
International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 3, March 2013
www.ijsr.net

Updates in Streaming Data Warehouses by Scalable
Scheduling

Mohan Raj. A1, M. N. Sushmitha2

1, 2School of Computing Sciences, Hindustan University

Chennai, India
mohanraj.6665@gmail.com

mnsushmitha@hindustanuniv.ac.in

Abstract: The project includes a streaming data warehouse update problem as a scheduling problem where jobs correspond to the
process that load new data into tables and the objective is to minimize data staleness over time. The proposed scheduling framework that
handles the complications encountered by a stream warehouse: view hierarchies and priorities, data consistency, inability to pre-empt
updates, heterogeneity of update jobs caused by different inter arrival times and data volumes among different sources and transient
overload. Update scheduling in streaming data warehouses which combine the features of traditional data warehouses and data stream
systems. The need for on-line warehouse refreshment introduces several challenges in the implementation of data warehouse
transformations, with respect to their Execution time and their overhead to the warehouse processes. The problem with this approach is
that new data may arrive on multiple streams, but there is no mechanism for limiting the number of tables that can be updated
simultaneously.

Keywords: Data warehouse maintenance, online scheduling.

1. Introduction

Data mining is the process of analyzing data from different
perspectives and summarizing it into useful information that
can be used to increase revenue, cuts costs, or both. Data
mining software is one of a number of analytical tools for
analyzing data. It allows users to analyze data from many
different dimensions or angles, categorize it, and summarize
the relationships identified. Technically, data mining is the
process of finding correlations or patterns among dozens of
fields in large relational databases.

Traditional data warehouses are updated during downtimes
and store layers of complex materialized views over
terabytes of historical data. On the other hand, Data
Stream Management Systems (DSMS) support simple
analyses on recently arrived data in real time. Streaming
warehouses such as Data Depot combine the features of
these two systems by maintaining a unified view of current
and historical data. This enables a real-time decision
support for business-critical applications that receive
streams of append-only data from external sources.
Applications include:

 Online stock trading, where recent transactions

generated by multiple stock exchanges are com-
pared against historical trends in nearly real time to
identify profit opportunities;

 Credit card or telephone fraud detection, where
streams of point-of-sale transactions or call details are
collected in nearly real time and compared with past
customer behavior;

 Network data warehouses maintained by Internet
Service Providers (ISPs), which collect various system
logs and traffic summaries to monitor network
performance and detect network attacks.

The goal of a streaming warehouse is to propagate new data
across all the relevant tables and views as quickly as
possible. Once new data are loaded, the applications and
triggers defined on the warehouse can take immediate

action. This allows businesses to make decisions in
nearly real time, which may lead to increased profits,
improved customer satisfaction, and prevention of serious
problems that could develop if no action was taken.

Recent work on streaming warehouses has focused on
speeding up the Extract-Transform-Load (ETL) process.
There has also been work on supporting various warehouse
maintenance policies, such as immediate deferred and
periodic [10]. However, there has been a little work on
choosing, of all the tables that are now out-of-date due to the
arrival of new data, e should be updated next.

Real-time scheduling is a well-studied topic with a lengthy
literature. However, problem introduces unique challenges
that must be simultaneously dealt with a streaming
warehouse.

Scheduling metric: Many metrics have been considered in
the real-time scheduling literature. In a typical hard real-
time system, jobs must be completed before their dead-
lines a simple metric to understand and to prove results
about. In a firm real-time system, jobs can miss their
deadlines, and if they do, they are discarded. The
performance metric in a firm real-time system is the fraction
of jobs that meet their deadlines. However, a streaming
warehouse must load all of the data that arrive therefore no
updates can be discarded. In a soft real-time system, late
jobs are allowed to stay in the system, and the performance
metric is lateness which is the difference between the
completion times of late jobs and their deadlines. However,
concerned about properties of the update jobs. Instead, we
will define a scheduling metric in terms of data staleness,
roughly defined as the difference between the current time
and the time stamp of the most recent record in a table.

