
International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 3, March 2013
www.ijsr.net

Launching Virtual Machine in OpenNebula and
Ensuring Accountability in Cloud Data

Midhu Babu1, A. M. J Muthu Kumaran2

1Department of Computer Science and Engineering, SRM University, Chennai, India

midhumtech13@gmail.com

2Assistant Professor, Dept of Computer Science and Engineering, SRM University, Chennai, India
 muthu.a.@ktr.srmuniv.ac.in

Abstract : The paper aims to launch a virtual machine in the OpenNebula cloud environment and ensuring accountability in cloud
data. OpenNebula interoperability makes cloud an evolution by leveraging existing IT infrastructure. Cloud computing enables highly
scalable services to be easily consumed over the internet on an as-needed basis. A major feature of the cloud services is that user’s data
are usually processed remotely in unknown machines that users do not own or operate. While user fears of losing control of their own
data can become a significant barrier to the wide adoption of cloud services. To address this problem, we propose a novel highly
decentralized information accountability framework to keep track of the actual usage of the user’s data in the cloud. In particular,
propose an object-centered approach that enables enclosing our logging mechanism together with user’s data and policies. It leverage
the JAR programmable capabilities to both create a dynamic and traveling object, and to ensure that any access to user’s data will
trigger authentication and automated logging local to the JARs. Creation of instance into that openNebula infrastructure would be more
flexible to the organization.

Keywords: Accountability, cloud computing, data sharing, openNebula, VMware

1. Introduction

Cloud computing has raised a wide range of important
privacy and security issues. Such issues are due to the fact
that in the cloud, user’s data and applications reside at least
for a certain amount of time on the cloud cluster which is
owned and maintained by a third party. In previous works
the cloud is deployed by using Eucalyptus or XCP (Xen
Cloud Platform). XCP does not provide the overall cloud
architecture, but rather focuses on configuration and
maintenance of clouds. Eucalyptus was designed to provide
services compatible with Amazon's EC2 cloud only.
Interestingly all communication is made through Web
Services standards. The solution requires third-party
services to complete the monitoring and focuses on lower
level monitoring of system resources. This paper focus on
to create a virtual windows instance using openNebula and
then provide an effective mechanism for users to monitor
the usage of their data in the cloud using a novel approach
namely Cloud Information Accountability (CIA)
framework.

1.1 Characteristics of cloud computing

Cloud security has summarized five essential
characteristics that illustrate the relation to and differences
from traditional computing paradigm.

On-demand self-service: A cloud customer may
unilaterally obtain computing capabilities, like the usage of
various servers and network storage, as on demand,
without interacting with the cloud provider.

Broad network access: Services are delivered across the
Internet via a standard mechanism that allows customers to
access the services through heterogeneous thin or thick
client tools (e.g., PCs, mobile phones, and PDAs).

Resource pooling: The cloud provider employs a
multitenant model to serve multiple customers by pooling
computing resources, which are different physical and
virtual resources dynamically assigned or reassigned
according to customer demand. Examples of resources
include storage, processing, memory, network bandwidth,
and virtual machines.

Rapid elasticity: Capabilities may be rapidly and
elastically provisioned in order to quickly scale out or
rapidly released to quickly scale in. From customer’s point
of view, the available capabilities should appear to be
unlimited and have the ability to be purchased in any
quantity at any time.

Measured service: The service purchased by customers
can be quantified and measured. For both the provider and
customers, resource usage will be monitored, controlled,
metered, and reported.

Cloud computing becomes a successful and popular
business model due to its charming features. In addition to
the benefits at hand, the former features also result in
serious cloud-specific security issues. The people whose
concern is the cloud security continue to hesitate to transfer
their business to cloud. Security issues have been the
dominate barrier of the development and widespread use of
cloud computing. There are three main challenges for
building a secure and trustworthy cloud system:

Outsourcing: Outsourcing brings down both capital
expenditure (CapEx) and operational expenditure for cloud
customers. However, outsourcing also means that
customers physically lose control on their data and tasks.
The loss of control problem has become one of the root
causes of cloud insecurity. To address outsourcing security
issues, first, the cloud provider shall be trustworthy by

369

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 3, March 2013
www.ijsr.net

providing trust and secure computing and data storage;
second, outsourced data and computation shall be
verifiable to customers in terms of confidentiality,
integrity, and other security services. In addition,
outsourcing wills potentially incur privacy. Violations, due
to the fact that sensitive classified data is out of the
owner’s control.

