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Abstract: Qualitative and quantitative estimation of land surface parameters has great concern for ecological and hydrological system. 
This makes land surface parameters as an important tool to study earth’s climate system especially when satellite data provide timely 
and efficient information about large land area. In the present paper, the study was carried out by using NASA’s hyper spectral EO-1 
Hyperion sensor and multi-spectral Advance Wide Field Sensor (AWiFS) of IRS-P6 for different ranges (lower, middle and upper) of 
Himalaya. The analysis procedure consists of Fast Line-of-sight Atmospheric Analysis of Spectral Hyper cubes (FLAASH) atmospheric 
correction code derives its physics-based algorithm from the Moderate Resolution Transmittance (MODTRAN4) radiative transfer code 
as well as radiometric (atmospheric + topographic) correction to retrieve surface reflectance. The terrain characteristics have been 
extracted from Digital Elevation Model (DEM) using 1:50,000 scale SoI maps at 40m contour interval. Various statistical models for 
supervised classification such as spectral angle mapper (SAM), support vector machine (SVM), and maximum likelihood (MLH) has 
been examined and validated with existed Normalized Difference; Vegetation Index (NDVI), Snow Index (NDSI) and Glacier Index 
(NDGI) models. The spectral reflectance of different surface parameters has been collected in field, using spectro-radiometer and 
compared with satellite derived spectra. Present work has focused on three key issues (a) accurate registration of the images for land 
cover maps (b) estimation of spatial distribution of snow cover at sub pixel level and (c) multi-temporal input to hydrological, ecological 
and land surface modeling. Study distills these statistical approaches into a unique set of hierarchical taxonomy that reveals the 
similarities and differences between algorithms. 
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1. Introduction 
Hydrological cycle and ecological system are generally 
affected by the level and type of land surface parameters 
such as land covers which includes: snow, water, grassland, 
forest, and bare soil [1]. And extraction of surface 
parameters has world-wide concern to understand its impact 
on radiation balance, local climate, global climate change, 
biogeochemistry, diversity and abundance of terrestrial 
species. Thus an accurate representation of surface 
parameters and biophysical attributes (soils, elevation, 
topography-slope and aspect, etc.) of the landscape within 
Himalaya is required [2]. In the last three decades, 
considerable advancement in space technology providing a 
numerous satellite platforms to study complex physical 
processes of the earth-atmosphere system [3]. And one of the 
best basic characteristics of remote sensing is the extensive 
use of quantitative algorithms for estimating earth surface 
variables [4]. The accurate estimation of surface variable 
using coarse resolution satellite sensor is challenging task 
due to mixing of various heterogeneous land features in a 
pixel. Sub-pixel classification techniques using multispectral 
data have been reported by many authors [5], [6] to improve 
the accuracy of classification for many applications in the 
field of earth surveys. However, for certain applications there 
is a limit in the spatial and spectral resolution of satellite 
sensor which restricts the usefulness of multispectral data 
[7]. 
 
To get full advantages of spatial and spectral resolution, 
hyper spectral imagery EO-1 Hyperion and medium  

 
resolution AWiFS sensor provides opportunities to extract 
more detailed information than traditional multispectral data. 
The main objective of the present paper is to extract land 
surface parameters for different ranges of Himalayas with 
varying altitude from 1100m to 6000m. Various statistical 
models for supervised classification such as spectral angle 
mapper (SAM), support vector machine (SVM), and 
maximum likelihood (MLH) has been examined and 
compared/validate with existed models.  

2. Study area 
The study area is divided in three different zones of 
Himalaya. 1st study area is located in Pir-Panjal range of 
lower Himalayan Zone [8] lies at 32011’25’’N-32026’28’’N 
latitude and 7700’21’’E-77020’25’’E longitude. The area is 
thickly forested covered maximum with coniferous trees in 
the lower altitude along the valley and its average altitude 
varies from 1100m to 5000 m [9]. This lower Himalayan 
zone is adjacent to the 2nd study area, that lies at 
32011’40’’N-32017’46’’ N latitude and 78030’13’’E-
78030’14’’E longitude in middle (greater) Himalayan Zone 
which is characterized by fairly cold temperatures, heavy 
snowfall and higher elevations. And the 3rd study area is 
located in the Karakoram Range of upper Himalayan Zone 
lies between 35042’7’’N-35048’13’’N and 76020’5’’E-
76020’6’’E. The majority of the slopes inclination lies in the 
range of 55-60 degree. Figure 1 shows different study area 
on SoI map and on different satellite images.  
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Figure 1: Study area on India Map with different ranges of Himalaya and AWiFS-Hyperion satellite images of Lower, 
Middle and Upper Himalaya 

