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Abstract: In this paper we introduced g*G-axioms in topological spaces. It was Gupta who first used connected sets to define a new 

kind of separation axioms known as G-axioms. Some of the G-axioms are 1G , 2G  and 
'
2G axioms.  Replacing open sets doing separation 

by g*-open sets in these axioms, new concepts of 1g * G , 2g * G  and 
'
2g * G  axioms are introduced and studied in this work. These new 

extensions are termed as some g*G-axioms. Non coincidence of these axioms is shown by various counter examples. 
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1. Introduction 

 
Replacing the sets being separated or doing separation in the 
separation axioms by different types of sets, several 
extensions of separation axioms have been introduced by 
mathematicians from time to time.  Gupta [2] used the notion 
of connectedness to extend the study of separation axioms in 
a way like Aull [1].  Sivakamasundari [4] introduced the 
concept of gG-axioms. A space X is said to be 1G (resp. 

2G [2]) if for any connected subset M of X and a 

point Mx , there exist open (resp. disjoint open) sets U and 
V such that  V}x{,MUandVM,Ux  

(resp. ,Ux   ).VM  A space X is said to be '
2G [2] if any 

two disjoint connected subsets M and N of X are separated 
by disjoint open sets U and V.  Generalizations of these 
axioms, by replacing the open sets doing separation by g*-
open sets, are proposed in the work. 
 
Throughout the sequel, the space X will mean topological 
space X with topology   on which no separation axioms are 
assumed.  If Y is a subspace of X, then Y  denotes 

relativized topology on Y. cl(A), gcl(A), g*cl(A) and X – A 
are used to indicate closure, g-closure, g*-closure and 
complement of a subset A of X. G*O(X,  ) denotes the class 
of g*-open sets in X. 

 
2. Preliminaries 
 
2.1 Definition 
 
A space X is connected if and only if there do not exist 
disjoint non-empty open sets H and K such that .KHX   
in this definition ‘open’ can be replaced by ‘closed’ [7].  
Apparently, X is connected if and only if there are no open-
closed subsets of X other than   and X [7].  Clearly, 
singletons (points) are connected sets in every topology.  If 
two sets A and B have the property that 

cl(A) B A cl(B) ,      they are called separated.  A 

subset C in a topological space is connected if it cannot be 
written as the union of two separated sets [5]. If A is a 
connected subset of a space X and ),A(clBA   then B is 

connected [7]. 
 
2.2 Definition [3] 
 
A set A is g-closed if and only if ,A)A(cl   whenever 

UA   and U is open.  The complement of g-closed set is 
known as a g-open set. 
 
2.3 Definition [6] 
 
A set A is g*-closed if and only if ,A)A(cl   whenever 

UA   and U is g-open.  The complement of g*-closed set is 
known as a g*-open set.  The family of g*-open sets is 
denoted by G*O(X,  ). 
 
2.4 Definition [6] 
 
A map f : X             Y is called g*-continuous, if the inverse 
image of every closed set in Y is g*-closed in X. 
 
2.5 Definition [6] 
 
A map f: X          Y is called g*c-irresolute if the inverse 
image of every g*-closed set in Y is g*-closed in X. 
 
2.6 Proposition [6]  
 
If a map f : X          Y   is continuous then it is g*-continuous 
 
2.7Proposition [6]   
 
If a map f: X             Y is bijective, open and g*-continuous 
then f is g*c-irresolute 
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2.8 Definition [4] 
 
A space X is said to be 1gG  if for any point Xx  and any 

connected subset M of X  not containing x, there exist g-
open sets U and V such that 

.V}x{,MUandVM,Ux   

 
2.9 Definition [4] 
 
A space X is said to be 2gG  if for every connected set F and 

a point x F   there exist g-open sets U and V such that 
.VUandVF,Ux   

 
2.10 Definition [4] 
 

A space X is said to  '
2gG  if for any two disjoint connected 

sets M and N of X, there exist disjoint g-open sets U and V 
such that .VNandUM   

 
3. g*G-AXIOMS 
 

3.1 *
1g G -Spaces 

 
3.1.1 Definition  
 
A space X is said to be 1g *G  if for any point Xx  and 

any connected subset M of X not containing x, there exist 
g*-open sets U and V such that VM,Ux  and 

.V}x{,MU   

 
3.1.2 Proposition  
 
Every 1G  space is 1G*g .  

 
Proof: The proof follows from the fact that every open set is 
g*-open. The converse is not true as seen from the following 
example. 
 
3.1.3 Example 
 
Let X = {a, b, c}, = {, X, {a}, {b, c}}.  Then the space X 

is 1G*g but not .G1  

 
3.1.4 Theorem  
 
Every  1g *G  space is 1gG -space. 

 
Proof: The proof follows from every g*-open set is g-open. 
The converse is not true as seen from the following example. 
 
3.1.5 Example  
 
Let X = {a, b, c},  {, X, {a}, {b, c}}.  Then the space X 
is 1G*g but not .gG1  

 
3.1.6 Definition  
 
A subset M of X is called a g*-neighborhood of X if there is 
a g*-open set U such that x X M.    

