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Abstract: Segmentation of brain tissues is gaining popularity with the advance of image guided surgical approaches. This work 
proposes a fast and robust practical tool for segmentation of solid tumors in radiosurgery application. For this, a cellular automata (CA) 
i.e. Tessellation Structure based seeded tumor segmentation method is used on MR images, which standardizes the volume of interest 
and seed selection. The procedure starts by establishing the connection of CA based segmentation to the graph theoretic methods to 
show that iterative CA framework solves the shortest path problem by modifying the state transition function from the CA. A sensitive 
parameter is introduced to adapt the heterogeneous tumor segmentation problem. Then a smoothness constraint using level set active 
surfaces is imposed by an EM algorithm over a probability map constructed from CA State. A standard EM level-set propagates normal 
to its boundary uniformly at a constant speed which will stop on the desired boundary.  Finally a CA algorithm is introduced to 
differentiate necrotic and enhancing tumor tissue with different grade is obtained by a Fuzzy c-means clustering technique to categorize 
the various type of affected cells content for detailed assessment of radiation therapy response. 
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1. Introduction 
 
1.1     Motivation and Overview 
 
Motivated by surveillance applications in clinical field, 
the fuzzy diagnosis concept is widely applied. The advent 
of MRI scanning protocols has allowed accurate follow-
up of tumor growth through volumetric measurements. 
Fuzzy can range between the supervised classification of a 
number of clinical cases within different classes of 
pathologies, through a set of rules concerning both 
linguistic and numerical data, and the unsupervised 
segmentation of medical images through data based 
methods of analysis concerning spatially distributed 
numerical variables. Image segmentation is one of the 
most important precursors for image processing based 
applications and has a decisive impact on the overall 
performance of the developed system. Robust image 
segmentation has been the subject for research for many 
years but the published research indicated that most of the 
developed image segmentation algorithms have been 
designed in conjunction with the particular applications. 
The segmentation process consists of separating a digital 
image into several disjoint regions, whose characteristics 
such as intensity, color and texture. Outlining the brain 
tumor contour is a major step in planning spatially 
localized Radiotherapy (e.g., Cyber knife, iMRT) which is 
usually done manually on contrast enhancedT1-weighted 
magnetic resonance images (MRI) in current clinical 
practice. On T1 MR Images acquired after administration 
of a contrast agent (gadolinium) blood vessels and parts 
of the tumor, where the contrast can pass the blood-brain 
barrier are observed as hyper intense areas. There are 
various attempts for brain tumor segmentation in the 
literature which use a single modality, combine multi 
modalities and use priors obtained from population atlases 
[4]. Interpretation of the radiological evolution of the 

tumor appears of utmost importance for therapeutic 
management, for the evolution of different grades of 
tumor cells which is an aggressive brain tumor with poor 
outcome. With the outcome of patients with primary brain 
tumors, we analyzed the three most common tumor 
affected cells: glioblastoma (GBM or grade 4 glioma, 184 
or 49%) astrocytoma (grade 2 or 3 glioma, 100 or 26%) 
and meningioma (42 or 11%). Glioblastoma multiforme 
(GBM), is a primary malignant brain tumor, is the most 
common form of the glioma tumors which in spite of 
multimodality treatments, remains as an incurable and 
rapidly fatal disease. The anatomic location of a glioma 
influences prognosis and treatment options. A few studies 
aim at discovery of the distribution of gliomas in different 
anatomic areas of the brain. By using Clustering technique 
we are going to categorize the various grade levels of 
tumor affected cells and the necrotic region. By using this 
technique the therapeutic can diagnosis the type of cell 
damaging and locating the cells which are cancerous or 
non-cancerous cell.  

