Review of g*G-axioms in Topological Spaces

R. Sudha¹, K. Sivakamasundari²

¹Department of Mathematics
SNS College of Technology
Coimbatore – 35, India
dhanasudha18@gmail.com

²Department of Mathematics
Avinashilingam Institute for Home Science and Higher Education for Women
Coimbatore – 43, India
sivanath2011@gmail.com

Abstract: In this paper we introduced g*G-axioms in topological spaces. It was Gupta who first used connected sets to define a new kind of separation axioms known as G-axioms. Some of the G-axioms are $G_1$, $G_2$ and $G_2'$. Replacing open sets doing separation by g*-open sets in these axioms, new concepts of $g^*G_1$, $g^*G_2$ and $g^*G_2'$ axioms are introduced and studied in this work. These new extensions are termed as some g*G-axioms. Non coincidence of these axioms is shown by various counter examples.

Keywords: Connected set, g*-open, g*-neighborhood, g*-closure

1. Introduction

Replacing the sets being separated or doing separation in the separation axioms by different types of sets, several extensions of separation axioms have been introduced by mathematicians from time to time. Gupta [2] used the notion of connectedness to extend the study of separation axioms in a way like Aull [1]. Sivakamasundari [4] introduced the concept of gG-axioms. A space X is said to be $G_1$ (resp. $G_2$ [2]) if for any connected subset M of X and a point $x \notin M$, there exist open (resp. disjoint open) sets $U$ and $V$ such that $x \in U, M \subseteq V$ and $U \cap M = \phi, \{x\} \cap V = \phi$ (resp. $x \in U, M \subseteq V$). A space X is said to be $G_2'$ [2] if any two disjoint connected subsets $M$ and $N$ of X are separated by disjoint open sets $U$ and $V$. Generalizations of these axioms, by replacing the open sets doing separation by g*-open sets, are proposed in the work.

Throughout the sequel, the space X will mean topological space X with topology $\tau$ on which no separation axioms are assumed. If Y is a subspace of X, then $\tau_Y$ denotes relativized topology on Y. cl(A), gcl(A), $g^*cl(A)$ and $X - A$ are used to indicate closure, g-closure, g*-closure and complement of a subset A of X. $G^*O(X, \tau)$ denotes the class of g*-open sets in X.

2. Preliminaries

2.1 Definition

A space X is connected if and only if there do not exist disjoint non-empty open sets H and K such that $X = H \cup K$. In this definition ‘open’ can be replaced by ‘closed’ [7]. Apparently, X is connected if and only if there are no open-closed subsets of X other than $\phi$ and X [7]. Clearly, singletons (points) are connected sets in every topology. If two sets A and B have the property that $cl(A) \cap B = A \cap cl(B) = \phi$, they are called separated. A subset C in a topological space is connected if it cannot be written as the union of two separated sets [5]. If A is a connected subset of a space X and $A \subseteq B \subseteq cl(A)$, then B is connected [7].

2.2 Definition [3]

A set A is g-closed if and only if $cl(A) \subseteq A$, whenever $A \subseteq U$ and U is open. The complement of g-closed set is known as a g-open set.

2.3 Definition [6]

A set A is g*-closed if and only if $cl(A) \subseteq A$, whenever $A \subseteq U$ and U is g-open. The complement of g*-closed set is known as a g*-open set. The family of g*-open sets is denoted by $G^*O(X, \tau)$.

2.4 Definition [6]

A map $f : X \rightarrow Y$ is called g*-continuous, if the inverse image of every closed set in Y is g*-closed in X.

2.5 Definition [6]

A map $f : X \rightarrow Y$ is called g*-irresolute if the inverse image of every g*-closed set in Y is g*-closed in X.

2.6 Proposition [6]

If a map $f : X \rightarrow Y$ is continuous then it is g*-continuous.

2.7 Proposition [6]

If a map $f : X \rightarrow Y$ is bijective, open and g*-continuous then f is g*-irresolute.
2.8 Definition [4]
A space $X$ is said to be $gG_1$ if for any point $x \in X$ and any connected subset $M$ of $X$ not containing $x$, there exist $g$-open sets $U$ and $V$ such that $x \in U, M \subseteq V$ and $U \cap M = \emptyset$.

2.9 Definition [4]
A space $X$ is said to be $gG_2$ if for every connected set $F$ and a point $x \in F$ there exist $g$-open sets $U$ and $V$ such that $x \in U, F \subseteq V$ and $U \cap V = \emptyset$.

2.10 Definition [4]
A space $X$ is said to be $gG_2'$ if for any two disjoint connected sets $M$ and $N$ of $X$, there exist disjoint $g$-open sets $U$ and $V$ such that $M \subseteq U, N \subseteq V$.

