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Abstract: In this paper, we deal with the designing of a 32-bit floating point arithmetic processor for RISC/DSP processor applications. 
It is capable of representing real and decimal numbers. The floating point operations are incorporated into the design as functions. The 
logic for these is different from the ordinary arithmetic functions. The numbers in contention have to be first converted into the standard 
IEEE floating point standard representation before any sorts of operations are conducted on them. The floating point representation for 
a standard single precision number is a 32-bit number that is segmented to represent the floating point number. The IEEE format 
consists of four fields, the sign of the exponent, the next seven bits are that of the exponent magnitude, and the remaining 24 bits 
represent the mantissa sign. The exponent in this IEEE standard is represented in excess-127 format all the arithmetic functions like 
addition, subtraction, multiplication and division will be design by the processor. The main functional blocks of floating point arithmetic 
processor design includes, Arithmetic logic unit(ALU), Register organization, control & decoding unit, memory block, 32-bit floating 
point addition, subtraction, multiplication and division blocks. This processor IP core can be embedded many places such as co-
processor for embedded DSP and embedded RISC controller. The overall system architecture will be designed using HDL language and 
simulation, synthesis. 
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1. Introduction 
 
A. Floating point 
 
In C, an operation is the effect of an operator on an 
expression. Specific to floating-point numbers, a floating-
point operation is any mathematical operation (such as +, -, 
*, /) or assignment that involves floating-point numbers (as 
opposed to binary integer operations).Floating-point numbers 
have decimal points in them. The number 2.0 is a floating-
point number because it has a decimal in it. The number 2 
(without a decimal point) is a binary integer. Floating-point 
operations involve floating-point numbers and typically take 
longer to execute than simple binary integer operations. For 
this reason, most embedded applications avoid wide-spread 
usage of floating-point math in favor of faster, smaller 
integer operations. In computing, floating point describes a 
method of representing an approximation to real numbers in 
a way that can support a wide range of values. The numbers 
are, in general, represented approximately to a fixed number 
of significant digits (the mantissa) and scaled using an 
exponent. The base for the scaling is normally 2, 10 or 16. 
The typical number that can be represented exactly is of the 
form: 
 
Significant digits × base exponent 
 
The idea of floating-point representation over intrinsically 
integer fixed-point numbers, which consist purely of 
significant, is that expanding it with the exponent component 
achieves the greater range. For instance, to represent large 
values, e.g. distances between galaxies, there is no need to 
keep all 39 decimal places down to femtometre-resolution, 
employed in particle physics. Assuming that the best 
resolution is in light years, only 9 most significant decimal 