 
Segmentation of actual growth, registration on a virtual 
brain atlas, and identification of model parameters 
corresponding to optimal matching between actual and 
simulated evolution. Modalities which give relevant 
information on tumor and edema/infiltration such as 
Perfusion Imaging, Diffusion Imaging, or Spectroscopic 
Imaging provide lower resolution images compared to T1 
or T2 weighted sequences, and the former are generally 
not preferable for geometric measurements. The approach 
presented herein aims at providing a more generic and 
robust for the segmentation of blobby- shaped tumor 
structures with high performed level set and it gives the 
various different level of damaged cells and the death 
cells. The popular trend in the area, as in the 
aforementioned approaches, is to attempts to develop 
better algorithms from the image processing perspective 
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that work on a particular MRI protocol continue in 
parallel not only to obtain proper information from each 
channel to be combined, but also due to the practical need 
to routinely quantify tumors in a clinical environment [6]. 
In general, these region-based models are widely used in 
image segmentation [10] it several advantages over 
gradient-based techniques for segmentation, including 
greater robustness to noise. However, classical active 
contours had the problem of being “only as good as their 
initialization,” even when using level-set surfaces in 3D. 
Because the tumor class does not have a strong spatial prior, 
many small structures, mainly blood vessels, are classified 
as tumor as they also enhance with contrast. Ho et al. used 
fuzzy classification of pre- and post-contrast T1 images to 
obtain a tumor probability map to evolve a level-set surface 
[11]. Liu et al. have adapted the fuzzy connectedness 
framework for tumor segmentation by constructing a 
rectangular volume of interest selected through identifying 
the first and last slice of the tumor and specifying a set of 
voxels in the tumor region [6]. A standard level-set 
propagates normal to its boundary uniformly at a constant 
speed α. Our region competition-based model modulates 
this propagation term using image forces to change the 
direction of propagation, so that it shrinks when the 
boundary encloses parts of the background (B), and grows 
when the boundary is inside the tumor region (A). 
 
Interactive algorithms have become popular for image 
segmentation problem in recent years. Graph based 
seeded segmentation framework has been generalized 
such that graph-cuts(GC)[12],random walker (RW) 
[13],Shortest paths and power watersheds [14] have been 
interpreted as special cases of a general seeded 
segmentation algorithm, which solves a minimization 
problem involving a graph’s edge weights constrained by 
adjacent vertex variables or probabilities. In [15], the 
connection between GC, RW and shortest paths was 
shown to depend on different norms: (GC); (RW); (SP) in 
the energy that is optimized. Geodesic distance between 
foreground and background seeds were also incorporated 
into other shortest path based segmentation algorithms by 
[16] and [17]. Although it was reported that the shortest 
paths and RW produce relatively more seed dependent 
results, it can be argued that the global minimum of an 
image segmentation energy is worth as good as the ability 
of its energy to capture underlying statistics of images 
[18], and a local minimum may produce a solution closer 
to the ground truth than that of a global minimum. Hence, 
with good prior information provide as in the case of a 
seeded image segmentation problem, effectively finding a 
good local minima becomes meaningful and worthwhile. 
 
In order to improve the efficiency of this task, we have 
studied different clustering algorithms. We made several 
experiments with a number of fuzzy approaches to 
clustering for medical image segmentation. These 
methods seem to adaptively perform an efficient 
unsupervised clustering, not affected by the 
dimensionality of the feature space. Moreover, fuzzy 
clustering methods produce a voxel classification, related 
to the membership function of clusters, and can add some 
kind of smoothness to voxel classification. This helps to 
better define surfaces of the anatomical objects described 
by segmentation. Comparatively for K-Means clustering 

the degree of membership for a pattern in a particular 
cluster is 1 if the pattern belongs to the cluster or 0 if it 
doesn’t. In fuzzy set theory, a pattern can belong to 2 or 
more Clusters simultaneously where the membership 
grades determine the degree to which the pattern belongs 
to these clusters. Tessellations Automata is a cellular 
automaton consists of a regular grid of cells each in one 
of a finite number of states. CA algorithm to establish the 
connection of the CA based segmentation to the graph 
theoretic methods to show that the iterative CA 
framework solves the shortest path problem with a 
problem proper choice of the transition rule. Level set 
offer significant advantages over conventional statistical 
classification and mathematical morphology, however 
with constant propagation need careful initialization and 
can leak through weak or missing boundary parts. A 
smoothness constraint using level set active surfaces is 
imposed over a probability map constructed from 
resulting CA states. 