3.1.7 Theorem  
 
In a space X, the following are equivalent 

(a) X is  1G*g  

(b) Every connected subset of X is g*-closed. 
(c) For any two disjoint connected subsets M and N of 

X, there exist g*-open sets U and V such that 
VN,UM  and .MV,NU   

Proof 
 
(a) → (b)  Let M be a connected subset of X and .Mx  
Then .MXx   By hypothesis,     there exists a g*-open set 
U such that .MUandUx   Hence .MXU   That 

is .MXUx   This implies X – M is a g*-neighborhood 
of x. Since x is arbitrary, X – M is a g*-neighborhood of 
each point of X – M. This implies X – M is g*-open. Hence 
M is g*-closed. 
 
(b) → (c) Let M and N be two disjoint connected subsets of 
X.  Then by (b) M and N are g*-closed and hence X – M and 
X – N are g*-open sets containing N and M as M and N are 
disjoint. Put U = X – N and V = X – M. Then 

,UNXM   MU&VMXN  &  

.NV    So (c) holds. 

 
(c) → (a) Since singleton set is a connected subset (a) 
follows form (c) by taking M to be a singleton set. 
 
3.1.8 Theorem  
 
A space X is 1G*g  if and only if for any connected set M 

and ,Mx  there exists a g*-open set U such that x U  and 
.MU   

 
Proof 
 
Let X be a 1G*g .  From the definition 3.1.1., the criterion 

follows. Conversely, since there exists a g*-open set U 
containing x such that .MU  . So X – M is a g*-

neighborhood of x and hence X – M is g*-open. So that M is 
g*-closed. Then by Theorem 3.1.7 (b), X is 1G*g . 

 
3.1.9 Theorem  
 
Every open subspace Y of a 1G*g -space X, is 1G*g . 

 
Proof 
 
Let A be a connected set in Y  X.  Then A is connected in 
X.  If  Yy  does not belong to A, then by 1G*g  axiom on 

X, there exist g*-open sets U and V in X such that 
.V}y{,AU&VA,Uy   Consequently 

)UY(    and )VY(    are g*-open sets in Y satisfying 

VYA,UYy  and 

A (Y U) (U A) Y Y          and similarly 

.)VY(}y{     Hence Y is 1G*g . 

 
3.1.10 Theorem  
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If f is a continuous map from X to Y.  Then f(A) is 
connected in Y if A is connected in X. 
 
Proof 
 
Suppose f(A) is disconnected, then  ,KH)A(f   where H 

and K are disjoint open sets in Y.  Hence 

).K(f)H(f)KH(fA 111    Also since f is 

continuous, so )H(f 1  and )K(f 1  are disjoint open sets in 

X which obviously shows that A is disconnected, a 
contradiction. Hence f(A) is connected. 
 
3.1.11 Theorem  
 
If f is one-one, onto continuous and open mapping from a 
space X to another space Y.  Then X is 1G*g  if Y is 1G*g -

space. 
 
Proof 
 
Let X→Y be a continuous map and M be a connected subset 
in X such that .Mx  Then due to continuity, f(M) is 
connected in Y by Theorem 3.1.10. and f (x) f (M),   as f is 

one-one. Since Y is 1G*g , there exist a g*-open sets U and 

V in Y such that f (x) U, f (M) V   and ,)M(fU   

.)x(fV   This implies that )V(f&)U(f 11   are g*-

open sets in X [Proposition 2.6. and Proposition 2.7, f is g*c-

irresolute] and  )V(fM),U(fx 11     and 

,M)U(f 1    .}x{)V(f 1     Hence X is 1G*g . 

 
3.2 2G*g -space 

 
3.2.1 Definition  
 
A space X is said to be 2G*g  if for every connected set F 

and a point Fx  there exist g*-open sets U and V such that 
.VUandVF,Ux     

 
Evidently, every 2G -space is 2G*g -space.  However, the 

converse is not true as shown by the following example. 
 
3.2.2 Example  
 
Let X = {a, b, c}, ={, X, {a}, {b, c}}.  Then the space X 
is 2G*g but not .G2  

 
3.2.3 Theorem   
 
Every 2G*g -space is 2gG -space. 

 
Proof: The proof follows from every g*-open set is g-open. 
 
3.2.4 Definition  
 
A space X is said to be  2T*g   if for each pair of distinct 

points in X there exist distinct g*-open sets U and V in X 
such that .Vy&Ux   

3.2.5 Theorem  
 
Every 2G*g -space is 2T*g . 

 
Proof 
 
Let X be 2G*g -space and .Xyx    Then }y{x  a 

connected set.  So by hypothesis there exist disjoint g*-open 
sets U and V such that .Vy.)e.i(.V}y{&Ux   Hence 

X is 2T*g .  

 
3.2.7 Theorem  
 
Every open subspace Y of a 2G*g -space X, is 2G*g . 

 
Proof 
 
Similar to the proof of Theorem 3.1.9. 
 
3.2.8 Definition  
 
A Point Xx is said to be a g*-limit of a subset A of X if 
every g*-open set containing x, contains atleast one point of 
A other than x.   
 