3. $g^*$-AXIOMS

3.1 $g^*G_1$-Spaces

3.1.1 Definition
A space $X$ is said to be $g^*G_1$ if for any point $x \in X$ and any connected subset $M$ of $X$ not containing $x$, there exist $g^*$-open sets $U$ and $V$ such that $x \in U, M \subseteq V$ and $U \cap M = \emptyset$.

3.1.2 Proposition
Every $gG$ space is $g^*G_1$.

Proof: The proof follows from the fact that every open set is $g^*$-open. The converse is not true as seen from the following example.

3.1.3 Example
Let $X = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a\}, \{b, c\}\}$. Then the space $X$ is $g^*G_1$ but not $G_1$.

3.1.4 Theorem
Every $g^*G_1$ space is $g^*G_1$-space.

Proof: The proof follows from every $g^*$-open set is $g^*$-open. The converse is not true as seen from the following example.

3.1.5 Example
Let $X = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a\}, \{b, c\}\}$. Then the space $X$ is $g^*G_1$ but not $G_1$.

3.1.6 Definition
A subset $M$ of $X$ is called a $g^*$-neighborhood of $X$ if there is a $g^*$-open set $U$ such that $x \in U \subseteq M$.

3.1.7 Theorem
In a space $X$, the following are equivalent
(a) $X$ is $g^*G_1$
(b) Every connected subset of $X$ is $g^*$-closed.
(c) For any two disjoint connected subsets $M$ and $N$ of $X$, there exist $g^*$-open sets $U$ and $V$ such that $M \subseteq U, N \subseteq V$ and $U \cap N = \emptyset$.

Proof
(a) $\rightarrow$ (b) Let $M$ be a connected subset of $X$ and $x \notin M$. Then $x \in X - M$. By hypothesis, there exists an $g^*$-open set $U$ such that $x \in U$ and $U \cap M = \emptyset$. Hence $U \subseteq X - M$.

(b) $\rightarrow$ (c) Let $M$ and $N$ be two disjoint connected subsets of $X$. Then by (b) $M$ and $N$ are $g^*$-closed and hence $X - M$ and $X - N$ are $g^*$-open sets containing $N$ and $M$ as $M$ and $N$ are disjoint. Put $U = X - N$ and $V = X - M$. Then $M \subseteq X - N = U, N \subseteq X - M = V$ and $U \cap M = \emptyset$.

(c) $\rightarrow$ (a) Since singleton set is a connected subset (a) follows from (c) by taking $M$ to be a singleton set.

3.1.8 Theorem
A space $X$ is $g^*G_1$ if and only if for any connected set $M$ and a point $x \notin M$ there exists a $g^*$-open set $U$ such that $x \in U$ and $U \cap M = \emptyset$.

Proof
Let $X$ be a $g^*G_1$. From the definition 3.1.1., the criterion follows. Conversely, since there exists a $g^*$-open set $U$ containing $x$ such that $U \cap M = \emptyset$. So $X - M$ is a $g^*$-neighborhood of $x$ and hence $X - M$ is $g^*$-open. So that $M$ is $g^*$-closed. Then by Theorem 3.1.7 (b), $X$ is $g^*G_1$.

3.1.9 Theorem
Every open subspace $Y$ of a $g^*G_1$-space $X$, is $g^*G_1$.

Proof
Let $X$ be a $g^*G_1$. From the definition 3.1.1., the criterion follows. Conversely, since there exists a $g^*$-open set $U$ containing $x$ such that $U \cap M = \emptyset$. So $X - M$ is a $g^*$-neighborhood of $x$ and hence $X - M$ is $g^*$-open. So that $M$ is $g^*$-closed. Then by Theorem 3.1.7 (b), $X$ is $g^*G_1$.

3.1.10 Theorem
Volume 2 Issue 3, March 2013

www.ijsr.net
If \( f \) is a continuous map from \( X \) to \( Y \). Then \( f(A) \) is connected in \( Y \) if \( A \) is connected in \( X \).

**Proof**

Suppose \( f(A) \) is disconnected, then \( f(A) = H \cup K \), where \( H \) and \( K \) are disjoint open sets in \( Y \). Hence \( A = f^{-1}(H) \cup f^{-1}(K) \). Also since \( f \) is continuous, so \( f^{-1}(H) \) and \( f^{-1}(K) \) are disjoint open sets in \( X \) which obviously shows that \( A \) is disconnected, a contradiction. Hence \( f(A) \) is connected.

**3.1.11 Theorem**

If \( f \) is one-one, onto continuous and open mapping from a space \( X \) to another space \( Y \). Then \( X \) is \( 1G^*g \) if \( Y \) is \( 1G^*g \)-space.