2. Existing System

The traditional data warehouses are typically refreshed
during downtimes, streaming warehouses are updated as
new data arrive. Where traditional data warehouse store

84

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 3, March 2013
www.ijsr.net

layers of complex materialized views over terabytes of
historical data. This existing system does not support to
make decisions in real time and immediately. This existing
system is not suitable for data warehouse maintenance. The
problem with this approach is that new data may arrive on
multiple streams, but there is no mechanism for limiting the
number of tables that can be updated simultaneously.

3. Proposed System

The best way to schedule updates of tables and views in
order to maximize data freshness. Aside from using a
different definition of staleness, our Max Benefit basic
algorithm is analogous to the max-impact algorithm as is our
“Sum” priority inheritance technique. Our main innovation
is the Multi track Proportional algorithm for scheduling the
large and heterogeneous job sets encountered by a streaming
warehouse additionally; we propose an update chopping to
deal with transient overload.

3.1 A Proposed System Architecture

Every time, the seller sends details about share which will be
automatically streamed or updated in the top of the form
before the buyer buy the particular share. The share details
like company name, shares sold, available quantity etc
would be updating from the database. These share details
show in streaming format. The users don’t need to refresh
the page every time.

Figure 1: Proposed System Architecture

4. Literature Survey

4.1 Soft Real-Time Database System

The Proposed efficiently export a materialized view but to
knowledge none have studied how to efficiently import one.
To install a stream of updates, a real-time database system
must process new updates in a timely fashion to keep the
database fresh, but at the same time must process
transactions and meet their time Constraints. Various
properties of updates and views that affects this trade-off.
Examining through simulation, four algorithms for
scheduling transactions and installing updates in a soft real-
time database [1].

4.2 Multiple View Consistency for Data Warehouse

The proposed data warehouse stores integrated information
from multiple distributed data sources. In effect, the
warehouse stores materialized views over the source data.
The problem of ensuring data consistency at the warehouse
can be divided into two components: ensuring that each
view reflects a consistent stare of the base data, and ensuring
that multiple views are mutually consistent. Guarantying
multiple view consistency (MVC) and identify and define
formally three layers of consistency for materialized views
in a distributed environment [2].

4.3 Synchronizing a Database to Improve Freshness

The proposed a method to refresh a local copy of an
autonomous data source to maintain he copy up-to-date. As
the size of the data grows, difficult to maintain the fresh
copy making it crucial to synchronize the copy electively.
Two fresh Metrics, such as change models of the underlying
data and synchronization policies [3].

4.4 Operator Scheduling For Memory

The proposed many applications involving continuous data
streams, data arrival are busty and data rate fluctuates over
time. Systems that seek to give rapid or real-time query
responses in such an environment must be prepared to deal
gracefully with bursts in data arrival without compromising
system performance. Strategies for processing burst streams
adaptive, load-aware scheduling of query operators to
minimize resource consumption during times of peak load.
Chain scheduling, an operator scheduling strategy for data
stream systems that is near-optimal in minimizing run-time
memory usage for any collection of single stream queries
involving selections, projections, and foreign-key joins with
stored relations. Chain scheduling also performs well for
queries with sliding-window joins over multiple streams,
and multiple queries of the above types [4].

5. Modules

5.1 New Share Entry

The user will upload the new share details into the database.
They enter the information like id number of company,
company name, date of submission of share, product code,
product name, quantity, sold share, last and current year
profit, and term period etc.

85

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 3, March 2013
www.ijsr.net

5.2 Seller Product Details

The company registers their product. They will enter the
product code, brand name and description about the product.
This is called the registration about the particular product.
After feeding these data, the seller will submit on the
database. When the details once are stored means, the buyer
can view those details and buy the particular share.

5.3 View Share Details

The buyer can see the details regarding each share that are
given by the seller. The buyer sees the product name,
product code, and brand name of product etc. The data are
collected from the relevant database.