 
This study is used for T1 and T2 weighted images to 
develop a method based on the fuzzy-c-mean clustering to 
extract the meningioma, astrocytes and glioma type cells 
from the MR image. The overall aim was to successfully 
complete tumor image segmentation with high performed 
level set, and at the same time, to effectively detect the 
various grades of tumor. 

 
2. Method 

 
In this section, the complete segmentation framework 
to segment tumors and clustering of cell are enclosed is 
presented in detail. An overview of the algorithm with 
the implementation is given in Section II-A. Major 
steps of the algorithm are explained in detail in 
Sections II-B, II-C, II-D, and II-E followed by the 
datasets and methods used for performance 
evaluation in Section II-F. 
 
2.1 Seed Selection 

 
Our seed selection algorithm employs the same idea to 
follow the familiar clinical routine to which the clinicians 
are used to: the volume of interest (VOI), the tumor seeds 
and the background seeds are determined by using the 
line already drawn by the user to measure the longest 
diameter of the tumor. Afterwards, the VOI and the seeds 
are computed as follows: 1) The line is cropped by 15% 
from each end and thickened to three pixels wide to 
obtain tumor seeds; 2) VOI is selected as the bounding 
box of the sphere having a diameter 35% longer than the 
line; 3) One-voxel-wide border of this VOI is used as 
background seeds [see fig 5 and fig 6] 
 
Since the VOI is completely bounded by the 
background seeds, each path connecting inside and outside 
the VOI is blocked by a seed. Then, the result of labeling 
using only the data inside the region is equivalent to using 
the whole volume whereas the computation time is 
significantly reduced. In the tumor segmentation 
application, the cells or nodes in cellular automata 
framework correspond to the MRI volume voxels in 3-D. A 
26 cell cubic neighborhood is used in 3D. MRI intensities 
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a)                                                  b) 

Figure 6.  Seed Selection Process, a) VOI is selected as 
the bounding box of the sphere b) Selection of Tumor 

seed (blue) and background seed as (red) 
 

falling in the given area of the (T1 intensity, T2 intensity) 
plane. FCM cluster algorithm was used to partition the 
two-dimensional histogram. Fuzzy C-Means tends to 
minimize the following objective function: 

                       J = 


c

j 1



n

i 1

 (Uij)
m ||xi

(j) – cj||
2 

where uij are the membership values that form the 
membership matrix U (represents the degree of 
membership to the C clusters and it has a value in the 
range of [0 1] for each feature vector xi to the fuzzy 
cluster cj. The parameter m is the called the fuzzifier 
factor and determines the level of cluster fuzziness. A 
large value for m results in smaller membership uij and 
hence fuzzier clusters. 
 
Steps of the Fuzzy C-Means Clustering Algorithm 
 
1. Consider a set of n data points(vectors) to be clustered. 
2. Assume the number of clusters C is known C [2,n]. 
3. Choose an appropriate level of cluster fuzziness m R, 

m>1. 
4. Initialize the (n x c) size membership matrix U to 

random variable value such that: 

              Uij and 


c

j 1

 uij = 1 

5. Calculate the cluster centers cj using 

       Cj=


n

i 1

 (uij)
mxi 



n

i 1

uijm , for j=1…C 

6. Calculate the distance measures dij=||xi
(j)-cj|| for all 

clusters j=1…C and data points i=1…n. 
7. Update the fuzzy membership matrix U according to 

dij. If dij>0 then uij= [


c

k 1

dij/dik)
2/m-1 

      If dij=0 then the data point xj coincides with the cluster 
center cj and so full membership can be set uij=1. 