**Proof**

Let \( X \rightarrow Y \) be a continuous map and \( M \) be a connected subset in \( X \) such that \( x \in M \). Then due to continuity, \( f(M) \) is connected in \( Y \) by Theorem 3.1.10. and \( f(x) \neq f(M) \), as \( f \) is one-one. Since \( Y \) is \( 1G^*g \), there exist a \( g^* \)-open sets \( U \) and \( V \) in \( Y \) such that \( x \in U \) and \( x \notin V \) and \( f(x) \in U \) and \( f(x) \notin V \). Let \( x \in U \) and \( M \subseteq f^{-1}(V) \) and \( f^{-1}(U) \cap M = \emptyset \). Hence \( X \) is \( 1G^*g \).

**3.2 \( g^*G_2 \)-space**

**3.2.1 Definition**

A space \( X \) is said to be \( g^*G_2 \) if for every connected set \( F \) and a point \( x \notin F \) there exist \( g^* \)-open sets \( U \) and \( V \) such that \( x \in U \), \( F \subseteq V \) and \( U \cap V = \emptyset \).

Evidently, every \( G_2 \)-space is \( g^*G_2 \)-space. However, the converse is not true as shown by the following example.

**3.2.2 Example**

Let \( X = \{a, b, c\} \), \( \tau =\{\emptyset, X, \{a\}, \{b, c\}\} \). Then the space \( X \) is \( g^*G_2 \) but not \( G_2 \).

**3.2.3 Theorem**

Every \( g^*G_2 \)-space is \( gG_2 \)-space.

**Proof:** The proof follows from every \( g^* \)-open set is \( g \)-open.

**3.2.4 Definition**

A space \( X \) is said to be \( g^*T_2 \) if for each pair of distinct points in \( X \) there exist distinct \( g^* \)-open sets \( U \) and \( V \) in \( X \) such that \( x \in U \) and \( y \in V \).

**3.2.5 Theorem**

Every \( g^*G_2 \)-space is \( g^*T_2 \).

**Proof**

Let \( X \) be \( g^*G_2 \)-space and \( x \neq y \in X \). Then \( x \notin \{y\} \) or \( \{y\} \) is a connected set. So by hypothesis there exist disjoint \( g^* \)-open sets \( U \) and \( V \) such that \( x \in U \) and \( y \in V \). Hence \( X \) is \( g^*T_2 \).

**3.2.7 Theorem**

Every open subspace \( Y \) of a \( g^*G_2 \)-space \( X \), is \( g^*G_2 \).

**Proof**

Similar to the proof of Theorem 3.1.9.

**3.2.8 Definition**

A Point \( x \in X \) is said to be a \( g^* \)-limit of a subset \( A \) of \( X \) if every \( g^* \)-open set containing \( x \), contains atleast one point of \( A \) other than \( x \).

**3.2.9 Theorem**

Every connected subset \( M \) of a \( g^*G_2 \)-space \( X \) is \( g^* \)-closed.

**Proof**

Let \( M \) be a connected subset of a \( g^*G_2 \)-space and \( x \notin M \). Then by hypothesis, there exist a disjoint \( g^* \)-open sets \( G \) and \( H \) such that \( x \in G \), \( M \subseteq H \) and \( \emptyset = \emptyset \). Since \( M \subseteq H \), so \( x \) is not a \( g^* \)-limit point of \( M \). Hence \( x \notin g^* \text{cl}(M) \). Thus \( x \notin M \) implies \( x \notin g^* \text{cl}(M) \) showing \( g^* \text{cl}(M) \subseteq M \). Hence \( M \) is \( g^* \)-closed.

In View of Theorem 3.2.9 and Theorem 3.1.7(b) every \( g^*G_2 \) space is \( g^*G_1 \). However the converse is not true as seen from the following example.

**3.2.10 Example**

The modified fort space \( (P^{55}, [5] \} ) \) is an example of space which is \( g^*G_1 \) but not \( g^*G_2 \). Let \( X = N \cup \{x_1, x_2\} \), where \( N \) is an infinite set and \( x_1, x_2 \) distinct points. Let \( \tau = \{\text{all subsets of } N\} \cup \{\text{all sets containing } x_1 \text{ or } x_2 \text{ if and only if they contains all but a finite number of points in } N\} \). Then the only connected subsets of \( X \) are the one point subsets \( X \), \( (X, \tau) \) is not a \( G_2 \)-space as \( x_1 \) and \( x_2 \) do not have disjoint neighborhoods. As \( G_0(X, \tau) = P(X) = G^*O(X, \tau) \). X is also not a \( gG_1 \) and \( g^*G_2 \) space but \( (X, \tau) \) is a \( G_1 \) and \( g^*G_1 \) space.
3.2.11 Theorem

A space $X$ is $g^*G_2$ if and only if for any point $x$ in $X$ and any connected set $M$ not containing $x$, $g^*\text{cl}(U) \cap M = \emptyset$, where $U$ is a $g^*$-neighborhood of $x$.

