
International Journal of Science and Research (IJSR), India Online ISSN: 2319‐7064

Volume 2 Issue 3, March 2013
www.ijsr.net

Quality of Service in Wireless Networks using
Weighted Clustering Algorithm

M. Anil Kumar1, V. Srikanth2, N. Vijaya Gopal3

1K L University, Department of CSE, Vaddeswaram, Guntur 522502, Andhra Pradesh, India

modhugula.anilkumar@hotmail.com

2K L University, head of the department CSE, Vaddeswaram, Guntur 522502, Andhra Pradesh, India
vsrikanth@kluniversity.in

3K L University, Department of CSE, Vaddeswaram, Guntur 522502, Andhra Pradesh, India

nvgopal63@hotmail.com

Abstract: In today’s Internet, inter-domain route control remains indefinable; however, such control could improve the performance,
dependability, and usefulness of the network for end users and ISPs alike. While researchers have anticipated a number of resource
routing techniques to combat this limit, there has thus far been no way for autonomous AS to ensure that such traffic does not
circumvent local traffic policies, nor to exactly determine the correct party to charge for forwarding the traffic.

Keywords: Authentication, capabilities, overlay networks, source routing

1. Introduction

Network operators and academic researchers alike
recognize that today’s wide-area Internet routing does not
realize the full potential of the existing network
infrastructure in terms of performance, reliability, or
flexibility. While a number of techniques for intelligent,
source-controlled path selection have been proposed to
improve end-to-end performance, reliability, and
flexibility, they have proven problematic to deploy due to
concerns about security and network instability. We
attempt to address these issues in developing a scalable,
authenticated, policy-compliant, wide-area source routing
protocol.

We argue that many of the deficiencies of today’s routing
infrastructure are symptoms of the coupling of routing
policy and routing mechanism. In particular, today’s
primary wide area routing protocol, the Border Gateway
Protocol (BGP), is extraordinarily difficult to describe,
analyze, or manage. Autonomous systems (AS) express
their local routing policy during BGP route advertisement
by affecting the routes that are chosen and exported to
neighbors. Similarly, AS often adjust a number of
attributes on routes they accept from their neighbors
according to local guidelines. As a result, configuring
BGP becomes an overly complex task, one for which the
outcome is rarely certain. BGP’s complexity affects
Internet Service Providers (ISPs) and end users alike; ISPs
struggle to understand and configure their networks while
end users are left to wonder why end-to-end connectivity
is so poor.

We present the design and evaluation of Platypus, a
source routing system that, like many source-routing
protocols before it, can be used to implement efficient
overlay forwarding, select among multiple ingress/egress
routers, provide virtual AS multi-homing, and address
many other common routing deficiencies. The key
advantage of Platypus is its ability to ensure policy
compliance during packet forwarding. Platypus enables

packets to be stamped at the source as being policy
compliant, reducing policy enforcement to stamp
verification. Hence, Platypus allows for management of
routing policy independent of route export and path
selection.

2. System Analysis

The first step in developing anything is to state the
requirements. This applies just as much to leading edge
research as to simple programs and to personal programs,
as well as to large team efforts. Being vague about your
objective only postpones decisions to a later stage where
changes are much more costly.

The problem statement should state what is to be done and
not how it is to be done. It should be a statement of needs,
not a proposal for a solution. A user manual for the
desired system is a good problem statement. The requestor
should indicate which features are mandatory and which
are optional, to avoid overly constraining design
decisions. The requestor should avoid describing system
internals, as this restricts implementation flexibility.
Performance specifications and protocols for interaction
with external systems are legitimate requirements.
Software engineering standards, such as modular
construction, design for testability, and provision for
future extensions, are also proper.

Problem statements range from individuals, companies,
and government agencies, mixture requirements with
design decisions. There may sometimes be a compelling
reason to require a particular computer or language; there
is rarely justification to specify the use of a particular
algorithm. The analyst must separate the true requirements
from design and implementation decisions disguised as
requirements. The analyst should challenge such pseudo
requirements, as they restrict flexibility. There may be
politics or organizational reasons for the pseudo
requirements, but at least the analyst should recognize that

326

International Journal of Science and Research (IJSR), India Online ISSN: 2319‐7064

Volume 2 Issue 3, March 2013
www.ijsr.net

these externally imposed design decisions are not essential
features of the problem domain.

