
International Journal of Science and Research (IJSR), India Online ISSN: 2319‐7064

Volume 2 Issue 3, March 2013
www.ijsr.net

Design of IEEE - 754 Floating point Arithmetic
Processor

J. Laxmi1, R. Ramprakash2

1M.Tech Student

CVSR College of Engineering
laxmi402.jatti@gmail.com

2Assistant Professor, ECE Department

CVSR College of Engineering
ramprakash.rampelli@gmail.com

Abstract: In this paper, we deal with the designing of a 32-bit floating point arithmetic processor for RISC/DSP processor applications.
It is capable of representing real and decimal numbers. The floating point operations are incorporated into the design as functions. The
logic for these is different from the ordinary arithmetic functions. The numbers in contention have to be first converted into the standard
IEEE floating point standard representation before any sorts of operations are conducted on them. The floating point representation for
a standard single precision number is a 32-bit number that is segmented to represent the floating point number. The IEEE format
consists of four fields, the sign of the exponent, the next seven bits are that of the exponent magnitude, and the remaining 24 bits
represent the mantissa sign. The exponent in this IEEE standard is represented in excess-127 format all the arithmetic functions like
addition, subtraction, multiplication and division will be design by the processor. The main functional blocks of floating point arithmetic
processor design includes, Arithmetic logic unit(ALU), Register organization, control & decoding unit, memory block, 32-bit floating
point addition, subtraction, multiplication and division blocks. This processor IP core can be embedded many places such as co-
processor for embedded DSP and embedded RISC controller. The overall system architecture will be designed using HDL language and
simulation, synthesis.

Keywords: single, dual precision, floating point, ALU, FPGA

1. Introduction

A. Floating point

In C, an operation is the effect of an operator on an
expression. Specific to floating-point numbers, a floating-
point operation is any mathematical operation (such as +, -,
*, /) or assignment that involves floating-point numbers (as
opposed to binary integer operations).Floating-point numbers
have decimal points in them. The number 2.0 is a floating-
point number because it has a decimal in it. The number 2
(without a decimal point) is a binary integer. Floating-point
operations involve floating-point numbers and typically take
longer to execute than simple binary integer operations. For
this reason, most embedded applications avoid wide-spread
usage of floating-point math in favor of faster, smaller
integer operations. In computing, floating point describes a
method of representing an approximation to real numbers in
a way that can support a wide range of values. The numbers
are, in general, represented approximately to a fixed number
of significant digits (the mantissa) and scaled using an
exponent. The base for the scaling is normally 2, 10 or 16.
The typical number that can be represented exactly is of the
form:

Significant digits × base exponent

The idea of floating-point representation over intrinsically
integer fixed-point numbers, which consist purely of
significant, is that expanding it with the exponent component
achieves the greater range. For instance, to represent large
values, e.g. distances between galaxies, there is no need to
keep all 39 decimal places down to femtometre-resolution,
employed in particle physics. Assuming that the best
resolution is in light years, only 9 most significant decimal

digits matter whereas 30 others bear pure noise and, thus, can
be safely dropped. This is 100-bit saving in storage. Instead
of these 100 bits, much fewer are used to represent the scale
(the exponent), e.g. 8 bits or 2 decimal digits. Now, one
number can encode the astronomic and subatomic distances
with the same 9 digits of accuracy. But, because 9 digits is
100 times less accurate than 9+2 digits reserved for scale,
this is considered as precision-for-range trade-off. The
example also explains that using scaling to extend the
dynamic range results in another contrast with usual fixed-
point numbers: their values are not uniformly spaced. Small
values, the ones close to zero, can be represented with much
higher resolution (1 femtometre) than distant ones because
greater scale (light years) must be selected for encoding
significantly larger values. That is, floating-point cannot
represent point coordinates with atomic accuracy in the other
galaxy, only close to the origin. The term floating point
refers to the fact that their radix point (decimal point, or,
more commonly in computers, binary point) can "float"; that
is, it can be placed anywhere relative to the significant digits
of the number. This position is indicated as the exponent
component in the internal representation and floating-point
can thus be thought of as a computer realization of scientific
notation. Over the years, a variety of floating-point
representations have been used in computers. However, since
the 1990s, the most commonly encountered representation is
that defined by the IEEE 754 Standard. The speed of
floating-point operations, commonly referred to in
performance measurements as Flops, is an important
machine characteristic, especially in software that performs
large-scale mathematical calculations. A number
representation (called a numeral system in mathematics)
specifies some way of storing a number that may be encoded
as a string of digits. The arithmetic is defined as a set of
actions on the representation that simulate classical

190

International Journal of Science and Research (IJSR), India Online ISSN: 2319‐7064

