system essentially forces
it to shut down, thereby denying service to the system to legitimate users .The nature of the threats posed by DDoS attacks on large
networks, such as the Internet, demands effective detection and response methods. These methods must be deployed not only at the edge
but also at the core of the network. This paper presents methods to identify DDoS attacks by computing entropy and frequency-sorted
distributions of selected packet attributes. The DDoS attacks show anomalies in the characteristics of the selected packet attributes. The
detection accuracy and performance are analyzed using live traffic traces from a variety of network environments ranging from points
in the core of the Internet to those inside an edge network. The results indicate that these methods can be effective against current
attacks and suggest directions for improving detection of more stealthy attacks. We also describe our detection-response prototype and
how the detectors can be extended to make effective response decisions.

Keywords: Distributed Denial of Service; Entropy; Edge network; Stealthy Attacks;

1. Introduction

Powerful DDoS toolkits are available to potential attackers,
and essential networks are ill prepared for defence. The
security community has long known that DDoS attacks are
possible, but only in the past three years have such attacks
become popular with hackers. As ominous as the threat is
today, it will only worsen as tools are built to evade
defences. Soon, DDoS floods will appear that are difficult
to distinguish from legitimate traffic, and packet rates from
individual flood sources will be low enough to escape
notice by local administrators. To meet the increasing need
for detection and response, researchers face these major
issues:

 A stand-alone router on the attack path should

automatically recognize that the network is under attack
and adjust its traffic flow to ease the attack impact
downstream.

 The detection and response techniques should be
adaptable to a wide range of network environments,
preferably without significant manual tuning.

 Attack detection should be as accurate as possible.
 False positives can lead to inappropriate responses that

cause denial of service to legitimate users. False
negatives result in attacks going unnoticed.

 Attack response should employ intelligent packet
discard mechanisms to reduce the downstream impact
of the flood while preserving and routing the non-attack
packets [4].

 The detection method should be effective against a
variety of attack tools available today and also robust
against future attempts by attackers to find detection.

2. Related work

These are demanding goals, but we contend that there are
several reasons to believe that satisfactory detection and
response methods can be designed. DDoS traffic generated
by today’s tools often has packet crafting characteristics that
make it possible to distinguish from normal traffic [3]. For
example, in some configurations the Stacheldraht attack tool
crafts packets so that the source port is random and the
destination port is sequentially increased from one packet to
the next [1][2][10]. Future DDoS tools may include
improvements to packet crafting. However, we claim that
these tools are unlikely to model legitimate traffic closely
enough to produce crafted packets that do not distort
statistical measurements of the composition of the traffic.
Our hypothesis is that relatively simple statistical measures
can be used to discriminate DDoS traffic from legitimate
traffic in core routers with sufficient accuracy to mitigate
the effect of the attack downstream.

3. Proposed Work

One common method of attack involves saturating the target
machine with external communications requests, such that it
cannot respond to legitimate traffic, or responds so slowly
as to be rendered effectively unavailable. Such attacks
usually lead to a server overload. In general terms, DDoS
attacks are implemented by either forcing the targeted

386

International Journal of Science and Research (IJSR), India Online ISSN: 2319‐7064

Volume 2 Issue 4, April 2013
www.ijsr.net

computer(s) to reset, or consuming its resources so that it
can no longer provide its intended service or obstructing the
communication media between the intended users and the
victim so that they can no longer communicate adequately.
We have imposed some significant constraints on our DDoS
defense development: no explicit coordination (e.g.,
pushback [5][6][7]) between defending network
components, no built-in knowledge of applications or
protocols, and no instrumentation at end hosts. These
approaches are being actively explored in other research,
and we believe that the techniques described here can
complement these others in a comprehensive DDoS defense
solution.

3.1 Detection Algorithms

Our detection algorithms measure statistical properties of
specific fields in the packet headers at various points in the
Internet. For instance, if a detector captures 1000
consecutive packets at a peering point and computes the
frequency of occurrence of each unique source IP address in
those 1000 packets, then the detector will have a model of
the distribution of the source address. Further computations
with this distribution allow us to measure the randomness or
uniformity of the addresses as well as the “goodness-of-fit”
of the distribution with respect to prior measurements.

3.2 Entropy

Let an information source have n independent symbols each
with probability of choice pi.

