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Abstract: In this paper, we present a high performance and low cost hardware architecture for real-time implementation of forward 
transform and quantization and inverse transform and inverse quantization used in H.264 / MPEG4 Part 10 video coding standard. The 
hardware architecture is based on a reconfigurable data path with only one multiplier. This hardware is designed to be used as part of a 
complete low power H.264 video coding system for portable applications. The proposed architecture is implemented in Verilog HDL. The 
Verilog RTL code is verified to work at 81 MHz in a Xilinx Vertex II FPGA and it is verified to work at 210 MHz in a 0.18μ ASIC 
implementation. The FPGA and ASIC implementations can code 27 and 70 VGA frames (640x480) per second respectively. 
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1. Introduction 
 
The video compression efficiency achieved in H.264 
standard is not a result of any single feature but rather a 
combination of a number of encoding tools. As it is shown in 
the top-level block diagram of an H.264 Encoder in Figure 1, 
two of these tools are the transform and quantization 
algorithms. Even though most of the previous video coding 
standards, e.g. MPEG-1, H.261, MPEG-2, H.263 and 
MPEG-4, use the 8x8 Discrete Cosine Transform (DCT) to 
transform the residual data, H.264 uses a 4x4 integer 
transform for transforming residual data. The integer 
transform achieves very similar results to 8x8 DCT without 
any floating point operations. In addition, all the 
multiplication operations in the forward and inverse 
transform algorithms can be implemented in hardware with 
low cost binary shifters. Since the inverse transform in H.264 
is defined by exact integer operations, inverse transform 
mismatches are avoided. Since a scaling factor is used in the 
quantization algorithm, a multiplier is needed for its 
implementation  
 
2. Proposed Algorithm 
 
Video compression systems are used in many commercial 
products, from consumer electronic devices such as digital 
camcorders, cellular phones to video teleconferencing 
systems. These applications make the video compression 
hardware devices an inevitable part of many commercial 
products. To improve the performance of the existing 
applications and to enable the applicability of video 
compression to new real-time applications, recently, a new 
international standard for video compression is developed. 
This new standard, offering significantly better video 
compression efficiency than previous International standards, 
is developed with the collaboration of ITU and ISO 
standardization organizations. Hence it is called with two 
different names, H.264 and MPEG4 Part 10. 
 

 
 
In this paper, we present a high performance and low cost 
hardware architecture for real-time implementation of H.264 
forward transform and quantization and inverse transform 
and quantization algorithms. The hardware architecture is 
based on a reconfigurable data path with only one multiplier. 
This hardware is designed to be used as part of a complete 
low power H.264 video coding system for portable 
applications. The proposed architecture is implemented in 
Verilog HDL. The Verilog RTL code is verified to work at 
81 MHz in a Xilinx Virtex II FPGA and it is verified to work 
at 210 MHz in a 0.18μ ASIC implementation. The FPGA and 
ASIC implementations can code 27 and 70 VGA frames 
(640x480) per second respectively.  
 
Hardware architecture only for real-time implementation of 
H.264 forward and inverse transform algorithms is presented 
in [6]. This hardware achieves higher performance than our 
hardware design at the expense of a much higher hardware 
cost. Our hardware design is a more cost-effective solution 
for portable applications. They use 16 adders and 16 internal 
register files in their data path as opposed to 3 adders and 6 
internal register files in the transform part of our data path. 
Their data path has an area of 6538 gates in TSMC 0.35μ 
technology. Our data path, on the other hand, has an area of 
2904 gates in AMS 0.35μ technology. 
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3. Overview of H.264 Transform and 

Quantization Algorithms 
 
The basic transform coding process in H.264, shown in 
Figure 1, is similar to that of previous standards. The process 
includes a forward transform and quantization followed by 
zig-zag ordering and entropy coding. The transform coded 
residual data is also reconstructed. The reconstruction 
process includes an inverse quantization and inverse 
transform followed by motion compensation. The 
reconstructed data before de blocking filter is used for intra 
prediction in current frame, and the reconstructed data after 
de blocking filter is used for motion estimation in future 
frames 
 
A more detailed flow of the transform and quantization 
algorithms is presented in Figure 2. The input to the forward 
transform algorithm is a 4x4 block of residual data obtained 
by subtracting the prediction from the original image data. 
The transform and quantization algorithms process the blocks 
in a macro block as explained in the following sections, and 
send the resulting data to entropy coding and reconstruction 
as shown in the figure. 
 
A.Transformation algorithm oveview 
 
The purpose of the transform stage is to convert residual data 
into another domain (the transform domain). The choice of 
transform depends on a number of criteria: 
 
a. Data in the transform domain should be de-correlated 

(separated into components with minimal inter-
dependence) and compact (most of the energy in the 
transformed data should be concentrated in to a small 
number of values). 

b. The transform should be reversible. 
c. The transform should be computationally tractable (low 

memory requirement, achievable using limited-precision 
arithmetic, low number of arithmetic operations, etc.). 

 
Discrete Cosine Transform which is a block-based transform 
requires low memory but tend to suffer from arte-facts at 
edges (blockiness) and also complex floating point 
multiplications are involved in its computation which 
decreases the computational speed. Discrete Wavelet 
Transform an image-based transform considers entire image 
as a single tile and operates on it, in this process it takes high 
memory as the whole image is being processed as a single 
unit. Integer transformation which we are going to use shares 
the common properties of DCT as it is developed from it. 