 
Table 1: Salient specification of IRS-P6_AWiFS Sensor 

Band 
No 

Spectral Bands 
(nm) 

Spatial 
Resolution 
at Nadir 

(m) 

Quantization 
(bit) 

Radiance 
(mWcm-2Sr-1µm-1) 

Mean solar Exo-atmospheric spectral 
irradiance 

(mWcm-2µm-1) 

    Minimum Maximum  

B1 520-590 56 10 0 52.34 185.3218 

B2 620-680 56 10 0 40.75 158.042 

B3 770-860 56 10 0 28.425 108.357 

B4 1550-1700 56 10 0 4.645 23.786 

 
2.1 AWiFS 
 
Study on lower Himalayan Zone was carried out with multi-
temporal Advance Wide Field Sensor (AWiFS) of 
RESOURCESAT-1 dated 24-December-2008 and 11-March-
2009. AWiFS scans a 740 km wide swath, acquiring data in 
4 bands including Visible (Green and Red), NIR and SWIR. 
Its spatial resolution is 56m at Nadir. Its radiometric 
resolution is 10 bit, which does not saturate over snow. The 
salient specifications of AWiFS sensor is given in Table 1. 
 
 
 
 

 
2.2 EO-1 Hyperion  
 
The study at middle and upper Himalayan Zone was carried 
out with Level 1_A: L1G/L1T data (geometric and terrain 
corrected) of Hyperion sensor onboard NASA’s Earth 
Observing one (EO -1) platform. Hyperion collects 220 
unique spectral channels ranging from 357nm to 2576nm 
with a 10-nm bandwidth [10]. The instrument operates in a 
push broom fashion, with a spatial resolution of 30 meters 
for all bands with a standard scene width of 7.7 kilometers. 
The data is available in 16-bit signed integer’s radiance 
values.  
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3. Methodology 
3.1 Satellite data processing  
 
All the AWiFS images were geo-referenced to the Everest 
datum in ERDAS/ Imagine 9.1 (Leica Geosystems GIS & 
Mapping LLC) with sub-pixel accuracy using nearest 
neighborhood re-sampling technique. A DEM of the study 
area was generated using 1:50,000 survey of India (SoI) 
toposheet at 40m contour level. Whereas Hyperion images 
are geometric and terrain corrected [10] covered the 
wavelength region by two detector arrays, one for the visible 
and near -infrared (VNIR: 356 nm to 1058 nm) and other for 
short-wave infrared (SWIR: 852 nm to 2577 nm) with 242 
bands of 10 nm spectral resolution and 30 m spatial 
resolution [10]. But due to radiometric detraction and signal 
to noise issues only 198 bands are calibrated [11]. The detail 
description of radiometric errors in Hyperion data are 
reported by Bindschadler (2003) [12]. As a result, only a 
subset of 158 bands maintained for further analysis. 
Hyperion satellite data was pre-processed in ENVI 4.7 
software [13]. The flow chart of the detailed methodology is 
given in figure 2. 
 