 (1)

 Hence, entropy can be computed on a sample of
consecutive packets. Comparing the value for entropy of
some sample of packet header fields to that of another
sample of packet header fields from the same peering point
provides a mechanism for detecting changes in the
randomness. We have observed through experimentation
that while a network is not under attack, the entropy values
for various header fields each fall in a narrow range. While
the network is under attack with current attack tools, these
entropy values exceed these ranges in a detectable manner.
The algorithm to compute entropy can be optimized to
perform only a few simple computations per packet. In our
implementation, the entropy of a source will be calculated
through a sliding window of fixed width, W. The probability
value pi in this algorithm is actually the frequency of
occurrence of each unique symbol divided by the total
number of symbols in the sample. The process of computing
entropy of W packets is as follows:

1. Compute the entropy of the first W packets with
reference to a specific header parameter (e.g. source IP
address).
2. Isolate the term in the summation corresponding to the
probability of the first symbol in the window (label this
symbol with i=1) and also the value for the corresponding
probability (pi-1).
3. Slide the window so the new first term was previously the
second term and the next W-1 consecutive terms are
contained in the window.

4. Isolate the term in the summation corresponding to the
probability of the symbol acquired from shifting the
window.
5. Subtract off the terms isolated in steps 2 and 4 from the
value computed in step 1.
6. Re-compute the affected probabilities for the current
window of data. That is, re-compute pi-1 and the probability
of the symbol that was added by sliding the window.
7. Using the values computed in step 6, add the two terms
missing from the entropy summation back in and compare
this new entropy value to the previous entropy
computations.
8. Repeat steps 2-7 to determine subsequent entropy values.

A sophisticated attacker would likely attempt to defeat the
detection algorithm by creating stealthy traffic floods that
mimic the legitimate traffic the detector would expect. An
attacker who knew that the entropy of various packet
attributes was being monitored could build an attack tool
that generates floods with tunable entropy levels. Through
guesswork, penetration, or trial and error, the attacker could
determine typical entropy levels seen at the detector and
tune the flood to match. This may not be as easy as it
sounds, particularly if there are multiple detectors deployed
between the flood sources and the targets, as the typical
entropy values seen by detectors in different network
environments are likely to differ. The window size, W, is a
tunable parameter that controls how much smoothing of
short-term fluctuations the detector will do. Increasing W
will reduce the variation in entropy and may reduce the rate
of false positives resulting from brief and presumably
insignificant anomalies. However, W should be kept small
enough that attacks are detected quickly. We have found
that a window size of 10,000 packets is a reasonable
compromise in the network environments we have explored.

3. 3 Chi Square Statistic

Pearson’s chi-square (2) Test is used for distribution
comparison in cases where the measurements involved are
discrete values. For example, it could be used to test the
distribution of TCP SYN flag values (0 or 1) or protocol
numbers. The test works best when the number of possible
values is small. In particular, a rule of thumb is that the
expected number of packets in a sample having each
possible value be at least five. However, this can often be
achieved through “binning”, that is combining a set or range
of possible values and treating them as one. For example,
the chi-square test can be applied to service ports by
considering four values: HTTP, FTP, DNS, and other.
Similarly, packet lengths can be binned into ranges such as
0-64 bytes, 65-128 bytes, 129-255 bytes, etc. For a sample
of N packets, let B be the number of available bins. Define
Ni as the number of packets whose value falls in the ith bin
and ni as the expected number of packets in the ith bin
under the typical distribution. Then the chi-square statistic
is computed as follows:

 (2)

When the Ni and ni values are large and the N
measurements are independent and drawn from the
expected distribution, this value follows the well-known

387

International Journal of Science and Research (IJSR), India Online ISSN: 2319‐7064

Volume 2 Issue 4, April 2013
www.ijsr.net

chisquare distribution with B-1 degrees of freedom. These
assumptions (in particular, independence) do not typically
hold for packet field values even under normal conditions.
Hence, comparison with the chi-square distribution is of
limited utility. However, the chisquare statistic does provide
a useful measure of the deviation of a current traffic profile
from the baseline.

A current-traffic profile, mapping packet attribute values to
frequencies, is maintained as follows:

1. For each packet that arrives, extract the value, v, of the
desired attribute (e.g., source address).
2. Apply exponential decay to the stored frequency for v
based on its age (time since last update).
3. Increment the frequency for v and store the current time
(or packet count) as its last-update time.