8. Loop from step 5 until the change in U is less than a 
given tolerance. 
 

 
a)                     b)                                c) 

Figure 7. CA algorithm , a) Applied on Background  
seed b)Applied on     Tumor seed c) Tumor seed 

selection 

 
a)                           b)                               c) 

Figure 8. a) Segmented image b)outline given by CA 
algorithm c) before EMD (black), after  EMD  (white) 

 
The objective of the Fuzzy C-Means algorithm is the 
minimization of the intra-cluster variability. Fuzzy C-
Means shares the same problems as K-Means algorithm, 
namely the initial selection of the cluster centers and the 
initial choice of weights uij. The advantages consists in the 
idea that fuzzy  
clustering allows overlapping clusters with partial 
membership of individual clusters and we can control the 
level of cluster fuzziness. Because there is no total 
commitment of a given point to a given cluster, fuzzy 
clustering algorithms require more memory and are 
computationally expensive when applied to large datasets. 
   
Necrotic class naturally arises in segmentation using 
multiprotocol (T1, CE-T1, T2, DWI, etc.) intensity 
classifiers due to its different intensity characteristics in 
different modalities. However, our aim in this study is to 
quantify the necrotic and enhanced parts of the tumor 
using solely contrast enhanced T1 weighted MRI volumes. 
This can be achieved by a two step sequential algorithm. 
Firstly, tumor volume (including both enhanced and 
necrotic tissues) is segmented by the method as described 
and then the necrotic and enhanced classes are separated 
inside the whole tumor volume with the three grade levels. 
  
In CE-T1 MR images, necrotic parts of the tumor are 
observed as hypo-intense for there is no blood flow into 
these regions where enhanced parts are hyper-intense. 
Without any prior information, segmentation using an 
intensity threshold can be applied by assigning necrotic 
label to the voxels lower than the chosen threshold and 
enhanced label to those that are higher. To choose the 
threshold, we explored using expectation maximization 
[33] and Otsu’s methods [34]. However, usually the two 
classes are not separable on the intensity histogram even 
though they could be separated easily on the image as 
seen on the sample cases. 

 
2.5 Data and Evaluation Methods 
 
Validation studies of the developed method are carried out 
over four different datasets of all contrast enhanced T1-MR 
images. The level-set procedure was successfully run on 
several tumor datasets, and with Clustering techniques. 
The output of each segmentation is a binary image on the 
same voxel grid as the original MRI. The image 
segmentation validation framework to examine various 
metrics of agreement of segmentation. The Brain Tumor 
datasets obtained from the Indian MRI Scan and from 
clinical Radiation center. Here thereby we collected 
above 42 dataset affected due to various tumor cells. In 
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radio surgery planning of brain tumors, target tumor 
volume, which is desired to receive sufficiently high dose, 
is outlined on MR images by a radio-oncology specialist. 
As the ground truth for segmentation, we used the tumor 
contours outlined manually by a radio-oncologist for radio 
surgery planning. In assessment of the tumor 
segmentation performance, for each of the tumor cases 
mean, median, and maximum of the surface distances are 
calculated using the minimum distances from the 
sampled points on the algorithm segmentation surface to 
the manual segmentation surface. 
 
The results of the Cellular automata algorithm is compared 
to that of the Graph- cut algorithms , Which includes in 
comparison for its popularity among graph based 
Segmentation methods and Grow cut is chosen since it is 
the first algorithm that uses CA for image segmentation. 
For each of the tumor cases, Graph-cut, Grow-cut and 
Cellular automata algorithm are run with identical 
initialization. 

 

3. Result and Discussion 
 
The performance measures, Dice overlap, mean, median, 
and maximum surface distances and the volume percent 
error between the ground truth segmentation and the 
result of the algorithm are reported for the synthetic 
dataset. The active surface propagation over the 
constructed probability map aims at correction and 
improvement of the segmentation by smoothing out the 
tumor borders, and avoiding sharp protrusions, however, 
here due to the low intensity contrast between the tumor 
tissue and the gray matter, the Tumor-cut performed worse 
than expected. 
 