Volume 2 Issue 3, March 2013
www.ijsr.net

arithmetic operations. There are several mechanisms by
which strings of digits can represent numbers. In common
mathematical notation, the digit string can be of any length,
and the location of the radix point is indicated by placing an
explicit "point" character (dot or comma) there. If the radix
point is not specified then it is implicitly assumed to lie at the
right (least significant) end of the string (that is, the number
is an integer). In fixed-point systems, some specific
assumption is made about where the radix point is located in
the string. For example, the convention could be that the
string consists of 8 decimal digits with the decimal point in
the middle, so that "00012345" has a value of 1.2345.
Floating point representation makes numerical computation
much easier. You could write all your programs using
integers or fixed-point representations, but this is tedious and
error-prone. For example, you could write a program with
the understanding that all integers in the program are 100
times bigger than the number they represent. The integer
2345, for example, would represent the number 23.45. As
long as you are consistent, everything works. This is actually
the same as using fixed point notation. In fixed point binary
notation the binary point is assumed to lie between two of
the bits. This is the same as an understanding that the integer
the bits represent should be divided by a particular power of
two. But it is very hard to stay consistent. A programmer
must remember where the decimal (or binary) point "really
is" in each number. Sometimes one program needs to deal
with several different ranges of numbers. Consider a
program that must deal with both the measurements that
describe the dimensions on a silicon chip (say 0.000000010
to 0.000010000 meters) and also the speed of electrical
signals, 100000000.0 to 300000000.0 meters/second. It is
hard to find a place to fix the decimal point so that all these
values can be represented. Notice that in writing those
numbers (0.000000010, 0.000010000, 100000000.0,
300000000.0) I was able to put the decimal point where it
was needed in each number. To increase the speed and
efficiency of real-number computations, computers or FPUs
typically represent real numbers in a binary floating-point
format. In this format, a real number has three parts: a sign, a
significant, and an exponent. Figure1 shows the binary
floating-point format that the IA FPU uses. This format
conforms to the IEEE standard.

Figure 1: Binary Floating-Point Format

Processor, computer arithmetic-logic unit that uses a minimal
instruction set, emphasizing the instructions used most often
and optimizing them for the fastest possible execution.
Software for RISC processors must handle more operations
than traditional CISC [Complex Instruction Set Computer]
processors, but RISC processors have advantages in
applications that benefit from faster instruction execution,
such as engineering and graphics workstations and parallel-
processing systems. They are also less costly to design, test,
and manufacture. In the mid-1990s RISC processors began
to be used in personal computers instead of the CISC

processors that had been used since the introduction of the
micro processors.

2. Characteristics of processor

 Fixed size of the instruction, equal to the computer word

length and to the width of the data bus.
 Standard execution time of all instructions, preferably

with in a single CPU cycle.
 Small number of instructions, not to exceed 20.
 A Small number of 5 instruction formats.
 A Small number of 4 addressing modes.
 Memory access by load and store instruction only.
 All operations, except load and store, are register to

register, within in the CPU.
 Hardwired control unit (combinational circuit).
 A relatively large (at least 32) general purpose CPU

register file.

3. Proposed Floating Point Arithmetic

Functions

A floating-point number is the one, which is capable of
representing real and decimal numbers. The floating-point
operations are incorporated into the design as functions. The
logic for these is different from the ordinary arithmetic
functions. The numbers in contention have to be first
converted into the standard IEEE 754, 1985 floating point
standard representation before any sort of operations are
conducted on them. The floating-point representation for a
standard single precision number is.

Figure 2: floating point function

A single precision number is a 32-bit number that is
segmented to represent the floating-point number. The above
representation is the IEEE-754 1985 standard representation.
The MSB is the sign-bit i.e. the sign of the floating point
number. The next eight bits are that of the exponent. The
exponent in this IEEE standard is represented in excess-127
format. I.e. the exponent obtained by balancing operations is
added to 0111, 1111. Therefore zero is represented by 0111,
1111. Positive numbers are represented by binary values
greater than 0111, 1111 and negative numbers are
represented by binary values less than it.

4. Performance Evaluation

A. System Model

In this paper, we simulated the performance of the proposed
algorithm in ModelSim using Verilog. A large sequence of
bits was generated randomly at the sender. The generated
bits were then divided into 64-bit blocks; each block was
then encrypted to a 128-bit block using M-DES. The
encrypted blocks were then assumed to be transmitted over
the wireless channel. The encrypted blocks received in error
are then decrypted block by block. Then, the resulted
sequence of bits at the receiver after decryption is compared

191

International Journal of Science and Research (IJSR), India Online ISSN: 2319‐7064

Volume 2 Issue 3, March 2013
www.ijsr.net

with the sequence of bits at the sender before encryption, and
the error is calculated. The same procedure is done using
DES, Triple DES and Triple M-DES.

B. BER Analysis

Using simulation we show that the performance of M-DES
in terms of BER is much better than DES. Initially, we
studied the BER of DES, assuming one bit error only. We
studied the effect of the error analytically up to the end of
round three. Then it became harder to complete the sixteen
rounds analytically, so we used simulations to evaluate the
BER of DES, and we found that on average there was 32 bits
in error out of the 64 bits. Simulations also show that in M-
DES, having one or more errors at the received ciphertext
block will not result in half the decrypted bits to be in error,
while for DES if any bit is received in error, this will result
in half the bits to be in error.