Periodically, this current-traffic profile is compared with a
baseline profile using the chi-square statistic, as follows:

1. Apply exponential decay to the stored current traffic
frequencies, as above.
2. Group the attribute values into bins based on frequency.
For example, the 16 most common values might go in one
bin, the next 64 in another, the next 256 in another, and the
rest in another.
3. Calculate the total frequency for each bin.
4. Calculate the chi-square statistic, comparing these bin-
frequency totals with the bin frequency values in the
baseline profile.

Figure 1: Architecture diagram

The baseline profile can be maintained as decaying averages
of the current-traffic bin frequencies. Each time the current-
traffic bin frequencies are computed, the average is updated
as follows:

1. Exponential decay is applied to the stored bin frequency
averages, using a significantly longer half-life than is used
for the current-traffic profile.
2. The new set of bin frequencies is multiplied by and the
result is added to the decayed average. The user can tune the
detector by modifying the following parameters: traffic

profile half-life, baseline profile half-life, bin definitions
and hash function range. Values in the current-traffic profile
whose frequencies decay below a certain threshold can be
purged without substantially affecting the chi-square
computation. This purging reduces memory consumption
and processing requirements. For packet attributes such as
IP addresses that have a very large range, a hash of the
attribute's value may be used instead of the value itself in
order to reduce memory consumption and processing
requirements in the worst case (many distinct values). When
the baseline frequency value for a given bin is very low, the
chi-square statistic may be excessively influenced by that
bin's value. Ideally, the bins will be defined such that this is
unlikely, but as a fallback, low-value bins can be
automatically merged with adjoining bins prior to
computing the chi-square statistic.

It is unlikely that an outside attacker without access to the
detector itself or a large fraction of its network neighbors
will know the exact characteristics of network traffic
typically seen by the detector. Therefore, we hypothesize
that the attack traffic will differ from typical traffic in
measurable ways.

4. Result and Analysis
4.1 Detector Evaluation:

The chi-square and entropy detectors were built as Snort pre
processors, operating on every IP datagram received by
Snort prior to stream reassembly and other packet
manipulation. The two detectors can be individually enabled
and configured in the snort. Configuration file and can
trigger alarms through Snort’s modular alerting facility. In
addition to issuing alerts, these plug-ins record data to log
files in the Snort log directory. The entropy detector logs
periodically computed entropy values for each packet
attribute specified in the initialization file (e.g., source and
destination IP addresses and TCP/UDP ports, datagram
length, and TCP window size). The chi-square detector logs
the periodically computed chi-square statistics for each of
the specified packet attributes, along with the current and
baseline bin frequency values used to compute those
statistics. This data can be useful for manual or automatic
detector tuning and alert threshold setting [8][9].

4.1.1 Network Trace Data

A critical element of evaluating these detectors is exposing
them to traffic from a variety of network environments. This
allows us to determine how stable the traffic statistics
monitored by the detectors are in those environments, and
how effectively the detectors can identify DDoS attack
traffic in different contexts.

For this purpose, we obtained several publicly available
network traces as well as some traces collected specifically
for our experiments. These traces are not known to contain
substantial DDoS attacks, so we treat them as consisting of
legitimate traffic. To test the effects of DDoS attacks, we
simulate these attacks by overlaying the kind of attack
traffic generated by some existing DDoS attack tools onto
the traces at various concentrations [10].

388

International Journal of Science and Research (IJSR), India Online ISSN: 2319‐7064

Volume 2 Issue 4, April 2013
www.ijsr.net

Figure 2: Probability distribution of source IP address in

low-rate DDoS attack (only attack traffic) scenario

Figure 3: Probability distribution of source IP address in

normal network traffic (attack free) scenario

Ideally, we would make use of traces containing identifiable
periods during which actual DDoS attacks were in progress,
but few of these are publicly available. The traces used were
drawn from a variety of network environments, as described
below, and most have IP addresses that have been
transformed via an unknown but one-to-one function for
privacy purposes. This address re-mapping is irrelevant to
the currently implemented detectors, since they make no
assumptions about relationships between different IP
addresses.