The clinical classification of tumors along with the 
different segmentation performance criteria of the CA 
algorithm over the clinical radio-oncology dataset is 
tabulated in Table I. The Otsu method is 75.8% on the 
average whereas the Single threshold produces the average 
of 80.06 %   and the proposed method produces an average 
of 80.53%. The Dice overlap comparison results among 
the Graph-cuts, Grow-cut, and the proposed Tumor-cut 
method. The results we observed with the Graph-cuts 
approach exhibits similar problems reported before in [14] 
such as shrinking bias due to minimum cut optimization. 
The shortest path algorithms, e.g., CA-based methods, 
showed lack of the shrinking bias problem. The 
proposed cellular automata algorithm exhibits a lower 
coefficient of variation (std/mean) on the average 
compared to the other methods used in validation. 
 
I present 3D qualitative segmentation results from the 
clinical dataset on sample 2D slices in Fig.10. The 
mixed necrotic and various types of tumor tissue content 
as well as non damaged cells are observed. These 
challenging Scenarios these challenging scenarios 
exemplify the difficulty level in the segmentation problem, 
for whose solution interactive algorithms are regarded by the 
physicians as more feasible than fully-automated ones. The 
level of interaction in the proposed tumor segmentation 
algorithm is minimal given by a single line along a 2D 
axial major diameter of the given tumor. A simple 

initialization that lasts only 1-2 s for the Encephalon 
Tumor CA algorithm, lead to reasonably well tumor 
delineations, which are of important value in 
quantification of the volume change, as well as necrotic 
and enhancing tumor tissue content change between a 
baseline and follow-up study in the clinics for assessment 
of radiotherapy response. I present the results of the necrotic 
tissue segmentation and the various grade level of tumor in 
the subsection. 
 
In Fig 8. I presented a CA based method for labeling 
necrotic and enhancing tumor tissues content with various 
grade levels using Earth movers’ algorithm for the 
Enriched and smoothened level set approach. I use a 
nonparametric local representation of the regions by 
considering multiple one-dimensional histograms of 
normalized spatiotemporal derivatives. I Compared with 
Gaussian kernel in which the smoothened edges are not 
accurately locate it up. In Earth movers distance metrics 
we employ a tractable expression for calculating EMD 
between one-dimensional distributions. A smoothness 
constraint using level set active surfaces is imposed by an 
EM algorithm over a probability map constructed from 
CA State. A standard EM level-set propagates normal to 
its boundary uniformly at a constant speed which will stop 
on the desired boundary. The EMD is based on a solution 
to the transportation problem from linear optimization, for 
which efficient algorithms are available, and also allows 
naturally for partial matching. It is more robust than 
histogram matching techniques, in that it can operate on 
variable-length representations of the distributions that 
avoid quantization and other binning problems typical of 
histograms.  It allows for partial matches, and it can be 
applied to variable-length representations of distributions. 
Lower bounds are readily available for it, and it can be 
computed efficiently. The efficient and simple form of 
EMD, together with the use of the integral histogram, 
allow the segmentation process to run in real-time, which 
is extremely important in the medical application. Finally, 
it would be interesting to apply the earth mover’s distance 
to other vision problems such as classification and 
recognition based on other types of visual cues. In 
addition, we surmise that the EMD may be a useful metric 
also for problems outside the realm of computer vision. 
 
