
International Journal of Science and Research (IJSR), India Online ISSN: 2319‐7064 

Volume 2 Issue 3, March 2013 
www.ijsr.net 

CPV: Open Source Software Survivability Analysis 
by Communication Pattern Validation Approach 

 
Angel Mary1, N .Sambasiva Rao2 

 
1Department of CSE, Vardhaman College of Engineering, Shamshabad, A.P, India 

mrs.angelrex@gmail.com 
 

2Principal, Vardhaman College of Engineering, Shamshabad, A.P, India 
snandam@gmail.com 

 
Abstract: The popularity of open source is unassailable. It has been widely adopted for different purposes, including web servers, e-
mail servers, operating systems, and programming languages. Although some open source projects, like Apache, Sendmail and Linux, 
have achieved extraordinary success, lots of projects are lackluster or with no developing activity at all. To deepen our understanding of 
open source projects, it is essential to explore the factors that have contributed to its success or failure. The objective of this research is 
to analyze the survival of open source projects from the social network perspective. In particular, we have studied the impact of the 
communication pattern of open source projects on the project success, defined in view of both the supply side (developers) and the 
demand side (end users), while incorporating control factors such as project-specific characteristics. Based on empirical data collected 
from SourceForge.net, a popular open source hosting web site, our results show that the communication pattern has significant impacts 
on the open source success. 
 
Keywords: OSS, Communication pattern, OSS developer communities 
 
1. Introduction 
 
Open Source is the term used to describe software, of 
which the high-level code is supplied free of charge to 
whoever would like it, by definition, they are permitted to: 
 
 Use the code for whatever they wish 
 Edit and modify the code to suit their needs 
 Redistribute the code to whoever they wish 
 Improve the software, and redistribute it in its 

modified form 
 When all these conditions are met, software is 

considered truly Open Source. 
 
Open source has played a fundamental role in the 
development of the Internet by contributing to such 
remarkable software as TCP/IP, BIND, Sendmail, Linux, 
and the Apache WEB server. The first works in this 
rapidly developing field were descriptive in nature 
followed by theory driven explanations and early 
empirical research. Many of the early explorations into the 
inner workings of the open source development process 
have sought to explain the mechanisms by which open 
source projects attract and motivate volunteers to produce 
such seemingly high quality. One aspect, however, of the 
OSS phenomenon that has received relatively little 
attention is the nature of the project communication in 
open source projects. We are specifically interested in 
advancing the understanding of project communication 
and its role in managing the process of creating open 
source software. How open source developers 
communicate and interact is an interesting and important 
question given the geographic distribution of the 
developers and the unstructured process of software 
development in the open source context (compared to 
software development in a closed source setting). This 
study utilizes archival data to explore the nature of the 
social network and the patterns of communication that 
exist in an OSS project. 

 
Lerner and Tirole (2005b) suggest four questions/issues of 
interest to scholars studying open source software: 1) 
technological characteristics conducive to smooth open 
source development, 2) optimal licensing of open source, 
3) the coexistence of open source and proprietary 
software, and 4) the potential for the open source model to 
be carried over to other industries (i.e. the portability of 
the “open source” concept). While technological issues 
are useful to the adoption of open source, just as important 
are social issues. In his examination of the Linux 
operating system, Weber (2000) identifies three key issues 
for social scientists to ponder: 1) motivation of individuals 
who develop open source; 2) coordination of activities in 
the supposed absence of a hierarchical structure, and 3) 
growing complexity in open source projects and its 
management. This paper presents the preliminary findings 
from a literature review focusing on communication 
pattern involved in Open Source Software Development. 
 
2. Literature Review 
 
2.1 Software Quality Models: Purposes, Usage 
Scenarios and Requirements 
 
There is a huge amount of work on various forms of 
quality models. However, comprehensive overviews and 
classifications are scarce. A first, broad classification of 
what he called “quality evaluation models” was proposed 
by Tian. He distinguishes between the specificness levels 
generalized and product-specific. These classes are further 
partitioned along unclear dimensions. For example, he 
distinguishes segmented models for different industry 
segments from dynamic models that provide quality 
trends. Two of the authors built on Tian’s work and 
introduced further dimension. Wagner discussed in the 
dimensions purpose, quality view, specificness and 
measurement where the purposes are construction, 
assessment and prediction. This was further extended by 
Wagner and Deissenboeck with the dimensions phase and 

221



International Journal of Science and Research (IJSR), India Online ISSN: 2319‐7064 

Volume 2 Issue 3, March 2013 
www.ijsr.net 

technique. A thorough discussion of critique, usage 
scenarios and requirements along these dimensions is not 
provided in any of these contributions. 
 