3.2 Radio metrically corrected reflectance  

 
3.2.1 For AWiFS image 
 
Image-based atmospherically corrected target spectral 
reflectance on the tilted surface, RλT, from sensor radiance, 
Lλ, is obtained using the following model [14], [15]:  
  

 Rλ� = π��λ������

����� ���θ����������
  

 
Where Lp is the path radiance in mWcm–2sr–1µm–1 [16] and d 
is the Earth–Sun distance in astronomical units [17]. E0 is 
band pass exoatmospheric spectral irradiance (Table. 1), Ed 
is down welling spectral irradiance at the surface due to 
diffused radiation and assumed equal to zero [18], θz is the 
solar zenith angle [19] and calculated for each pixel of the 
study area, tv is atmospheric transmittance along the path 
from ground surface to sensor and tz is atmospheric 
transmittance along the path from Sun to ground calculated 
for the AWiFS spectral bands using the model [14]. The 
parameter Et is the terrain irradiance contributed due to 
reflected radiation from the adjacent terrain. It is not 
considered in the present work for AWiFS data because the 
effect needs to be included only with fine spatial resolution 
[20]. Nichol (2006) [21] proposed topographic correction in 
two stages in order to enhance the results on north facing 
slopes in the shadow area, equalization of radiance is 
required with respect to Sun- facing slopes to make the 
extent of corrections equal to the maximum difference of 
radiance values on both aspects. Advantages of this method, 
especially for Himalayan rugged terrain using AWiFS has 
been reported by Mishra (2010) [7]. 
The final corrected reflectance is estimated by the following 
equation [21]: 
 

  R�λ�� = Rλ�� + �R��� − R���� ��〈��� �〉������� ����λ

〈��� �〉�
  

 

Where Rnλij is the normalized reflectance values for image 
pixel ij in waveband λ, Rλij=RλT is the uncorrected original 
reflectance on the tilte s, cos i his is the scaled (0–255) mean 
IL on the south aspect and Cλ is the coefficient estimated for 
each AWiFS and MODIS spectral band using the equation 
proposed by Nichol (2006) [21]. 
 
3.2.2 For EO-1 Hyperion  
 
Atmospheric effects caused by molecular, particulate 
scattering and absorption from the ‘radiance-at-detector has 
been eliminated by using Fast Line-of-sight Atmospheric 
Analysis of Spectral Hyper cubes (FLAASH) module based 
on the MODTRAN-4 radiative transfer code [22], [23] in 
order to retrieve ‘reflectance-at-surface’ values. FLAASH 
allows a researcher to define all parameters that influence 
atmospheric absorption and scattering such as relative solar 
position, aerosol, and scattering models, visibility 
parameters, ozone total vertical column, adjacency effects 
(scattering of reflected radiance from surroundings into a 
pixel), artifact suppression [24] and provides water vapor 
retrieval. In the present study, atmospheric model with 2-
band KT aerosol model [25] was used for atmospheric 
correction. 
 
Digital values in Hyperion data represent absolute radiance 
(W/m2*µm*sr) values stored as 16-bit signed integers with a 
scaling factor of 40 for VNIR bands and 80 for SWIR bands. 
The spectral radiance at sensor pixel using FLAASH is 
derived from a standard equation [23] as: 
  
 � =  ��� +  ���  
  
 ��� = A ρ

��ρ��
 and ��� = B ρ�

��ρ��
+ La 

 
Where Lgi is the at-sensor radiance reflected by the target 
and Lpi is the at-sensor radiance scattered into the path by 
the atmosphere and the surrounding targets, (ρ) is the pixel 
surface reflectance, (ρi) is an average surface reflectance for 
the pixel and a surrounding region, (S) is the spherical 
albedo of the atmosphere and (La) is the radiance back 
scattered by the atmosphere. The coefficient A and B 
depends on atmospheric and geometric conditions but not on 
the surface. Each of these variables depends on spectral 
channels; the wavelength index has been omitted for 
simplicity. 
 
The values of A, B, S and La are determined from 
MODTRAN4 calculations that use the viewing and solar 
angles and the mean surface elevation of the measurement, 
and they assume a certain model atmosphere, aerosol type, 
and visible range.  
 
3.3 Surface parameters extraction 

 
3.3.1 Normalized difference Vegetation Index (NDVI) 
 
Efficiency of NDVI in land cover classification, forest 
covers mapping and vegetation analysis has been reported by 
Justice (1985) [26]. 
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Figure 2: Flow chart summarizing the methodology followed in the study 

 
                         (RNIR- RRed) 

 NDVI = ——————  
                        (RNIR + RRed) 
 

−1≤NDVI≤1 value distribution has used in the study to 
standardize vegetation and non-vegetation area. 
 