4.2 Detector Performance

Since we are proposing to use these detection methods in
high-speed core routers, it is imperative that they have low
computational cost, especially for the operations that must
be carried out for each packet. The prototype Snort detector
implementation exhibits adequate performance for its
purposes: on a 1GHz Pentium-III-based machine, a Snort
process running a single chi-square detector observing
source addresses can process 240,000-270,000 packets per
second (pps) offline. (The Snort infrastructure without any
plugins can handle 435,000 pps.) Adding chi-square
detectors for four additional packet attributes brings
performance down to around 100,000 pps. A single-
attribute entropy detector can manage about 294,000 pps,
while adding six others yields 130,000 pps. These speeds
are roughly in the OC3 range. Improving performance is a
primary goal of future detector development. We expect to
achieve improved performance by implementing some
optimizations that approximate the true frequency profile
while reducing or eliminating floating-point operations in

the packet-handling code. Most of the partitioning and
computation of chi-square and entropy values can be
handled asynchronously in background processes that
should not impede the packet-handling fast path.

4.3 Response

Our defence approach involves response modules that use a
characterization of the attack provided by the detection
module to take defensive measures. The response module
classifies individual packets as benign or suspect based on
the attack characteristics provided by the detector. Once
identified, the suspect packets are subjected to rate limiting
or packet-filtering methods based on the intensity of the
attack or pre-defined response policies. In the case of
stealthy DDoS attacks, the response module should
communicate with the detector and share the data structures
and statistical models maintained by the detector to identify
the attack packets with high confidence; the prototype
described below does not yet offer such
coordination[11][12].

4.3.1 Prototype DDoS Response Module

The current response prototype is implemented on a Linux
router as a kernel module. It uses netfilter and Linux
Advanced Routing and Traffic Control (LARTC) to filter
and rate-limit packets [4]. An API is provided to take alerts
from the detection module and generate filter rules to be
issued to the response module. We have also produced an
extension to the Linux iptables mechanism that provides
similar functionality, for better integration with iptables-
based router/firewall configurations. Currently, the response
module implements three packet-filtering rules. They are
constant, random and allow. These filter rules are
automatically generated by the Snort-based DDoS detector
when it issues an alert. When the detector module detects a
DDoS flood, it uses its detection algorithms and the
statistical models to characterize the DDoS packets. The
characteristics of the DDoS packets are used to form one of
the three packet filter rules. The detector can then insert the
packet filtering rules using the /proc file system interface.
These rules will filter out the DDoS attack packets. Once
the detector determines that the attack has subsided, it can
remove the appropriate filtering rules.

(a) Constant Filter Rule

A constant filter rule is used to drop packets that match the
values specified in the rule to the values of the protocol
header fields in the packet. This filter rule can be applied to
the IP header fields, TCP source and destination ports, UDP
source and destination ports and ICMP type and code fields.
For example, the rule “const {daddr=10.1.1.10 protocol= 6
dport=80 sport=31137};” will drop TCP packets going to
the particular destination IP address 10.1.1.10 and TCP
destination port 80 from the TCP source port 31137. A
number of such constant filter rules can be applied to the
response module. If none of the constant filter rules match
the values of the header fields, the packet is allowed to pass.

(b) Random Filter Rule

389

International Journal of Science and Research (IJSR), India Online ISSN: 2319‐7064

Volume 2 Issue 4, April 2013
www.ijsr.net

A number of DDoS attack tools create packets with random
values in the header fields. That is, a random number
generator is used to assign a value to certain fields in the
header. In such a case, a random filter rule can be specified
to drop packets with random values in the header
field[13][14]. The random filter rule can be applied to the IP
header fields, TCP source and destination ports, UDP
source and destination ports, and ICMP type and code
fields. Random filter rules can be applied in the following
cases:
 A packet has only one random item in the header field.

For example, the rule “rand {saddr};” will drop packets
with only random source IP addresses.

 A packet with more than one random item in the header
field. For example, the rule “rand {tot_len saddr
protocol};” will drop packets with random values for
total IP packet length, source IP address and IP
protocol.

5. Conclusion and Future Extensions

The focus thus far has been on detection and response
algorithms and the implementation of these algorithms in
software. At issue is whether these algorithms can reliably
detect and respond to DDoS attacks. Against today’s
relatively unsophisticated DDoS toolkits, our prototype
detector is able to determine that the network is under attack
and deploy accurate filtering rules.

Figure 4: Variations of information distance and

divergence as well as divergence by inappropriate measure
along with the value of the order , the Kullback–
Leibler distance and divergence as well as the divergence

by inappropriate Measure while .