5.4 List out Data in Streaming

This is the main operation between seller and buyer. Every
time, the seller details about share which will be
automatically streamed or updated in the top of the form
before the buyer buy the particular share. The share details
like company name, shares sold available quantity etc.,
would be updating from the database. The users don’t need
to refresh the page every time. These modules have to show
all details about particular share in various companies. These
share details show in streaming format. The users don’t need
to refresh the page every time

5.5 Buyer View Stock Details

This is used to view a particular product details for a buyer
or a customer. Before buying the product, they can view all
the information about the product. But also the data will be
going streaming wise in the form more information buyer
goes to view stock details page.

5.6 Buyer Buying Process

This module, the buyer gives the data to seller. The buyer
gives the information like total cost of share, buyer id, buyer
name, date of buying etc... And finally will submit it into the
database. When completing the buying process, it will goes
to streaming data in FIFO (First in First Out) method. Here
if any share price and quantity will be updating means that
updating share also added in streaming instead of old data’s.
Display the streaming data based on ranking and priorities.
Here Buyer Analyze the share details history, if he satisfied
with that share details means he purchase the share.

6. Conclusion

The formalized and solved the problem of no preemptively
scheduling updates in a real-time streaming warehouse. The
proposed the notion of average staleness as scheduling
metric and presented scheduling algorithms designed to
handle the complex environment of a streaming data
warehouse. Then proposed a scheduling framework that
assigns jobs to processing tracks and uses basic algorithms
to schedule jobs within a track. The main feature of
framework is the ability to reserve resources for short jobs
that often correspond to important frequently refreshed
tables, while avoiding the inefficiencies associated with
partitioned scheduling techniques.

7. Future Works

Future works to extend our framework with new basic
algorithms. To fine-tune the Proportional algorithm in
experiments, even the aggressive version with “all”
allocation still exhibits signs of multiple operating domains,
and therefore can likely be improved upon. Another
interesting problem for future work involves choosing the
right scheduling “granularity “when it is more efficient to
update multiple tables together.

References

[1] B. Adelberg, H. Garcia-Molina, and B. Kao,
“Applying Update Streams in a Soft Real-Time
Database System,” Proc.ACM SIGMOD Int’l Conf.
Management of Data, pp. 245-256,1995.

[2] Y. Huge, J. Wiener, and H. Garcia-Molina,
“Multiple View Consistency for Data Warehousing,”
Proc. IEEE 13th Int’l Conf. Data Eng. (ICDE), pp.
289-300, 1986.

[3] J. Cho and H. Garcia-Molina, “Synchronizing a
Database to Improve Freshness,” Proc. ACM
SIGMOD Int’l Conf. Management of Data, pp.117-
128, 2000.

[4] L. Golab, T. Johnson, and V. Shkapenyuk,
“Scheduling Updates in a Real-Time Stream
Warehouse,” Proc. IEEE 25th Int’l Conf. Data Eng.
(ICDE), pp. 1207-1210, 2009.

[5] B.Babcock, S.Babu, M.Datar, and R.Motwani,
“Chain: Operator Scheduling for Memory
Minimization in Data Stream Systems,” Proc.ACM
SIGMOD Int’l Conf. Management of Data, pp. 253-
264, 2003.

[6] M.H.Bateni, L.Golab, M.T.Hajiaghayi, and
H.Karloff, “Scheduling to Minimize Staleness and
Stretch in Real-time Data Warehouses,” Proc. 21st
Ann. Symp. Parallelism in Algorithms and
Architectures (SPAA), pp. 29-38, 2009.

[7] A. Burns, “Scheduling Hard Real-Time Systems:
A Review,” Software Eng. J., vol. 6, no. 3, pp. 116-
128, 1991.

[8] D. Carney, U. Cetintemel, A. Raisin, S.Zdonik, M.
Cherniack, and M. Stonebreaker, “Operator
Scheduling in a Data Stream Man- ager,” Proc. 29th
Int’l Conf. Very Large Data Bases (VLDB), pp. 838-
849, 2003.

86