3.3.2 Normalized Difference Snow Index (NDSI) 
 
Hall (1995) proposed Normalized Difference Snow Index 
(NDSI) method to identifying snow cover area and defined 
[27] as: 
 

              (RGreen- RSWIR) 
 NDSI = ——————  
             (RGreen + RSWIR) 
 

Here, “RGreen” is the reflectance of the visible band (0.52 – 
0.60 μm) and “RSWIR” is the reflectance of the short wave 
infrared band (1.55-1.75 μm). The specific threshold value of 
NDSI of 0.4 is defined to allow identification of snow 
covered areas from images produced by different sensors 
[28]. The water body also has high positive NDSI values and 
merges with snow cover area. Hence the water body was  

 
masked using the reflectance of NIR band >10 % and the 
NDSI >= 0.4 [9]. A.K Keshri (2009) reported the advantages 
of NDSI to discriminate ‘Snow+ice+ice mixed debris’ 
surfaces from debris [29]. 
 
3.3.3 Normalized Difference Glacier Index (NDGI)  
 
Further discrimination within ‘Snow+ice+IMD’ surfaces has 
been recognized by standard equation of Normalized 
Difference Glacier Index (NDGI) [29] and defined as:  
 

                (RGreen- RRed) 
 NDGI = ——————  
               (RGreen + RRed) 
 

The specific threshold value 0.025 has been chosen for the 
study area data set.  

 
3.4 Land Cover Classification 

  
3.4.1 Spectral angle mapper (SAM) 
 
A physically-based classification spectral angle mapper 
(SAM) method was used in present study for the land-
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surface parameter extraction. The algorithm determines the 
spectral similarity between the two spectra (i.e. the pixel 
spectra to known/reference spectra) by calculating the angle 
between two vectors representing these spectra [30]. 
 
3.4.2 Maximum likelihood (MLH) 
 
Maximum likelihood classification assumes that the statistics 
for each class in each band are normally distributed and 
calculates the probability that a given pixel belongs to a 
specific class. Each pixel is assigned to the class that has the 
highest probability (that is, the maximum likelihood). ENVI 
implements maximum likelihood classification by 
calculating the discriminant functions for each pixel in the 
image [31]. 
 
3.4.3 Support Vector Machine (SVM) 
 
To perform supervised classification on images, support 
vector machine (SVM) is used to identify the class 
associated with each pixel. It separates the classes with a 
decision surface that maximizes the margin between the 
classes. Present classification was done with SVM radial 
basis function (RBF) kernel. This kernel nonlinearly maps 

samples into a higher dimensional space so it can handle the 
case when the relation between class labels and attributes is 
nonlinear. Mathematical representation of radial basis 
function (RBF) kernel [32] is listed as 
 
 K (xi, xj) = exp (-γ||xi - xj||2), γ > 0  
  
Where γ is the gamma term in the kernel function for all 
kernel types except linear. To evaluate all above selected 
methodology and classification results, the selection of end 
members based on “Spectral Hourglass” processing scheme 
[30] were implemented. This Procedure includes the 
generation of Minimum Noise Fraction-Images (MNF) for 
data dimensionality estimation and reduction by de 
correlating the useful information and separating noise [33], 
Pixel Purity Index-Mapping (PPI) for the determination of 
the purest pixels in an image (as potential end members) 
utilizing the (uncorrelated) MNF-images and finally the 
extraction of end members utilizing the n-Dimensional-
Visualizer tool (Figure 3). The extracted end member’s 
spectra are then compared with the in-situ measured spectral 
reflectance using optical spectro-radiometer (Figure 4a, 4b). 

 

 
Figure 3: 3-D visualization for end member’s selection of different classes in Hyperion data (3-May-2011) 

 
The selected image spectra end members were further used 
as reference spectra for various surface parameters using 
SAM, MLH and SVM method. The threshold value of SAM 
angle for classification was set after iteration for tuning the 
angle between the pixel spectra and the reference spectra to 
avoid misclassification especially in the shadow regions. 