3.2.9 Theorem  
 
Every connected subset M of a 2G*g -space X is g*-closed. 

 
Proof 
 
Let M be a connected subset of a 2G*g -space and Let 

Xx   be such that .Mx  Then by hypothesis, there exist a 
disjoint g*-open sets G and H such that 
x G,M H & G H ,       which implies that G M .    

Since M H,  so x is not a g*-limit point of M.  
Hence ).M(cl*gx   Thus Mx  implies )M(cl*gx   

showing .M)M(cl*g   Hence M is g*-closed. 

 
In View of Theorem 3.2.9 and Theorem 3.1.7.(b)  every 

2G*g  space is 1g *G . However the converse is not true as 

seen from the following example. 
 
3.2.10 Example  
 
The modified fort space (P55, [5] ) is an example of space 
which is 1G*g but not  2G*g .    Let },x,x{NX 21  

where N is an infinite set and 21 x,x  distinct points. Let  = 

{all subsets of N}{all sets containing 1 2x or x if and only 

if they contains all but a finite number of points in N}. Then 
the only connected subsets of X are the one point subsets X. 
(X,) is not a 2G -space as 1x and 2x  do not have disjoint 

neighborhoods.  As GO(X, ) = P(X) = G*O(X, ).  X is also 
not a 2gG and 2G*g  space but (X,) is a 1gG and 

1g *G space. 
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3.2.11 Theorem  
 
A space X is 2G*g  if and only if for any point x in X and 

any connected set M not containing x, g *cl(U) M ,    

where U is a g*-neighborhood of x. 
 
Proof 
 
Let ,Mx where M is any connected set in X.  Then by 

2G*g  axiom there exist disjoint g*-open sets U and V 

containing x and M respectively.  Clearly then VXU   
and .VX)VX(cl*g)U(cl*g   This implies 

.VMasM)U(cl*g   

 
Conversely, let for any connected set M and .Mx , 

,M)U(cl*g  where U is a g*-neighborhood of x.  

Hence M X g *cl(U),   a g*-open set.  Since U is g*-

neighborhood of x there exists a g*-open set, say V such that 
.UVx   Hence there exist g*-open sets V and X – 

g*cl(U)  such that x V and M X g *cl(U).     Also 

.))U(cl*gX(V     Hence X is 2G*g   

 
3.2.12 Theorem  
 
A space X is 2G*g  if and only if every connected set is g*-

closed and for every g*-closed connected set F and a point  
,Fx  there exist disjoint g*-open sets U and V such that 

.VF,Ux     
 
Proof 
 
Let X be a 2G*g -space.  By Theorem 3.2.9 every connected 

subset is g*-closed and the rest of the hypothesis follows by 

2G*g -axiom.  

 
Conversely in X, for a g*-closed connected set F and a point 

,Fx  there exist disjoint g*-open sets U and V such that 
VF,Ux   and that every connected set is g*-closed.  So 

the proof follows. Since only g*-closed connected sets are all 
connected sets in X. 
 
3.2.13 Theorem  
 
If f is continuous and open bijection from X to a 2G*g -

spaces Y.  Then X is 2G*g -also.  

 
Proof 
 
Similar to the proof of Theorem 3.1.11 
 

3.3.  '
2G*g -spaces 

 
3.3.1 Definition   
 

A space X is said to '
2G*g  if for any two disjoint connected 

sets M and N of X, there exist disjoint g*-open set U and V 
such that .VN,UM     

3.3.2 Remark  
 

1. Every '
2G -space is '

2G*g   

2. Every '
2g *G -space is '

2gG   

 
3.3.3 Definition   
 
A space X is said to a g*‐irresolutely normal  if for any pair 
of disjoint g*‐closed sets A and B there exist g*‐open sets U 

and V such that A U, B Vand U V .        

 
3.3.4 Theorem  
 

Every g*-irresolutely normal 1G*g -space X is  '
2G*g  

 
Proof 
 
Let A and B be disjoint connected sets in X.  Since X is 

1G*g , so by Theorem 3.1.7(b) A and B are disjoint g*-

closed sets.  By application of g*-irresolute normality, there 
exist disjoint g*-open sets U and V such that  

.VB,UA   Hence X is '
2G*g   

 
3.3.5 Theorem  
 

Every open subset Y of a '
2G*g  space X is '

2G*g  

 
Proof 
 
Similar to the proof of Theorem 3.1.9 
 
3.3.6 Theorem  
 
If f: X →Y is a continuous and open bijection.  If Y is 

'
2G*g -space, then X is .G*g '

2  

 
Proof 
 
Let M and N be disjoint connected sets in X.  Then f(M) and 
f(N) are connected sets in Y and .)N(f)M(f   Since Y 

is '
2G*g -space, there exist disjoint g*-open sets U and V 

such that .V)N(fandU)M(f   Hence 

.)V(fNand)U(fM 11    Also By Proposition 2.6. and 

Proposition 2.7. )V(fand)U(f 11  are g*-open sets. Since f 

is bijective and U V .   We get  

).V(f)U(f)VU(f 111     Hence X is '
2G*g -

space. 
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