An impressive development of quality models has taken 
place over the last decades. These efforts have resulted in 
many achievements in research and practice. As an 
example, take a look at the field of software reliability 
engineering that performed a wide as well as deep 
investigation of reliability growth models. In some 
contexts these models are applied successfully in practice. 
The developments in quality definition models even led to 
the standardization in ISO 9126 that is well known and 
serves as the basis for many quality management 
approaches. 
 
However, the whole field of software quality models is 
diverse and fuzzy. There are large differences between 
many models that are called “quality models”. Moreover, 
despite the achievements made, there are still open 
problems, especially in the adoption in practice. Because 
of this, current quality models are subject to a variety of 
points of criticism that have to be acted on. 
 
They provided a comprehensive definition of a quality 
model based on the purpose the model has. Using this 
tripartion in definition models, assessment models and 
prediction models (DAP), they summarized the existing 
critique and collected a unique collection of usage 
scenarios of quality models. From this, they derived a 
comprehensive set of requirements, again ordered in terms 
of the DAP classification, that can be used in two 
contexts: (1) evaluation of existing models in a specific 
context or (2) further developments and improvements of 
software quality models. 
 
2.2 Cave or Community? 
 
An Empirical Examination of 100 mature Open Source 
Projects: 
 
Starting with Eric Raymond's ground-breaking work, "The 
Cathedral and the Bazaar”, open-source software (OSS) 
has commonly been regarded as work produced by a 
community of developers. Ghosh's cooking pot markets, 
similarly, point to a communal product development 
system. Certainly, this is a good label for some OSS 
products that have been featured prominently in the news. 
For instance, Moon and Sproull point out that by July 
2000, about 350 contributors to LINUX were 
acknowledged in a credit list in the source code of the 
kernel. 
 
However, the goal in Eric’s paper is to ask if the 
community-based model of product development holds as 
a general descriptor of the average OSS product. He 
systematically looks at the actual number of developers 
involved in the production of one hundred mature OSS 
products. What Eric found is more consistent with the 
lone developer (or cave) model of production rather than a 
community model (with a few glaring exceptions, of 
course). 
 

This is not to say that there is no community in the OSS 
movement. For instance, the findings of Butler, Kiesler, 
Sproull and Kraut (2002) point to participation by 
individuals other than the creators of OSS-program-
related mailing lists. Their contention is only that 
communities do things other than produce the actual 
product - e.g. provide feature suggestions, try products out 
as lead users, answer questions etc. Formally separating 
software production from other steps in the development 
of OSS programs will provide greater clarity to the 
discussion of the OSS phenomenon. 
 
2.3 Extracting Facts from Open Source Software 
 
The open source software is usually developed outside 
companies – mostly by volunteers – the quality and 
reliability of the code may be uncertain. Thus its use may 
involve big risks for a company that uses open source 
code. It is vital to get more information out of these 
systems. Various kinds of code measurements can be quite 
helpful in obtaining information about the quality and 
fault-proneness of the code. These measurements can be 
done with the help of proper tools. 
 
The paper describes a framework called Columbus with 
which we are able to calculate the object oriented metrics 
validated for fault-proneness detection from the source 
code of the well-known open source web and e-mail suite 
called Mozilla. We then compare our results with those 
presented. One of their aims was to supplement their work 
with metrics obtained from a real-size software system. 
They also compare the metrics of the seven most recent 
versions of Mozilla (1.0–1.6), which covers over one and 
a half years of development, to see how the predicted 
fault-proneness of the software system changed during its 
development. 
 
The Columbus framework has been further improved 
recently with a compiler wrapping technology that allows 
us to automatically analyze and extract information from 
practically any software system that compiles with GCC 
on the GNU/Linux platform (the idea is applicable as well 
to other compilers and operating systems). 
 
Rudolf Ferenc et.al also introduce a fact extraction process 
to show what logic drives the various tools of the 
Columbus framework and what steps need to be taken to 
obtain the desired facts. One fact might be, for instance, 
the size of the code. Another fact might be whether a class 
has base classes. Actually any information that helps us 
better understand unknown source code is called a fact 
here. It is obvious that collecting facts by hand is only 
feasible when relatively small source codes are 
investigated. Real-world systems that contain several 
million lines of source code (Mozilla, for instance) can 
only be processed with the help of tools. 
 