C. Security

We showed in details in the previous section how the
algorithm is considered secure against brute force and
differential cryptanalysis attacks. The addition of the new
80-bit key, make it impossible to crack the algorithm using
brute force attack. While the addition of the new round
reduces the probability of cracking the algorithm using
differential cryptanalysis to almost zero.

D. Key Management

An efficient way to share the new key is to add the new 80-
bit key to the old 56-bit key and deal with them as one key at
the transmitter. Both the sender and the receiver will need to
divide it into two keys when encryption or decryption is
done.

E. Complexity

The proposed algorithm is less complex than DES in terms
of the number of distinct S-Box mapping tables. However,
the number of rounds and the key size of M-DES is more
than DES, which might increase the complexity compared to
DES.

5. Simulation Results

This section provides the simulation results of the BER
obtained for M-DES and Triple M-DES compared to DES.
Here encrypted text is the output of encryption algorithm and
encipher text is the input to the decryption algorithm after
transmission. Here we have considered a random error bit is
the changed bit while transmission. Here i and j are the
iteration variables used for the 64 bits and 100 iterations
respectively. The average ber is calculated which is observed
as 31.62 for an standard DES algorithm, as shown below
(Fig.3):

Figure 3: Average BER output for standard DES algorithm

Similarly, for M-DES algorithm requires the same 64-bit
plaintext as for standard DES, but it takes a136-bit key and
produces a 128-bit ciphertext. Here, the second key is the 80-
bit key which is given to the Round 17. Here, we are
assuming that the encrypted text differ from the encipher text
by one random bit. So, here the average ber output is 18.16,
which is comparatively much less than standard DES
algorithm. Thus the ber performance is improved. (Fig.4)

Figure 4: Average BER output for M-DES algorithm

Figure 5: Average BER output for Triple DES algorithm

Similarly, we can observe the results for the triple DES
algorithm (Fig.5); in this the DES algorithm is used three
times. So, the average ber calculated for triple DES is 31.67,
which is almost same as for the standard DES. Similarly, if
we use M-DES in triple DES, i.e if we use three M-DES
instead of standard DES than the average ber is obtained as
14.02(Fig.6). This is better than normal triple DES. Thus the
ber performance is much more improved and the security is
also increased using triple modified DES.

Figure 6: Average BER output for Triple M-DES algorithm

Table 1: The BER comparison table for different algorithms

Architecture
Standard Modified

DES T-DES DES T-DES
BER 31.62 31.67 18.16 14.02

192

International Journal of Science and Research (IJSR), India Online ISSN: 2319‐7064

Volume 2 Issue 3, March 2013
www.ijsr.net

6. Conclusion

In this paper, we showed how well known block cipher
encryption algorithms are not sufficient for the use in
wireless applications, because in these applications, the
signal may experience severe degradations and attenuations,
which causes wrong reception of the signal and hence a
catastrophic effect on the decryption process. In this paper,
we proposed a new encryption mechanism based on
modified DES. Using simulation we quantified the
performance of the proposed M-DES versus the known
standard DES and Triple DES versus Triple M-DES for
encryption in a wireless communication channel. We showed
that the new algorithm outperforms the standard DES and
Triple DES algorithms in terms of error performance. We
also showed that the new algorithm enhanced the security to
a high security level which is prone to all applicable types of
attacks.

References

[1] M. Haleem, C. Chetan, R. Chandramouli and

K.P.Subbalakshmi, “Opportunistic Encryption: A Trade-
Off between Security and Throughput in Wireless
Networks,” IEEE Transaction on Dependaple and
Secure Computing, vol. 4, no. 4, pp.313-324, Oct 2007.

[2] Reason, “End-to-End Confidentiality for Continuous-
Media Applications in Wireless Systems,” PhD
dissertation, UC Berkeley, Dec.2000.

[3] “Technical specification group services and system
aspects,” 3GPP TS 55.216 V6.2.0, September 2003.

[4] Sedat Akleylek, “On the avalanche effect of MISTY1,
KASUMI and KASUMI-R,” Master’s thesis, Middle
East Technical University, Feb 2008.

[5] O. Dunkelman, N. Keller and A. Shamir, “A Practical-
Time Attack on the A5/3 Cryptosystem Used in Third
Generation GSM Telephony,” Cryptology ePrint
Archive, Report 2010/013, Feb 2010.

[6] Behrouz A. Forouzan, Cryptography and Network
Security, 1st Edition, Mc Graw Hill, 2008.

[7] M. Matsui, “On correlation between the order of S-
boxes and the strength of DES,” in Proceedings of
Eurocrypt94 (A. De Santis, ed.),no. 950 in Lecture
Notes in Computer Science, pp. 366375, Springer-
Verlag, 1995.

[8] E.Biham and A.Shamir, “Differential Cryptanalysis of
the Full 16-round DES,” Proceedings of Crypto’92, vol.
740, Santa Barbara, CA, December 1991

193