 
 
 
 

 
4. Results 

4.1 Spectral analysis 
 
In-situ observations of spectral reflectance using optical 
spectro-radiometer on the same day at the time of satellite 
pass over the study area are collected at number of points for 
pure snow, soil, vegetation, water, less contaminated snow 
(vegetation/soil mixed snow) samples (Figure 4a, 4b) and 
AWiFS spectral reflectance (11 Mar 2009) using Lambertian 
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assumption model (Figure 4c) are now compared with in-situ 
observations. Due to non-availability of any image data with 
spatial resolution higher than 15m and inaccessible region at 
middle and upper Himalaya, Hyperion visible/near-infrared 
image was itself used as reference data. The test sample 

constituting 50 pixels per class was collected and reference 
class values to each point were given on the basis of analysis 
of spectral curves (Figure 4d) which were compared with in-
situ measured spectral reflectance at lower Himalaya. 
 

 
Figure 4: (a-b) In situ measured spectral reflectance (11 Mar 2009) at Lat/log: 32021’33’’N/7707’43’’E (c) AWiFS derived 

spectral reflectance (d) Hyperion derived spectral reflectance 
 
4.2 Retrieval of Land surface parameters 
 
A sequential classification of Himalayan land surface 
parameters such as pure snow/no contamination, less 
contaminated snow/snow-ice mixed debris, debris, soil and 
vegetation has retrieved with various statistical models 
(Figure 5). The comparative visual analysis of AWiFS and 
Hyperion for different dates obtained using SAM, SVM and 
MLH is shown in figure 5 ((g-l), (m-r) and (s-x)). In order to 
confirm the actual land cover area after atmospheric and 
topographic correction, the results are compared with existed 
methods (Figure 5 (a-f)) estimated for both sensors. 
 
Mostly the shady areas in all ranges of Himalayas are 
unclassified with SAM technique. On the other hand MLH 
technique over classifying the surface parameters, whereas 
the appearance of different land covers using SVM (Figure 5 
(m-r)) are quite similar with existed models (Figure 5 (a-f)).  

 
Figure 5 shows the thematic results of various land surface 
parameters. 
 
4.3 Statistical analysis and Validation 
 
For the purpose of validation the classified output, a 
statistical matrix-based approach is developed between 
existed and proposed models (Table 2). Regression analysis 
for different dates (Figure 6) of Hyperion data as well as 
tabular matrix approach (Table 2(a-d)) supporting the 
strength of SVM as an additional tool to retrieve land surface 
parameters at lower, middle and upper Himalaya. 
Classification is not complete unless error analysis has been 
performed. 
 
In this paper, the root mean square error (RMSE) is 
calculated as follows [34] 
 

335



International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064 

Volume 2 Issue 3, March 2013 
www.ijsr.net 

 RMSE =  ∑  �
��� � �

�
∑ ���

�

����
���   

  
Where M is the no. of bands and n is the no. of pixels. 
RMSE values of SVM Model are found to be low as 
comparative to SAM and MLH as shown in Table 3.  
 
5. Conclusion and Discussion 
 
The present paper discusses qualitative and quantitative 
analysis of various statistical methods on AWiFS and 
Hyperion satellite data. Band ratios and vegetation index 
provides useful information in characterizing land covers and 
enhance land-cover mapping. Himalayan land-surface 
parameters such as pure snow/no contamination, less 
contaminated snow/snow-ice mixed debris, debris, soil and 
vegetation has retrieved from various statistical models 
(SAM,SVM and MLH) and compared with existed models 

for different ranges (lower, middle and upper) of Himalayas. 
The SAM and MLH methods are not very successful in 
Himalayan regions and produce poor results. Mostly the 
shady areas in all ranges of Himalayas are unclassified with 
SAM technique. Extracted land surface parameters using 
SVM are quite similar in texture and areas on comparing 
with existed models. In few places, using SVM there is a 
small deviation which may be due to the selection of 
threshold values used for the conversion of indices to surface 
classes. It is important to note that the threshold values are 
likely to be scene dependent and empirical analysis may be 
necessary for each case. Hence the study reveals the 
suitability of SVM model for the different ranges of 
Himalayas for (i) accurate extraction of land surface 
parameters (ii) snow cover distribution at sub-pixel level (iii) 
can provide multi-temporal inputs to various hydrological, 
ecological and land surface modeling. 
 