In the Columbus framework the form of the extracted 
facts conform to predefined schemas. By schema, we 
mean a description of the form of the data in terms of a set 
of entities with attributes and relationships. A schema 
instance is an embodiment of the schema which models a 
concrete software system (or part of it). This concept is 
analogous to databases, which also have a schema 

222



International Journal of Science and Research (IJSR), India Online ISSN: 2319‐7064 

Volume 2 Issue 3, March 2013 
www.ijsr.net 

(described usually by E-R diagrams) that is distinct from 
the concrete instance data (data records). The Columbus 
framework defines two schemas: (1) the Columbus 
Schema for C/C++ Preprocessing [15] (for describing 
preprocessing related facts) and (2) the Columbus Schema 
for C++ [7] (for describing the C++language itself).It 
should be mentioned here that we performed full analyses 
of the seven versions of Mozilla and built up the full 
schema instances of them, which can be used for any re 
and reverse engineering task like architecture recovery 
and visualization. In this work we used them only for 
calculating metrics, but their use is not limited to this case. 
 
Mozilla was investigated earlier by Godfrey and Lee. 
They examined the software architecture model of Mozilla 
Milestone-9. The authors used the PBS and Acacia reverse 
engineering systems for fact extraction and visualization. 
They created the subsystem hierarchy of Mozilla and 
looked at the relationships among them. Their model 
consists of 11 top-level systems which may be divided 
into smaller subsystems. They created the subsystem 
hierarchy by taking into consideration things like source 
directory structure and software documentation. It turned 
out that the dependency graph was near complete, which 
means that almost all the top-level systems use each other. 
 
Fioravanti and Nesi took the results of the same projects 
as Basili et al. to examine how metrics could be used for 
fault-proneness detection. They calculated 226 metrics 
and their aim was to choose a minimal number relevant 
for obtaining a good identification of faulty classes in 
medium-sized projects. First they reduced the number of 
metrics to 42 and attained very high accuracy score (more 
than 97%). This model was still too large to be useful in 
practice. By using statistical techniques based on logistic 
regression they created a hybrid model which consists of 
only12 metrics with an accuracy that is still good enough 
to be useful (close to 85%). The metrics suite they 
obtained is not the same as the one used in [1] but there 
are many similarities. 
 
Yu, Syst¨a and M¨uller chose eight metrics in [16] 
(actually ten because CBO and RFC was divided into two 
different kinds) and they examined the relationship 
between these metrics and the fault-proneness. The 
subject system was the client side of a large network 
service management system developed by three 
professional software engineers. It was written in Java and 
consisted of 123 classes and around 34, 000 lines of code. 
First they examined the correlation among the metrics and 
found four highly correlated subsets. Then they used 
univariate analysis to find out which metrics could detect 
faults and which could not. They found that three of the 
metrics (CBO in, CBO out and DIT) were unimportant 
while the others were significant but to different extents 
(NMC, LOC, CBO out, RFC out, LCOM, NOC and Fan-
in).  
 
The paper makes three key contributions: (1) we presented 
a method and toolset with which facts can be 
automatically extracted from real-size software; (2) using 
the collected facts we calculated object oriented metrics 
and supplemented a previous work [1] with measurements 
made on the real-world software Mozilla; and (3) using 

the calculated metrics we studied how Mozilla’s predicted 
fault proneness has changed over seven versions covering 
one and a half years of development. 
 
In the future they planned to validate the object oriented 
metrics and hypotheses presented (and here as well) on 
Mozilla for fault-proneness detection using the reported 
faults which are available from the Bugzilla database. We 
also plan to scan Mozilla (and also other open source 
systems) regularly for fault-proneness and make these 
results publicly available. 
 
2.4 Assessing the Health of Open Source Communities 
 
The computing world lauds many Free/Libre and Open 
Source Software offerings for both their reliability and 
features. Successful projects such as the Apache http Web 
server and Linux operating system kernel have made 
FLOSS a viable option for many commercial 
organizations. 
 
While FLOSS code is easy to access, understanding the 
communities that build and support the software can be 
difficult. Despite accusations from threatened proprietary 
vendors, few continue to believe that open source 
programmers are all amateur teenaged hackers working 
alone in their bedrooms. But neither are they all part of 
robust, well-known communities like those behind 
Apache and Linux. 
 
If you, as an IT professional, are going to rely on or 
recommend FLOSS, or contribute yourself, you should 
first research the community of developers, leaders, and 
active users behind the software to decide whether it’s 
healthy and suitable for your needs. 
 