Proof

Let $x \notin M$, where $M$ is any connected set in $X$. Then by $g^*G_2$ axiom there exist disjoint $g^*$-open sets $U$ and $V$ containing $x$ and $M$ respectively. Clearly then $U \subseteq X - V$ and $g^*\text{cl}(U) \subseteq g^*\text{cl}(X - V) = X - V$. This implies $g^*\text{cl}(U) \cap M = \emptyset$ as $M \subseteq V$.

Conversely, let for any connected set $M$ and $x \notin M$, $g^*\text{cl}(U) \cap M = \emptyset$, where $U$ is a $g^*$-neighborhood of $x$. Hence $M \subseteq X - g^*\text{cl}(U)$, a $g^*$-open set. Since $U$ is $g^*$-neighborhood of $x$ there exists a $g^*$-open set, say $V$ such that $x \in V \subseteq U$. Hence there exist $g^*$-open sets $V$ and $X - g^*\text{cl}(U)$ such that $x \in V$ and $M \subseteq X - g^*\text{cl}(U)$. Also $V \cap (X - g^*\text{cl}(U)) = \emptyset$. Hence $X$ is $g^*G_2$.

3.2.12 Theorem

A space $X$ is $g^*G_2$ if and only if every connected set is $g^*$-closed and for every $g^*$-closed connected set $F$ and a point $x \notin F$, there exist disjoint $g^*$-open sets $U$ and $V$ such that $x \in U$, $F \subseteq V$.

Proof

Let $X$ be a $g^*G_2$-space. By Theorem 3.2.9 every connected subset is $g^*$-closed and the rest of the hypothesis follows by $g^*G_2$-axiom.

Conversely in $X$, for a $g^*$-closed connected set $F$ and a point $x \notin F$, there exist disjoint $g^*$-open sets $U$ and $V$ such that $x \in U$, $F \subseteq V$ and that every connected set is $g^*$-closed. So the proof follows. Since only $g^*$-closed connected sets are all connected sets in $X$.

3.2.13 Theorem

If $f$ is continuous and open bijection from $X$ to a $g^*G_2$-spaces $Y$. Then $X$ is $g^*G_2$-also.

Proof

Similar to the proof of Theorem 3.1.11

3.3. $g^*G_2^*$-spaces

3.3.1 Definition

A space $X$ is said to $g^*G_2^*$ if for any two disjoint connected sets $M$ and $N$ of $X$, there exist disjoint $g^*$-open set $U$ and $V$ such that $M \subseteq U$, $N \subseteq V$.

3.3.2 Remark

1. Every $G_2^*$-space is $g^*G_2^*$
2. Every $g^*G_2^*$-space is $gG_2$

3.3.3 Definition

A space $X$ is said to be $g^*$-irresolutely normal if for any pair of disjoint $g^*$-closed sets $A$ and $B$ there exist $g^*$-open sets $U$ and $V$ such that $A \subseteq U$, $B \subseteq V$ and $U \cap V = \emptyset$.

3.3.4 Theorem

Every $g^*$-irresolutely normal $g^*G_1$-space $X$ is $g^*G_2^*$.

Proof

Let $A$ and $B$ be disjoint connected sets in $X$. Since $X$ is $g^*G_1$, so by Theorem 3.1.7(b) $A$ and $B$ are disjoint $g^*$-closed sets. By application of $g^*$-irresolute normality, there exist disjoint $g^*$-open sets $U$ and $V$ such that $A \subseteq U$, $B \subseteq V$. Hence $X$ is $g^*G_2^*$.

3.3.5 Theorem

Every open subset $Y$ of a $g^*G_2^*$ space $X$ is $g^*G_2^*$.

Proof

Similar to the proof of Theorem 3.1.9

3.3.6 Theorem

If $f: X \rightarrow Y$ is a continuous and open bijection. If $Y$ is $g^*G_2^*$-space, then $X$ is $g^*G_2^*$.

Proof

Let $M$ and $N$ be disjoint connected sets in $X$. Then $f(M)$ and $f(N)$ are connected sets in $Y$ and $f(M) \cap f(N) = \emptyset$. Since $Y$ is $g^*G_1$-space, there exist disjoint $g^*$-open sets $U$ and $V$ such that $f(M) \subseteq U$ and $f(N) \subseteq V$. Hence $M \subseteq f^{-1}(U)$ and $N \subseteq f^{-1}(V)$. Also By Proposition 2.6. and Proposition 2.7. $f^{-1}(U)$ and $f^{-1}(V)$ are $g^*$-open sets. Since $f$ is bijective and $U \cap V = \emptyset$. We get $\emptyset = f^{-1}(U \cap V) = f^{-1}(U) \cap f^{-1}(V)$. Hence $X$ is $g^*G_2^*$-space.

References


Volume 2 Issue 3, March 2013

www.ijsr.net