Multi-tenancy: Multi-tenancy means that the cloud
platform is shared and utilized by multiple customers.
Moreover, in a virtualized environment, data belonging to
different customers may be placed on the same physical
machine by certain resource allocation policy.

2. OpenNebula Architecture

OpenNebula provides a powerful, scalable and secure
multi-tenant cloud platform for fast delivery and elasticity
of virtual resources. The storage system allows storing disk
images in data stores, which can be then used to define
VMs or shared with other users. The images can be OS
installations, or data blocks. The Template Repository
system allows registering Virtual Machine definitions in
the system, to be instantiated later as Virtual Machine
instances. Virtual Networking is provided to interconnect
Virtual Machines; they can be defined as fixed or ranged
network. Once a Template is instantiated to a Virtual
Machine, there are a number of operations that can be
performed to control their lifecycle, such as migration (live
and cold), stop, resume, cancel, etc. These operations are
available both from the CLI and the Sunstone GUI.

OpenNebula has been designed to be modular in order to
allow its integration with as many different hypervisors and
environments as possible. It assumes that the physical
infrastructure adopts a classical cluster-like architecture
with a front-end, and a set of host nodes where VMs will
execute. There is at least one physical network joining all
the cluster nodes with the front-end. The front-end
executes the main Open Nebula processes while the cluster
nodes are hypervisor enabled hosts that provide the
resources needed by the VMs. Open Nebula is designed
with three layers in mind: Tools, Core and Drivers, as
depicted in Fig(1). The Tools layer contains modules
providing functionalities for administrators and clients.
One component is the Command Line Interface (CLI) that
can be used by administrators to manipulate the
infrastructure through intuitive commands. The Scheduler
module, responsible for VM placement, is implemented in
this layer. Other tools can be created using the OpenNebula
cloud API which is based on a XML-RPC interface.
Similarly to Eucalytpus, OpenNebula works with
administrative and client accounts. Administrators access
OpenNebula through CLI, while clients launch and manage
VMs using web services interfaces. OpenNebula
implements an interface compatible with the EC2 Query
API from Amazon and another one compatible with the
Open Cloud Computing Interface from the Open Grid
Forum.

The Core layer consists of components responsible for
handling client requests and control resources. The main
component of this layer is the Request Manager, which
handles client requests through an XML-RPC interface

calling internal components according to the invoked
method. Hosts and VMs are managed and monitored by the
Host Manager and the VM Manager, respectively. The
Virtual Network Manager (VN Manager) manages virtual
networks by keeping track of IP and MAC addresses and
their association with VMs. The SQL Database stores
internal data structures. Finally, the third layer is formed by
modules called Drivers that supports different underlying
platforms. These Drivers run on separated processes that
communicate with the Core module through a simple text
messaging protocol. There are drivers to deal with file
transfers that are implemented by network protocols like
NFS and SSH. Also, there are drivers to manage VMs that
are dependent on each hypervisor running on the host.
Finally, there are drivers to request services from external
clouds like Amazon EC2 or Elastic Hosts.

Figure 1: OpenNebula Architecture Diagram

Components of OpenNebula

OpenNebula is the open-source industry standard for data
center virtualization, offering the most feature-rich, flexible
solution for the comprehensive, complete management of
virtualized data centers to enable on-premise IaaS clouds in
existing infrastructures. OpenNebula interoperability
makes cloud an evolution by leveraging existing IT assets,
protecting your investments, and avoiding vendor lock-in.
An OpenNebula Private Cloud provides infrastructure
users with an elastic platform for fast delivery and
scalability of services to meet dynamic demands of service
end-users. Services are hosted in VMs, and then submitted,
monitored and controlled in the Cloud by using Sunstone
or any of the OpenNebula interfaces

Interfaces & APIs: OpenNebula provides many different
interfaces that can be used to interact with the functionality
offered to manage physical and virtual resources. There are
two main ways to manage OpenNebula instances:
command line interface and the Sunstone GUI. There are
also several cloud interfaces that can be used to create
public clouds: OCCI and EC2 Query, and a simple self-
service portal for cloud consumers. In addition,
OpenNebula features powerful integration APIs to enable
easy development of new components (new virtualization
drivers for hypervisor support, new information probes,
etc). Users and Groups: OpenNebula supports user
accounts and groups, as well as various authentications and
authorized. This feature can be used to create isolated
compartments within the same cloud, implementing multi-
tenancy. Moreover, a powerful Access Control List

370

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 3, March 2013
www.ijsr.net

mechanism is in place to allow different role management,
allowing a fine grain permission granting.
.Hosts: Various hypervisors are supported in the
virtualization manager, with the ability to control the
lifecycle of Virtual Machines, as well as monitor them.
This monitoring also applies to the physical hosts. The
main hypervisors are supported, Xen, KVM, and VMware.