digits matter whereas 30 others bear pure noise and, thus, can 
be safely dropped. This is 100-bit saving in storage. Instead 
of these 100 bits, much fewer are used to represent the scale 
(the exponent), e.g. 8 bits or 2 decimal digits. Now, one 
number can encode the astronomic and subatomic distances 
with the same 9 digits of accuracy. But, because 9 digits is 
100 times less accurate than 9+2 digits reserved for scale, 
this is considered as precision-for-range trade-off. The 
example also explains that using scaling to extend the 
dynamic range results in another contrast with usual fixed-
point numbers: their values are not uniformly spaced. Small 
values, the ones close to zero, can be represented with much 
higher resolution (1 femtometre) than distant ones because 
greater scale (light years) must be selected for encoding 
significantly larger values. That is, floating-point cannot 
represent point coordinates with atomic accuracy in the other 
galaxy, only close to the origin. The term floating point 
refers to the fact that their radix point (decimal point, or, 
more commonly in computers, binary point) can "float"; that 
is, it can be placed anywhere relative to the significant digits 
of the number. This position is indicated as the exponent 
component in the internal representation and floating-point 
can thus be thought of as a computer realization of scientific 
notation. Over the years, a variety of floating-point 
representations have been used in computers. However, since 
the 1990s, the most commonly encountered representation is 
that defined by the IEEE 754 Standard. The speed of 
floating-point operations, commonly referred to in 
performance measurements as Flops, is an important 
machine characteristic, especially in software that performs 
large-scale mathematical calculations. A number 
representation (called a numeral system in mathematics) 
specifies some way of storing a number that may be encoded 
as a string of digits. The arithmetic is defined as a set of 
actions on the representation that simulate classical 
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arithmetic operations. There are several mechanisms by 
which strings of digits can represent numbers. In common 
mathematical notation, the digit string can be of any length, 
and the location of the radix point is indicated by placing an 
explicit "point" character (dot or comma) there. If the radix 
point is not specified then it is implicitly assumed to lie at the 
right (least significant) end of the string (that is, the number 
is an integer). In fixed-point systems, some specific 
assumption is made about where the radix point is located in 
the string. For example, the convention could be that the 
string consists of 8 decimal digits with the decimal point in 
the middle, so that "00012345" has a value of 1.2345. 
Floating point representation makes numerical computation 
much easier. You could write all your programs using 
integers or fixed-point representations, but this is tedious and 
error-prone. For example, you could write a program with 
the understanding that all integers in the program are 100 
times bigger than the number they represent. The integer 
2345, for example, would represent the number 23.45. As 
long as you are consistent, everything works. This is actually 
the same as using fixed point notation. In fixed point binary 
notation the binary point is assumed to lie between two of 
the bits. This is the same as an understanding that the integer 
the bits represent should be divided by a particular power of 
two. But it is very hard to stay consistent. A programmer 
must remember where the decimal (or binary) point "really 
is" in each number. Sometimes one program needs to deal 
with several different ranges of numbers. Consider a 
program that must deal with both the measurements that 
describe the dimensions on a silicon chip (say 0.000000010 
to 0.000010000 meters) and also the speed of electrical 
signals, 100000000.0 to 300000000.0 meters/second. It is 
hard to find a place to fix the decimal point so that all these 
values can be represented. Notice that in writing those 
numbers (0.000000010, 0.000010000, 100000000.0, 
300000000.0) I was able to put the decimal point where it 
was needed in each number. To increase the speed and 
efficiency of real-number computations, computers or FPUs 
typically represent real numbers in a binary floating-point 
format. In this format, a real number has three parts: a sign, a 
significant, and an exponent. Figure1 shows the binary 
floating-point format that the IA FPU uses. This format 
conforms to the IEEE standard. 
 

 
Figure 1: Binary Floating-Point Format 

 
Processor, computer arithmetic-logic unit that uses a minimal 
instruction set, emphasizing the instructions used most often 
and optimizing them for the fastest possible execution. 
Software for RISC processors must handle more operations 
than traditional CISC [Complex Instruction Set Computer] 
processors, but RISC processors have advantages in 
applications that benefit from faster instruction execution, 
such as engineering and graphics workstations and parallel-
processing systems. They are also less costly to design, test, 
and manufacture. In the mid-1990s RISC processors began 
to be used in personal computers instead of the CISC 

processors that had been used since the introduction of the 
micro processors. 
 
2. Characteristics of processor 
 
 Fixed size of the instruction, equal to the computer word 

length and to the width of the data bus. 
 Standard execution time of all instructions, preferably 

with in a single CPU cycle. 
 Small number of instructions, not to exceed 20. 
 A Small number of 5 instruction formats. 
 A Small number of 4 addressing modes. 
 Memory access by load and store instruction only. 
 All operations, except load and store, are register to 

register, within in the CPU. 
 Hardwired control unit (combinational circuit). 
 A relatively large (at least 32) general purpose CPU 

register file. 
 
3. Proposed Floating Point Arithmetic 

Functions 
 
A floating-point number is the one, which is capable of 
representing real and decimal numbers. The floating-point 
operations are incorporated into the design as functions. The 
logic for these is different from the ordinary arithmetic 
functions. The numbers in contention have to be first 
converted into the standard IEEE 754, 1985 floating point 
standard representation before any sort of operations are 
conducted on them. The floating-point representation for a 
standard single precision number is. 
  

 
Figure 2: floating point function 

 
A single precision number is a 32-bit number that is 
segmented to represent the floating-point number. The above 
representation is the IEEE-754 1985 standard representation. 
The MSB is the sign-bit i.e. the sign of the floating point 
number. The next eight bits are that of the exponent. The 
exponent in this IEEE standard is represented in excess-127 
format. I.e. the exponent obtained by balancing operations is 
added to 0111, 1111. Therefore zero is represented by 0111, 
1111. Positive numbers are represented by binary values 
greater than 0111, 1111 and negative numbers are 
represented by binary values less than it. 
 