A problem statement may have more or less detail. A
requirement for a conventional product, such as a payroll
program or a billing system, may have considerable detail.
A requirement for a research effort in a new area may lack
many details, but presumably the research has some
objective, which should be clearly stated.

Most problem statements are ambiguous, incomplete, or
even inconsistent. Some requirements are just plain
wrong. Some requirements, although precisely stated,
have unpleasant consequences on the system behavior or
impose unreasonable implementation costs. Some
requirements seem reasonable at first but do not work out
as well as the request or thought. The problem statement is
just a starting point for understanding the problem, not an
immutable document. The purpose of the subsequent
analysis is to fully understand the problem and its
implications. There is no reasons to expect that a problem
statement prepared without a fully analysis will be correct.

The analyst must work with the requestor to refine the
requirements so they represent the requestor’s true intent.
This involves challenging the requirements and probing
for missing information. The psychological,
organizational, and political considerations of doing this
are beyond the scope of this book, except for the
following piece of advice: If you do exactly what the
customer asked for, but the result does not meet the
customer’s real needs, you will probably be blamed
anyway.

3. Modules

1. Networking Module.
2. ISP Module.
3. Load Balancing Module.
4. Platypus Framework Module.

1. Networking Module:

Client-server computing or networking is a distributed
application architecture that partitions tasks or workloads
between service providers (servers) and service requesters,
called clients. Often clients and servers operate over a
computer network on separate hardware. A server
machine is a high-performance host that is running one or
more server programs which share its resources with
clients. A client also shares any of its resources; Clients
therefore initiate communication sessions with servers
which await (listen to) incoming requests.

2. ISP Module:

Autonomous systems (AS) express their local routing
policy during BGP route advertisement by affecting the
routes that are chosen and exported to neighbors.
Similarly, AS often adjust a number of attributes on routes
they accept from their neighbors according to local
guidelines. As a result, configuring BGP becomes an
overly complex task, one for which the outcome is rarely
certain. BGP’s complexity affects Internet Service

Providers (ISPs) and end users alike; ISPs struggle to
understand and configure their networks while end users
are left to wonder why end-to-end connectivity is so poor.

3. Load Balancing Module:

We consider a policy in which the server selects a set of
waypoints to forward traffic through and load balances
across them. This functionality is important in many
applications, since it is unlikely that a single waypoint can
suffice for an arbitrarily large traffic volume.

We evaluate a Web server application scenario with
probabilistic load balancing across two waypoints. Each
client makes ordinary HTTP requests to the server. The
server’s replies are stamped according to a policy that
begins by sending all response traffic through a single
waypoint. Halfway through the experiment we change the
policy such that the response traffic is load balanced at the
granularity of a TCP flow.

4. Platypus Framework Module:

We detail the design and implementation of a policy
framework for managing Platypus in an AS. Incremental
deployability is key in our setting, as it would be
unreasonable to expect AS to cooperate in the deployment
of a system that affects local policy.

Our policy framework in an in-network stamping scenario
that uses DNS-based delegation. Central to the framework
is the Policy Engine, which implements the AS’s policy.
The policy engine instructs the stamper and a DNS
component based on policy, and obtains delegated
capabilities through them. The stamper and policy engine
are implemented inside a Platypus router, which is located
on the path of inbound and outbound traffic.

4. Algorithm /Method Used

Platypus Policy Framework

Algorithm /Method Description:

Platypus uses network capabilities, primitives that are
placed within individual packets, to securely attest to the
policy compliance of source routing requests.

Network capabilities are;

i. Transferable: an entity can delegate capabilities
to others,

ii. Composable: a packet may be accompanied by a

set of capabilities

iii. Cryptographically authenticated. Capabilities can
be issued by AS to any parties they know how to
bill. Each capability specifies a desired transit
point (called a waypoint), a resource principal
responsible for the traffic, and a stamp of
authorization.

327

International Journal of Science and Research (IJSR), India Online ISSN: 2319‐7064

Volume 2 Issue 3, March 2013
www.ijsr.net

5. Requirements

SDLC Methodology:

This document play a vital role in the development of life
cycle (SDLC) as it describes the complete requirement of
the system. It means for use by developers and will be the
basic during testing phase. Any changes made to the
requirements in the future will have to go through formal
change approval process.