After resulting an enriched segmented image we are going 
to segment an necrotic part and the other enhancing 
tissues like meningioma, astrocytes and glioma type cells 
from the MR image by an Fuzzy C- means  

 
Table 1.  Results on mri images by the proposed method 

encephalon tumor 
Tumor ID Expectation 

Maximization 
(%) 

Otsu’s 
Method 

(%) 

Max. with 
Single 

Threshold (%) 

Proposed 
CA Method 

(%) 

Tumorbig.bm
p 

82.0 82.4 82.5 82.81 

Tumor1.bmp 73.7 80.0 83.8 83.54 
Tumor2.bmp 84.9 84.5 87.9 88.38 
Tumor3.bmp 74.6 87.5 89.0 90.14 
Necrotic.bmp 42.5 44.6 57.1 57.8 
AVERAGE 71.54 75.8 80.06 80.53 
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clustering. Clustering of numerical data forms the basis of 
many classification and system modeling algorithms. The 
purpose of clustering is to identify natural groupings of 
data from a large data set to produce a concise 
representation of a system's behavior. The fuzzy c means 
clustering method with thresholding is the combination of 
fuzzy algorithm, c means clustering and thresholding 
algorithm. In this paper we propose fuzzy c-means 
clustering method  with threshold-  -ding for tumor 
affected cell based image segmentation  The goal of a 
clustering analysis is to divide a given set of data or 
objects into a cluster, which represents subsets or a group. 
The partition should have two properties. Homogeneity 
inside clusters the data, which belongs to one cluster, 
should be as similar as possible. Heterogeneity between 
the clusters:  the data, which belongs to different clusters, 
should be as different as possible. The membership 
functions do not reflect the actual data distribution in the 
input and the output spaces. They may not be suitable for 
fuzzy pattern recognition. To build membership functions 
from the data available, a clustering technique may be 
used to partition the data, and then produce membership 
functions from the resulting clustering. Even though it is 
important for the clinicians to have the capacity to 
quantify the change in the necrotic content of the tumor 
after radiation therapy, this differentiation within tumor 
content is not typically carried out in the clinical routine. 

 
4. Conclusion 
 
I have applied the method to five real datasets, 
representing different tumor shapes locations, sizes, 
image intensity, and enhancement. The model allows for 
different tumor boundaries in each channel, reflecting 
difference in tumor appearance across modalities. I derive 
an estimation algorithm and demonstrate superior 
performance over standard multivariate segmentation on 
tumor affected cells. A pre- vs. post-contrast difference 
image is used to calculate probabilities for background 
and tumor regions by using an CA algorithm. The user 
interaction time is just a few seconds and typical 
computation times vary between 1 s to 16 min (on a 3.17 
GHz dual processor workstation) depending on the 
volume of the tumor which ranges between 0.5 
and 32 cc. Due to inherent parallelity of the proposed 
algorithm, computation time can be significantly 
reduced. The level-set procedure was successfully run on 
several tumor datasets, and compared with hand  
 

 
 

 
 

 
 

Figure 9.Clinical dataset used for validation studies 

 
segmentation by an in-house expert rater. The level set 
evolution algorithm has been packaged in an easy to use 
product, integrated with an interface to manually initialize 
and clean-up the segmentation. The output of each 
segmentation is a binary image on the same voxel grid as 
the original MRI. We also applied the Encephalon Tumor 
segmentation to partition the tumor  tissue further into its 
necrotic and enhancing parts. The tissues are further 
partitioned into various group of levels which are having 
same grades, this can be achieved by the fuzzy based 
clustering approach. Strengths of the proposed method 
include its simple interaction over a single slice and less 
sensitivity to the initialization its efficiency in terms of 
computation time, and robustness with respect to different 
and heterogeneous tumor types. Choosing the contrast 
enhanced T1 modality limits the application to  the tumors 
that are enhanced with the contrast agent, excluding the 
edema/infiltration region around the tumor. For the 
targeted clinical application of radio surgery planning, 
using a single modality is an advantage due to the 
computational efficiency and ease of use. However, in a 
multi-modal scenario, it could be possible to design new 
transition functions adapted to a given modality and also 
optimize the parameters. The system, therefore, 
demonstrates high potential for practical clinical use, and 
may assist medical experts with tumor location, 
volumetric estimation, radio surgery, therapeutic planning 
and follow-up. Future aims include the improvement of 
the system’s calculation loading, exploring the potential 
use of other MR modalities, and experimenting with the 
3D image format. 
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