2.5 Life Cycle and Motivations 
 
Understanding a project’s life cycle and its participants’ 
motivations is useful for understanding why a FLOSS 
community is important to a project’s success. 
 
Eric Raymond claims that successful open source projects 
usually start in a “cathedral” before heading into the 
“bazaar” (“The Cathedral and the Bazaar,” First Monday, 
vol. 3, no. 3, 1998; 
www.firstmonday.org/issues/issue3_3/raymond/index.htm
l). AnthonySenyard and Martin Michlmeyr,a former 
Debian project leader, agree, arguing that a working code 
base for a successful FLOSS project is usually developed 
alone or by a very small group before going public (“How 
to Have a Successful Free Software Project,” Proc. 11th 
Asia-Pacific Software Eng. Conf., IEEE CS Press,2004, 
pp. 84-91). 
 
The founders’ good ideas expressed in working code 
facilitate a successful project’s second phase: a “creative 
explosion” in which the product, now public, develops 
quickly, gathering features and capabilities that in turn 
attract additional developers and users. What Perl founder 
Larry Wall calls “learning in public” can be an 
exhilarating, if difficult, time early in project’s life cycle. 
 

223



International Journal of Science and Research (IJSR), India Online ISSN: 2319‐7064 

Volume 2 Issue 3, March 2013 
www.ijsr.net 

More broad-based research by Rishab A. Ghosh and 
colleagues(“Free/Libre and Open Source Software: 
Survey and Study,” summary report, Workshop on 
Advancing the Research Agenda on Free/Open Source 
Software, Int’l Institute of Infonomics,Univ. of 
Maastricht, 2002, 
www.infonomics.nl/FLOSS/report/workshopreport.htm) 
and Karim Lakhani and Robert G. Wolf (“Why Hackers 
Do What They Do: Understanding Motivation Efforts in 
Free/Open Source Software Projects,” working 
paper4425-03, MIT Sloan School of Management,2003, 
http://opensource.mit.edu/papers/lakhaniwolf.pdf) 
indicates that motivations are quite diverse and include, in 
decreasing order of relevance, 
 
• Intellectual engagement; 
• Knowledge sharing; 
• The product itself; and 
• Ideology, reputation, and community obligation. 
 
Projects that have an atmosphere of exploration and 
intellectual engagement, especially early in their life, are 
most likely to attract the active user community needed 
for future success. Also important in attracting good 
developers is a code base that solves a real need. 
 
Few if any FLOSS projects are likely to apply for ISO 
9000 process certification anytime soon, but that doesn’t 
mean they don’t have well-accepted processes. However, 
these are rarely formally documented, and understanding 
what Walt Sccachi calls “informalisms”can take time 
(“Understanding the Requirements for Developing Open 
Source Software Systems,” IEE Proceedings—Software, 
vol. 149, no. 1, 2002, pp. 24-39). 
 
Even very successful open source projects often lack 
detailed roadmaps, explicit work assignments, or feature 
request prioritizations. A key aim of making proprietary 
software processes explicit is to ensure the efficient use of 
a fixed pool of resources, but FLOSS projects don’t face 
such fixed pools, either in the number of participants or in 
the amount of time each one can devote. 
 
Therefore, organizing for fun can be more important than 
organizing for efficiency. In fact, duplication of effort 
could be a positive sign that the project can attract 
resources and is in a position to choose the best 
contributions. On the other hand, a formalized system for 
prioritizing security issues clearly benefits some 
applications. And if the processes are discussed, it’s 
important that these discussions regularly end in action 
that lets people get back to work rather than in an 
exhausted stalemate. 
 
Certain essential processes, such as providing and 
maintaining repositories and download sites, are often 
both difficult and laborious; these have a high burn-out 
rate because many participants are driven by intellectual 
curiosity rather than a service mentality. Such functions 
should be farmed out to an entity with financial and 
operational resources, or at least formally rotated among 
participants. Hosting providers such as Source-Forge, 
Savannah, GForge, and Ruby-Forge do the FLOSS 

ecosystem a great service in this regard, as do long-term 
partnerships with commercial ventures. 
 
Managing releases is another onerous task. Hassling 
volunteers and collaborators to stop being creative and 
focus on delivering and testing are leasable version isn’t 
particularly enjoyable. Ideally, a healthy FLOSS 
community recognizes and explicitly addresses this issue, 
perhaps through a rotating position (like Perl’s pump 
king) or a time-based release strategy. 
 