SPIRAL MODEL was defined by Barry Boehm in his
1988 article, “A spiral Model of Software Development
and Enhancement. This model was not the first model to
discuss iterative development, but it was the first model to
explain why the iteration models.

As originally envisioned, the iterations were typically 6
months to 2 years long. Each phase starts with a design
goal and ends with a client reviewing the progress thus
far. Analysis and engineering efforts are applied at each
phase of the project, with an eye toward the end goal of
the project.

The steps for Spiral Model can be generalized as follows:

• The new system requirements are defined in as much

details as possible. This usually involves interviewing
a number of users representing all the external or
internal users and other aspects of the existing
system.

• A preliminary design is created for the new system.
• A first prototype of the new system is constructed

from the preliminary design. This is usually a scaled-
down system, and represents an approximation of the
characteristics of the final product.

• A second prototype is evolved by a fourfold
procedure:

1) Evaluating the first prototype in terms of its

strengths, weakness, and risks.
2) Defining the requirements of the second

prototype.
3) Planning a designing the second prototype.
4) Constructing and testing the second prototype.

• At the customer option, the entire project can be

aborted if the risk is deemed too great. Risk factors
might involve development cost overruns, operating-
cost miscalculation, or any other factor that could, in
the customer’s judgment, result in a less-than-
satisfactory final product.

• The existing prototype is evaluated in the same
manner as was the previous prototype, and if
necessary, another prototype is developed from it
according to the fourfold procedure outlined above.

• The preceding steps are iterated until the customer is
satisfied that the refined prototype represents the final
product desired.

• The final system is constructed, based on the refined
prototype.

• The final system is thoroughly evaluated and tested.
Routine maintenance is carried on a continuing basis

to prevent large scale failures and to minimize down
time.

The following diagram shows how a spiral model acts
like:

Figure 1: Spiral Model

Advantages:

• Estimates (i.e. budget, schedule etc.) become more

realistic as work progresses, because important issues
discovered earlier.

• It is more able to cope with the changes that are
software development generally entails.

• Software engineers can get their hands in and start
working on the core of a project earlier.

6. Conclusion

We argue that capability is individually well-suited for use
in wide-area Internet routing. The Internet serves an
exceedingly large number of users with an even larger
number of motivations, all attempting to concurrently
share widely distributed resources. Most significantly,
there exists no single authority that can make informed
access decisions. Also, we believe that much of the
complexity of Internet routing policy stems from in
flexibility of existing routing protocols. We want to study
how one might implement inter - AS traffic engineering
policies through capability price strategies. For example,
an AS with multiple peering routers that wishes to support
load balancing may be able to do so from end to end
variable pricing of capabilities for the equivalent Platypus
waypoints. While appropriately modeling the self-
regarding behavior of external entities may be difficult,
we are confident that this challenge is simplified by the
direct mapping between Platypus waypoints and path
selection.

328

International Journal of Science and Research (IJSR), India Online ISSN: 2319‐7064

Volume 2 Issue 3, March 2013
www.ijsr.net

References

[1] S. Agarwal, C.-N. Chuah, and R. H. Katz, “OPCA:

Robust inter domain policy routing and traffic
control,” in Proc. IEEE OPENARCH, Apr. 2003, pp.
55–64.

[2] M. K. Aguilera, M. Ji, M. Lillibridge, J.
MacCormick, E. Oertli, D. G. Andersen, M. Burrows,
T. Mann, and C. A. Thekkath, “Block-level security
for network-attached disks,” in Proc. USENIX FAST,
Apr. 2003.

[3] D. G. Andersen, “Mayday: Distributed filtering for
Internet services,” in Proc. USITS, Mar. 2003.

[4] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek,
and R. T. Morris, “Resilient overlay networks,” in
Proc. ACM SOSP, Oct. 2001.

[5] R. Atkinson, “Security architecture for the Internet
protocol,” in IETF, RFC 1825, Aug. 1995.

[6] H. Balakrishnan, V. N. Padmanabhan, and R. H.
Katz, “The effects of asymmetry on TCP
performance,” in Proc. ACM Mobicom, Sep. 1997.

[7] M. Bellare, R. Canetti, and H. Krawczyk,
“Pseudorandom functions revisited: the cascade
construction and its concrete security,” in Proc. IEEE
FOCS, 1996, pp. 514–523

329