Networking: An easily adaptable and customizable
network subsystem is present in OpenNebula in order to
better integrate with the specific network requirements of
existing datacenters. Support for VLANs and Open
vSwitch are also featured.

 Storage: OpenNebula is flexible enough to support as
many different image storage configurations as possible.
The support for multiple data stores in the Storage
subsystem provides extreme flexibility in planning the
storage backend and important performance benefits. The
main storage configurations are supported, file system
datastore, to store disk images in a file form and with
image transferring using ssh or shared file systems (NFS,
GlusterFS, Lustre), iSCSI/LVM to store disk images in a
block device form, and VMware data store specialized for
the VMware hypervisor that handle the vmdk format.

Clusters: Clusters are pools of hosts that share datastores
and virtual networks. Clusters are used for load balancing,
high availability, and high performance computing.

OpenNebula provides a powerful, scalable and secure
multi-tenant cloud platform for fast delivery and elasticity
of virtual resources. The Storage system allows storing
disk images in datastores that can be then used to define
VMs or shared with other users. The images can be OS1
installations, or data blocks. The Template Repository
system allows registering Virtual Machine definitions in
the system, to be instantiated later as Virtual Machine
instances. Virtual Networking is provided to interconnect
Virtual Machines, they can be defined as fixed or ranged
networks .Once a Template is instantiated to a Virtual
Machine, there are a number of operations that can be
performed to control their lifecycle, such as migration (live
and cold), stop, resume, cancel, etc. These operations are
available both from the CLI and the Sunstone GUI.

Figure 2: OpenNebula Interface

2.2 Networking

Open Nebula manages IP and MAC addresses of VMs and
the virtual networks between them. There are two types of
virtual networks: the Fixed network (Public) that uses fixed
set of IP and associated MAC addresses and the Ranged
network (Red LAN) defined over a range of network

addresses. VMs must pertain to one Red LAN and can,
optionally, pertain to the fixed network.

2.3 VM Placement

As aforementioned, VM placement [1] decisions are made
by the Scheduler. The scheduler accesses all requests
received by Open Nebula and, based on them, it keeps
track of allocations and sends appropriate deployment or
enforcement commands to the Core. The default Open
Nebula scheduler provides a scheduling policy that places
VMs according to a ranking algorithm, which relies on
performance data from both the running VMs and physical
resources. The basic operation of this scheduling algorithm
is showed at Fig(3) The algorithm needs two inputs sent in
the VM request: VM Requirements and VM Rank. The
former consists of simple rules indicating the minimum
resource requirements (as CPU or Memory), and the later
consists of a policy for resource allocation. Thus, when a
VM request arrives, the Scheduler, based on the VM
requirements, filters those hosts that do not meet the
requirements. After that, the remaining hosts are sorted
using the Rank policy.

 Algorithm 1: Scheduling algorithm.

 1 Inputs: requirements, rank, hostsList;

 2 Outputs: selectedHost;

 3 Begin

 4 for each host in hostsList do

 5 if (host meets requirements) then

 6 candidates.new(host);

 7 end

 8 end

 9 sorted = sortByRank(candidates, rank);

 10 selectedHost = sorted(1);

 11 end

Figure 3:.Default scheduling Algorithm

3. Cloud Information Accountability

In this section, we present an overview of the Cloud
Information Accountability framework and discuss how the
CIA [2] framework meets the design requirements met.
The Cloud Information Accountability framework
proposed in this work conducts automated logging and
distributed auditing of relevant access performed by any
entity, carried out at any point of time at any cloud service
provider. It has two major components: logger and log
harmonizer.