The filtering effort is immediate and reduces the impact of
the attack downstream almost instantly. Because baseline
measurements and thresholds can be established
automatically, and because detectors can generate filtering
rules automatically based on the traffic statistics they
gather, the system is adaptable to a wide range of network
environments with minimal manual tuning.

Figure 5: Variations of distance of the information and
Kullback – Leiblermetrics in increasing DDoS attack

intensity quickly

While our initial goal was to provide effective defence
against existing DDoS tools, we are continuing to explore
techniques for better defence against future stealthy attacks.
Future research and development will focus on tighter
integration of detection and response modules. In the
current implementation, detectors generate concise
recommended rules for responders to impose, and there is
no further detector/responder coordination. In a more tightly
coupled detection/response system, the individual packet
classification decisions made by the responder could make
use of the rich data structures maintained by the detector.

References

[1] D. Dittrich, “The ‘Stacheldraht’ Distributed Denial of

Service Attack Tool”,
http://staff.washington.edu/dittrich/
misc/stacheldraht.analysis, 1999.

[2] C. Faloutsos, M. Faloutsos, and P. Faloutsos, “On
Power-Law Relationships of the Internet Topology,”
Proc. Of ACM SIGCOMM, Aug. 1999, pp. 251-262.

[3] T.M. Gil, M.A. Poletto and E.W. Kohler, Jr. “Statistics
Collection for Network Traffic”, United States Patent
Application, March 21, 2002.

[4] B. Hubert, “Linux Advanced Routing and Traffic
Control HOWTO”, http://lartc.org/howto/.

[5] D. Knuth, The Art of Computer Programming:
Seminumerical Algorithms, Third edition, Vol. 2,
Addison- Wesley, Reading, Massachusetts, 1997.

[6] M.V. Mahoney and P.K. Chan, “Learning
Nonstationary Models of Normal Network Traffic for
Detecting Novel Attacks”, SIGKDD ’02, Edmonton,
Alberta, Canada, July 23-26, 2002, pp. 376-385.

[7] R. Manajan, et al., “Controlling High Bandwidth
Aggregates in the Network”, SIGCOMM Computer
Communications Review, 32(3), July 2002.

[8] D. Moore, G. Voelker, and S. Savage, “Inferring
Internet Denial-of-Service Activity”, Proceedings of
USENIX Security Symposium 2001, pp. 9-22.

[9] E. Mouw, “Linux Kernel Procfs Guide”,
http://www.kernelnewbies.org/documents/kdoc/procfs-
guide/ lkprocfsguide.html.

[10] Netflood Infosec Tools & Resources, Source Code to
Stacheldraht, http://netflood.net/files/Dos/DDoS.

390

International Journal of Science and Research (IJSR), India Online ISSN: 2319‐7064

Volume 2 Issue 4, April 2013
www.ijsr.net

[11] O. Pomerantz, “Linux Kernel Module Programming
Guide”, http://www.tldp.org/LDP/lkmpg/mpg.html.

[12] P.A. Porras, and P.G. Neumann, “EMERALD: Event
Monitoring Enabling Responses to Anomalous Live
Disturbances,” Proceedings of the National Information
Systems Security Conference (NISSC), October 1997,
pp. 353-365.

[13] M. Roesch, (March 2002), “Snort Users Manual: Snort
Release 1.8.5”,
http://www.snort.org/documentation.html, March 2002.

[14] M. Roesch, “Snort - Lightweight Intrusion Detection
for Networks” Proceedings of the 13th Systems
Administration Conference (LISA'99), USENIX
Association, 1999, pp. 229-238,
http://www.snort.org/docs/lisapaper.txt.

Author Profile

Mr. S. Saravanan received his B.Tech Degree in
Information Technology from RVS College of
Engineering & Technology, Dindigul and also
completed his M.E. Computer Science & Engineering
in P.S.N.A college of Engineering and Technology,

Dindigul, Tamilnadu. He is currently working as a Assistant
Professor in Department of Information Technology, PSNACET,
Dindigul. His research interests include mesh networks, ad-hoc
networks, network security, cloud computing.

Mr. P. SivaKumar received his B.E Degree in
Computer Science from KCG College of Technology,
Chennai and also completed his M.E. Computer and
Communication Engineering in P.S.N.A college of
Engineering and Technology, Dindigul, Tamilnadu.

He is currently working as a Assistant Professor in Department of
Information Technology, PSNACET, Dindigul. His research
interests include Vehicular ad-hoc networks, cloud computing..

391