4. Performance Evaluation 
 
A. System Model  
 
In this paper, we simulated the performance of the proposed 
algorithm in ModelSim using Verilog. A large sequence of 
bits was generated randomly at the sender. The generated 
bits were then divided into 64-bit blocks; each block was 
then encrypted to a 128-bit block using M-DES. The 
encrypted blocks were then assumed to be transmitted over 
the wireless channel. The encrypted blocks received in error 
are then decrypted block by block. Then, the resulted 
sequence of bits at the receiver after decryption is compared 
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with the sequence of bits at the sender before encryption, and 
the error is calculated. The same procedure is done using 
DES, Triple DES and Triple M-DES. 
 
B. BER Analysis  
 
Using simulation we show that the performance of M-DES 
in terms of BER is much better than DES. Initially, we 
studied the BER of DES, assuming one bit error only. We 
studied the effect of the error analytically up to the end of 
round three. Then it became harder to complete the sixteen 
rounds analytically, so we used simulations to evaluate the 
BER of DES, and we found that on average there was 32 bits 
in error out of the 64 bits. Simulations also show that in M-
DES, having one or more errors at the received ciphertext 
block will not result in half the decrypted bits to be in error, 
while for DES if any bit is received in error, this will result 
in half the bits to be in error. 
 
C. Security  
 
We showed in details in the previous section how the 
algorithm is considered secure against brute force and 
differential cryptanalysis attacks. The addition of the new 
80-bit key, make it impossible to crack the algorithm using 
brute force attack. While the addition of the new round 
reduces the probability of cracking the algorithm using 
differential cryptanalysis to almost zero. 
 
D. Key Management  
 
An efficient way to share the new key is to add the new 80-
bit key to the old 56-bit key and deal with them as one key at 
the transmitter. Both the sender and the receiver will need to 
divide it into two keys when encryption or decryption is 
done. 
 
E. Complexity  
 
The proposed algorithm is less complex than DES in terms 
of the number of distinct S-Box mapping tables. However, 
the number of rounds and the key size of M-DES is more 
than DES, which might increase the complexity compared to 
DES. 
 
5. Simulation Results  
 
This section provides the simulation results of the BER 
obtained for M-DES and Triple M-DES compared to DES. 
Here encrypted text is the output of encryption algorithm and 
encipher text is the input to the decryption algorithm after 
transmission. Here we have considered a random error bit is 
the changed bit while transmission. Here i and j are the 
iteration variables used for the 64 bits and 100 iterations 
respectively. The average ber is calculated which is observed 
as 31.62 for an standard DES algorithm, as shown below 
(Fig.3): 
 

 
Figure 3: Average BER output for standard DES algorithm 

 
Similarly, for M-DES algorithm requires the same 64-bit 
plaintext as for standard DES, but it takes a136-bit key and 
produces a 128-bit ciphertext. Here, the second key is the 80-
bit key which is given to the Round 17. Here, we are 
assuming that the encrypted text differ from the encipher text 
by one random bit. So, here the average ber output is 18.16, 
which is comparatively much less than standard DES 
algorithm. Thus the ber performance is improved. (Fig.4)  
 

 
Figure 4: Average BER output for M-DES algorithm 

 

 
Figure 5: Average BER output for Triple DES algorithm 

 
Similarly, we can observe the results for the triple DES 
algorithm (Fig.5); in this the DES algorithm is used three 
times. So, the average ber calculated for triple DES is 31.67, 
which is almost same as for the standard DES. Similarly, if 
we use M-DES in triple DES, i.e if we use three M-DES 
instead of standard DES than the average ber is obtained as 
14.02(Fig.6). This is better than normal triple DES. Thus the 
ber performance is much more improved and the security is 
also increased using triple modified DES.  
 

 
Figure 6: Average BER output for Triple M-DES algorithm 
 
Table 1: The BER comparison table for different algorithms 

Architecture 
Standard Modified 

DES T-DES DES T-DES 
BER 31.62 31.67 18.16 14.02 
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6. Conclusion 
 
In this paper, we showed how well known block cipher 
encryption algorithms are not sufficient for the use in 
wireless applications, because in these applications, the 
signal may experience severe degradations and attenuations, 
which causes wrong reception of the signal and hence a 
catastrophic effect on the decryption process. In this paper, 
we proposed a new encryption mechanism based on 
modified DES. Using simulation we quantified the 
performance of the proposed M-DES versus the known 
standard DES and Triple DES versus Triple M-DES for 
encryption in a wireless communication channel. We showed 
that the new algorithm outperforms the standard DES and 
Triple DES algorithms in terms of error performance. We 
also showed that the new algorithm enhanced the security to 
a high security level which is prone to all applicable types of 
attacks.  
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