Major Components

There are two major components of the CIA, the first being
the logger, and the second being the log harmonizer. The
logger is the component which is strongly coupled with the
user’s data, so that it is downloaded when the data are

371

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 3, March 2013
www.ijsr.net

accessed, and is copied whenever the data are copied. It
handles a particular instance or copy of the user’s data and
is responsible for logging access to that instance or copy.
The log harmonizer forms the central component which
allows the user access to the log files. The logger is
strongly coupled with user’s data (either single or multiple
data items). Its main tasks include automatically logging
access to data items that it contains, encrypting the log
record using the public key of the content owner, and
periodically sending them to the log harmonizer. It may
also be configured to ensure that access and usage control
policies associated with the data are honored. For example,
a data owner can specify that user X is only allowed to
view but not to modify the data. The logger will control the
data access even after it is downloaded by user X.

The logger requires only minimal support from the server
(e.g., a valid Java virtual machine installed) in order to be
deployed. The tight coupling between data and logger,
results in a highly distributed logging system, therefore
meeting our first design requirement. Furthermore, since
the logger does not need to be installed on any system or
require any special support from the server, it is not very
intrusive in its actions, thus satisfying our fifth
requirement. Finally, the logger is also responsible for
generating the error correction information for each log
record and sends the same to the log harmonizer. The error
correction information combined with the encryption and
authentication mechanism provides a robust and reliable
recovery mechanism, therefore meeting the third
requirement.

The log harmonizer is responsible for auditing. Being the
trusted component, the log harmonizer generates the master
key. It holds on to the decryption key for the IBE key pair,
as it is responsible for decrypting the logs. Alternatively,
the decryption can be carried out on the client end if the
path between the log harmonizer and the client is not
trusted. In this case, the harmonizer sends the key to the
client in a secure key exchange. It supports two auditing
strategies: push and pull. Under the push strategy, the log
file is pushed back to the data owner periodically in an
automated fashion. The pull mode is an on-demand
approach, whereby the log file is obtained by the data
owner as often as requested. These two modes allow us to
satisfy the aforementioned fourth design requirement. In
case there exist multiple loggers for the same set of data
items, the log harmonizer will merge log records from
them before sending back to the data owner. The log
harmonizer is also responsible for handling log file
corruption. In addition, the log harmonizer can itself carry
out logging in addition to auditing. Separating the logging
and auditing functions improves the performance. The
logger and the log harmonizer are both implemented as
lightweight and portable JAR files. The JAR file
implementation provides automatic logging functions,
which meets the second design requirement.

3.1 Data Flow

The overall CIA framework, combining data, users, logger
and harmonizer is sketched in Fig.(4). At the beginning,
each user creates a pair of public and private keys based on
Identity-Based Encryption [3]. The IBE scheme is a Weil-

pairing-based IBE scheme, which protects us against one
of the most prevalent attacks to our architecture. Using the
generated key, the user will create a logger component
which is a JAR file, to store its data items.

The JAR file includes a set of simple access control rules
specifying whether and how the cloud servers and possibly
other data stakeholders (users, companies) are authorized
to access the content itself. Then, he sends the JAR file to
the cloud service provider that he subscribes to. Once the
authentication succeeds, the service provider (or the user)
will be allowed to access the data enclosed in the JAR.

Depending on the configuration settings defined at the time
of creation, the JAR will provide usage control associated
with logging, or will provide only logging functionality. As
for the logging, each time there is an access to the data; the
JAR will automatically generate a log record, encrypt it
using the public key distributed by the data owner, and
store it along with the data. The encryption of the log file
prevents unauthorized changes to the file by attackers. The
data owner could opt to reuse the same key pair for all
JARs or create different key pairs for separate JARs. In
addition, some error correction information will be sent to
the log harmonizer to handle possible log file corruption.

Figure 4: System Architecture

To ensure trustworthiness of the logs, each record is signed
by the entity accessing the content. Further, individual
records are hashed together to create a chain structure, able
to quickly detect possible errors or missing records. The
encrypted log files can later be decrypted and their
integrity verified. They can be accessed by the data owner
or other authorized stakeholders at any time for auditing
purposes with the aid of the log harmonizer. Our proposed
framework prevents various attacks such as detecting
illegal copies of users’ data. Note that our work is different
from traditional logging methods which use encryption to
protect log files. With only encryption, their logging
mechanisms are neither automatic nor distributed. They
require the data to stay within the boundaries of the
centralized system for the logging to be possible, which is
however not suitable in the cloud.