 
Figure 5: Thematic maps of land surface parameters using (a-f) existed models, (g-l) SAM, (m-r) SVM and (s-x) MLH 
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Table 2 (a): Land covers classification in (% age) with various statistical models 

Study Area Date/Month/ 
Year 

Land Cover Classification in % age (with existed models) 

No contamination/ Pure 
Snow 

 

Less Contaminated 
Snow/Snow-ice mixed 

debris 
Debris 

Non-Snow 
area/Soil/ 
Vegetation 

Lower  
Himalaya 

24-Dec-2008 0 78.44 0 21.56 
11-Mar-2009 0 81.73 0 18.27 

Middle  
Himalaya 

13-Dec-2004 0 68.63 0 31.37 
23-Nov-2005 0 45.75 0 54.25 

Upper 
Himalaya 

03-May-2011 22.98 28.12 34.12 14.78 
04-Dec-2011 21.02 46.60 22.26 10.12 

 
Table 2 (b): Land covers classification in (% age) with various statistical models 

Study Area Date/Month/Year 

Land Cover Classification in % age (with SAM) 
No contamination/ Pure 

Snow 
 

Less Contaminated 
Snow/Snow-ice mixed debris Debris 

Non-Snow 
area/Soil/ 
Vegetation 

Unclassified 

Lower  
Himalaya 

24-Dec-2008 0 86.14 0 11.11 2.75 
11-Mar-2009 0 85.97 0 13.94 0.09 

Middle  
Himalaya 

13-Dec-2004 0 54.00 0 42.96 3.04 
23-Nov-2005 0 47.27 0 48.66 4.07 

Upper 
Himalaya 

03-May-2011 9.17 44.23 24.79 21.75 0.06 
04-Dec-2011 48.45 16.35 22.00 13.04 0.16 

 
Table 2 (c): Land covers classification in (% age) with various statistical models 

Study Area Date/Month/Year 

Land Cover Classification in % age (with SVM) 

No contamination/ Pure 
Snow 

Less Contaminated 
Snow/Snow-ice mixed debris Debris 

Non-Snow 
area/Soil/ 
Vegetation 

Lower  
Himalaya 

24-Dec-2008 0 78.28 0 21.72 
11-Mar-2009 0 80.97 0 19.03 

Middle  
Himalaya 

13-Dec-2004 0 68.82 0 31.18 
23-Nov-2005 0 45.24 0 54.76 

Upper 
Himalaya 

03-May-2011 23.16 27.94 34.25 14.65 
04-Dec-2011 20.53 47.51 22.48 9.48 

 
Table 2 (d): Land covers classification in (% age) with various statistical models 

Study Area Date/Month/ 
Year Land Cover Classification in % age (with MLH) 

 
 

 
 

No contamination/ Pure 
Snow 

 

Less Contaminated Snow/Snow-ice mixed 
debris Debris 

Non-Snow 
area/Soil/ 
Vegetation 

Lower  Himalaya 24-Dec-2008 0 72.18 0 27.82 
11-Mar-2009 0 84.84 0 15.16 

Middle  
Himalaya 

13-Dec-2004 0 36.78 0 63.22 
23-Nov-2005 0 40.62 0 59.38 

Upper 
Himalaya 

03-May-2011 15.19 54.90 23.00 6.91 
04-Dec-2011 16.17 52.12 20.13 11.58 

 
Table 3: Root Mean Square Error (RMSE) 

Study area Root mean square error (RMSE) 

Imagery  date SAM SVM MLH 
 
Lower  Himalaya 

24-Dec-2008 0.10 0.03 0.06 

11-Mar-2009 0.09 0.05 0.06 
 
Middle  Himalaya 13-Dec-2004 0.20 0.05 0.08 

23-Nov-2005 0.23 0.04 0.07 
 
Upper Himalaya 03-May-2011 0.09 0.04 0.09 

04-Dec-2011 0.08 0.03 0.10 
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Figure 6: Comparative and correlation analysis between existed models and SVM with Hyperion data on (a) 3-May 2011 (b) 

4-Dec-2011 
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