In considering a FLOSS project, make it a point to 
understand the community as you familiarizes yourself 
with the code. Subscribe to and skim mailing lists, find the 
list archives, and examine the project’s Web site. If the 
project has an Internet relay chat channel, spend some 
time there—IRC’s informality can reveal whether 
participants actually like one another. Many quantitative 
resources can reveal how a community has evolved over 
time. For example, FLOSS mole 
(http://ossmole.sourceforge.net) provides public access to 
data collected from Source Forge, freshmeat, and 
RubyForge, as well as tools for graphical analysis of 
community structure. CVS AnalY 
(http://cvsanaly.tigris.org)offers utilities and data 
extracted from many CVS and Subversion projects, such 
as the number of contributors and their rate of 
contribution. The Business Readiness Rating project 
(http://openbrr.org) is developing a more formal 
methodology to assess FLOSS projects. 
 
If your assessment leaves you feeling that the community 
isn’t right for you, be prepared to consider alternatives, no 
matter how attractive the code is. Trying to change an 
existing community is likely to end in frustration and 
undermine the reasons you chose FLOSS in the first place. 
However, while a rejection of your enthusiastic 
contributions can seem dictatorial and rude, it can also 
demonstrate a long-term, cohesive vision—a FLOSS 
community at its best. 
 
3. Methodology 
 
Analyzing mailing lists used by a community of software 
developers provides insights in how developers work and 
what are the most important persons involved in the 
project. Open-source projects typically have a mailing list 
that channels the communication in the project. Mailman 
is one of the most used infrastructures for handling 
mailing lists. 
 
We assess the activity in the mailing list by the number of 
e-mails that are sent. In a version repository, an activity is 
basically a commit. By analyzing the evolution of the 
activity we know if the project is growing, stable or even 
abandoned. The level of activity is a good indicator of the 
health of a project. 
 
4. Conclusion 
 
Open source represents an exciting opportunity for 
research in a wide variety of disciplines. This paper 
applies social network analysis to understand how 
developers communicate in an open source project. Since 

224



International Journal of Science and Research (IJSR), India Online ISSN: 2319‐7064 

Volume 2 Issue 3, March 2013 
www.ijsr.net 

the developers in open source projects are geographically 
distributed and may never meet face-to-face, it is 
important to understand how they communicate to 
organize and coordinate their efforts. Our future work is to 
develop a tool to analyze the communication between the 
open source software developer communities. 
 
References 
 
[1] OSI, the Open Source Definition, The Open Source 

Initiative, (Accessed: May 2001); 
http://opensource.org/docs/definition _ Plain.html  

[2] R. Abreu and R. Premraj. How developer 
communication frequency relates to bug introducing 
changes. In Proc. Joint Int'l Workshop on Software 
Evolution (IWPSE-EVOL), pages 153-157. ACM 

[3] SIGSOFT, 2009. 
[4] E. Raymond, The Cathedral and the Bazaar: Musings 

on Linux and Open Source by an Accidental 
Revolutionary (O'Reilly, Cambridge, 1999).  

[5] K. Lakhami, and E. von Hippel (2000). How Open 
Source Software works: "Free" user-to-user 
assistance. MIT Sloan Open Source Project, 
(Accessed: October 2001); 
http://opensource.mit.edu/papers/lakhanivonhippeluse
rsupport.pdf 

[6] A. Mockus, R. Fielding and J. Herbsleb, A Case 
Study of Open Source Software Development: The 
Apache Server, Proceedings of the Proceedings of the 
22nd International Conference on on Software 
Engineering, Limerick Ireland (2000). 

[7] G. Madey, V. Freeh, and R. Tynan. The open source 
software development phenomenon: An analysis 
based on social network theory. In Eight Americas 
Conf. 

[8] Information Systems, pages 1806{1813, 2002. 
[9] S. Y. T. Lee, et Al, "Measuring open source software 

success," Omega-International Journal of 
Management Science, vol. 37, pp. 426-438, 2009  

[10] J. Wang, “Survival factors for Free Open Source 
Software projects: A multi-stage perspective”, 
European Management Journal, Vol.30(4), pp.352-
371, 2012.  

[11] W. H. DeLone, E. R. McLean, "The DeLone and 
McLean model of information systems success: a ten-
year update," Journal of Management Information 
Systems, vol. 19, pp. 9-30, 2003  

[12] V. Midha, P. Palvia, “Factors affecting the success of 
Open Source Software”, Journal of Systems and 
Software, vol. 85, pp. 895-905, 2012 

225