Each log harmonizer is in charge of copies of logger
components containing the same set of data items. The
harmonizer is implemented as a JAR file. It does not
contain the user’s data items being audited, but consists of
class files for both a server and a client processes to allow
it to communicate with its logger components. The
harmonizer stores error correction information sent from its
logger components, as well as the user’s IBE decryption
key, to decrypt the log records and handle any duplicate
records. Duplicate records result from copies of the user’s

372

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 3, March 2013
www.ijsr.net

data JARs. Since user’s data are strongly coupled with the
logger component in a data JAR file, the logger will be
copied together with the user’s data. Consequently, the new
copy of the logger contains the old log records with respect
to the usage of data in the original data JAR file. Such old
log records are redundant and irrelevant to the new copy of
the data. To present the data owner an integrated view, the
harmonizer will merge log records from all copies of the
data JARs by eliminating redundancy. The logger
components always ping the harmonizer before they grant
any access right. If the harmonizer is not reachable, the
logger components will deny all access. In this way, the
harmonizer helps prevent attacks which attempt to keep the
data JARs offline for unnoticed usage. If the attacker took
the data JAR offline after the harmonizer was pinged, the
harmonizer still has the error correction information about
this access and will quickly notice the missing record.

3.2 Technique Used For Auditing Mechanism

To allow users to be timely and accurately informed about
their data usage, our distributed logging mechanism is
complemented by an innovative auditing mechanism. We
support two complementary auditing modes: push mode
and pull mode

Push mode. In this mode, the logs are periodically pushed
to the data owner (or auditor) by the harmonizer. The push
action will be triggered by either type of the following two
events: one is that the time elapses for a certain period
according to the temporal timer inserted as part of the JAR
file; the other is that the JAR file exceeds the size
stipulated by the content owner at the time of creation.

After the logs are sent to the data owner, the log files will
be dumped, so as to free the space for future access logs.
Along with the log files, the error correcting information
for those logs is also dumped. This push mode is the basic
mode which can be adopted by both the PureLog and the
AccessLog, regardless of whether there is a request from
the data owner for the log files. This mode serves two
essential functions in the logging architecture: first it
ensures that the size of the log files does not explode and
secondly it enables timely detection and correction of any
loss or damage to the log files. Concerning the latter
function, we notice that the auditor, upon receiving the log
file, will verify its cryptographic guarantees, by checking
the records’ integrity and authenticity. By construction of
the records, the auditor will be able to quickly detect
forgery of entries, using the checksum added to each and
every record.

Pull mode. This mode allows auditors to retrieve the logs
anytime when they want to check the recent access to their
own data. The pull message consists simply of an FTP pull
command, which can be issues from the command line. For
naive users, a wizard comprising a batch file can be easily
built. The request will be sent to the harmonizer, and the
user will be informed of the data’s locations and obtain an
integrated copy of the authentic and sealed log file.

Pushing or pulling strategies have interesting tradeoffs. The
pushing strategy is beneficial when there are a large
number of accesses to the data within a short period of

time. In this case, if the data are not pushed out frequently
enough, the log file may become very large, which may
increase cost of operations like copying data. The pushing
mode may be preferred by data owners who are
organizations and need to keep track of the data usage
consistently over time. For such data owners, receiving the
logs automatically can lighten the load of the data
analyzers. The maximum size at which logs are pushed out
is a parameter which can be easily configured while
creating the logger component. The pull strategy is most
needed when the data owner suspects some misuse of his
data; the pull mode allows him to monitor the usage of his
content immediately. A hybrid strategy can actually be
implemented to benefit of the consistent information
offered by pushing mode and the convenience of the pull
mode.

The logging and synchronization steps with the harmonizer
in case of PureLog. First,checks whether the size of the
JAR has exceeded a stipulated size or the normal time
between two consecutive dumps has elapsed. The size and
time threshold for a dump are specified by the data owner
at the time of creation of the JAR. The algorithm also
checks whether the data owner has requested a dump of the
log files. If none of these events has occurred, it proceeds
to encrypt the record and write the error-correction
information to the harmonizer.

The communication with the harmonizer begins with a
simple handshake. If no response is received, the log file
records an error. The data owner is then alerted through e-
mails, if the JAR is configured to send error notifications.
Once the handshake is completed, the communication with
the harmonizer proceeds, using a TCP/IP protocol. If any
of the aforementioned events (i.e., there is request of the
log file, or the size or time exceeds the threshold) has
occurred, the JAR simply dumps the log files and resets all
the variables, to make space for new records. In case of
AccessLog, the algorithm is modified by adding an
additional check is needed. Precisely, the AccessLog
checks whether the CSP accessing the log satisfies all the
conditions specified in the policies pertaining to it. If the
conditions are satisfied, access is granted; otherwise,
access is denied. Irrespective of the access control
outcome, the attempted access to the data in the JAR file
will be logged .Our auditing mechanism has two main
advantages. First, it guarantees a high level of availability
of the logs. Second, the use of the harmonizer minimizes
the amount of workload for human users in going through
long log files sent by different copies of JAR files.

4. Conclusion

A noble work of implementing openNebula based cloud
computing infrastructure has been presented here.
OpenNebula seems to be more suited for research and
experimental studies. OpenNebula provides a modular
architecture intended to be more flexible. An interesting
algorithm that places VMs depending on their
requirements. The client communication is also managed
by modules that offer interfaces based on web services. It
is perhaps the only open management platform that has
invested into a tailor able VM placement algorithm. As
such it may provide a nice environment for those

373

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 3, March 2013
www.ijsr.net

researchers seeking to compare and develop different
resource allocation strategies. A limitation found with the
OpenNebula is that, like XCP, their infrastructure assumes
a classical cluster-like architecture with a front-end and
without any redundant services. We also proposed a
solution to provide an effective mechanism for users to
monitor the usage of their data in the cloud using a novel
approach namely Cloud Information Accountability (CIA)
framework and provide innovative approaches for
automatically logging any access to the data in the cloud
together with an auditing mechanism. Our approach allows
the data owner to not only audit his content but also
enforce strong back-end protection if needed. Moreover,
one of the main features of our work is that it enables the
data owner to audit even those copies of its data that were
made without his knowledge.

References

[1] Thiago Cordeiro, Douglas Damalio, Nadilma

Pereira,Patricia Endo, André Palhares, Glauco
Gonçalves, Djamel Sadok, Judith Kelner Open Source
Cloud Computing Platforms, 2010 Ninth International
Conference on Grid and Cloud Computing.

[2] Smitha Sundareswaran, Anna C. Squicciarini,
Member, IEEE, and Dan Lin,“Distributed
Accountability for Data Sharing in the cloud 2012
IEEE Transactions”.

[3] D. Boneh and M.K. Franklin” Identity-Based
Encryption from the Weil Pairing,2001”.

[4] OpenNebulaProjectOpenNebula1.4Documentation.
Available:http://www.opennebula.org/documentation:
documentation. Visited on May, 2010.

[5] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S.
Soman, L.Youseff, and D. Zagorodnov. Eucalyptus: A
Technical Report on an“Elastic Utility Computing
Archietcture Linking Your Programs to Useful
Systems. University of California, Santa Barbara,
October 2008”.

[6] G.Ateniese, R.Burns,R.Curtmola, J. Herring, L.
Kissner, Z.Peterson, and D. Song, “Provable Data
Possession at Untrusted Stores,” Proc. ACM Conf.
Computer and Comm. Security, pp. 598-609, 2007.

[7] R. Corin, S. Etalle, J.I. den Hartog, G. Lenzini, and I.
Staicu,“A Logic for Auditing Accountability in
Decentralized Systems”, Proc. IFIP TC1 WG1.7
Workshop Formal Aspects in Security and Trust, pp.
187-201, 2005.”

Author Profile

Midhu Babu was born in 1989. She received her
BTech degree in computer Science from Sree
Narayana Gurukulam College Of Engineering,
Mahatma Gandhi University, Kerala, India in
2011.Now pursuing M Tech degree in Computer

Science and Engineering from SRM University, Chennai, India.
She is currently doing training on cloud computing from JPA
Solutions, Chennai. Her research interests are cloud computing,
web services and networking.

A. M. J Muthu Kumaran received M Tech degree
in Computer Science & Engineering from Dr. MGR
University in 2007 and he did BE in Computer
Science from Banglore University in 1996.Currently

working as Assistant Professor in SRM University. He had a good
experience in teaching.His research area is in image processing.

374