The main advantage of this is only integer values will be 
involved in computation process so finally we go 
transformation without the need of a multiplier we just fulfill 
our requirement with just adders and some shifters.  
 
i. Development of Integer Transform from DCT 
 
Discrete Cosine Transform: 
                                         Y = A× X × AT 

 Where X is the residual matrix, A is the DCT kernel given 
as 

Aij = Ci Cos (2j+1) iπ /2N where Ci= sqrt(1/N) for i=0; 
Ci=sqrt (2/N) for i>0 N-1 N-1                                        

Yxy = CxCy ∑ ∑ Xij (cos ((2j+1)y*π/2N) (cos((2i+1)x*π/2N) 
i=0 j=0 N-1 N-1                 
 Xij = ∑ ∑ CxCyYxy (cos ((2j+1)y*π/2N) (cos((2i+1)x*π/2N) 
i=0 j=0 
 
B. Quantization Algorithm Overview  
 
1. Consider a block of pixel data that is processed by a two-

dimensional Discrete Cosine Transform (DCT) followed 
by quantization, i.e. rounded division by a quantization 
step size, Qstep. 

2. Rearrange the DCT process into a core transform (Cf4) and 
a scaling matrix (Sf4). 

3. Scale the quantization process by a constant (215) and 
compensate by dividing and rounding the final result. 
The constant factor 215 is chosen as a compromise 
between higher accuracy and limited arithmetic 
precision. Combine Sf4 and the quantization process  into  
Mf4 , where: 

 

Mf                           ----------- (1) 

Mf is actually derived from Vi (from eq: 2) 
 

Development of Rescaling and Inverse 
Transform Process:  
 

 Consider a re-scaling or ‘inverse quantization’ operation 
followed by a two-dimensional inverse DCT (IDCT). 

 Rearrange the IDCT process into a core transform (Ci) and a 
scaling matrix (Si)  

 Scale the re-scaling process by a constant (26) and 
compensate by dividing and rounding the final result Note 
that rounding need not be to the nearest integer. 

 Combine the re-scaling process and Si into Vi where: 
                    Vi    Si 

.  
step                  ------------ (2) 

 
Developing Cf4 and Sf4 (for 4 X 4 blocks): 
 
Consider a 4 X 4 two dimensional DCT of a block X: 
 
        Y = A·X·AT                  ------------ (3) 
 
Where · indicates matrix multiplication and 
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a =  

b= cos =0.6532…. 

   c= cos  =0.2706… 

 
The rows of A are orthogonal and have unit norms (i.e. the 
rows are orthonormal).Calculation of Eq (3) on a practical 
processor requires approximation of the irrational numbers b 
and c. A fixed-point approximation is equivalent to scaling 
each row of A and rounding to the nearest integer. Choosing 
a particular approximation (multiply by 2.5 and round) gives 
Cf4: 
  

 
This approximation is chosen to minimize the complexity of 
implementing the transform (multiplication by Cf4 requires 
only additions and binary shifts) whilst maintaining good 
compression performance. 
 
The rows of Cf4 have different norms. To restore the 
orthonormal property of the original matrix A, multiply all 

the values cij in row r by  

Then the matrix computation in eq(3) can be factorized to the 
following equivalent form  

    Y = [  · X · ] • Sf4      

Where • denotes element by element multiplication where 
P=Q•R means that each element pij = qij·rij and   

 
Since the scaling matrix Sf4 could be merged in to 

quantization process, then the core transform ( ·X· ) 

become 4X4 forward integer transform without 
multiplications. 
 
Deriving Mf4: 
 
The core inverse transform Ci and the rescaling matrix Vi are 
defined in the H.264 standard. Hence now we will derive Mf 
from Vi. H.264 supports a range of quantization step sizes 
Qstep . The precise step sizes are not defined in the standard, 
rather the scaling matrix Vi is specified. Qstep values 

corresponding to the entries in Vi are shown in the following 
Table: 
 

 
Table 1: QP vs Qstep 

 

The ratio between successive Qstep values is chosen to be 

 so that Qstep doubles in size when QP 

increases by 6. Any value of Qstep can be derived from the 
first 6 values in the table (QP0 – QP5) as follows: 
 
Qstep(QP) = Qstep(QP%6) · 2floor(QQP/6) The values in the matrix 
Vi4 depend on Qstep and hence QP and on the scaling factor 
matrix  Si4.   These are shown for QP 0 to 5 in Table below: 
 

 
Table 2: Vi Defined in h.264 standard 

 

Combining equations 1 and 2 we get Mf4       

Si4,Sf4 are known and Vi is defined in the standard and we get 
Mf4 as: 
 

 
Table 3: Mi Defined in h.264 standard 

 
Denoting this as   Mf4 =       Where  is 

row r, column n of v. 
 
For values of QP>5, index the row of array v by QP%6 and 
then multiply by 2floor (QP/6).  
In general: 
       Mf4 = m(QP%6, n) / 2floor(QP/6) 
    Where  is row r, column n of v. 

The complete forward transform, scaling and quantization 
process for 4 × 4 blocks 
 
Y = round ([Cf4] · [X] · [CT

f4] ● m(QP%6, n) ] 
·(1/215+floor(QP/6))) 
 
4. Conclusion 
 
Hence the design and implementation of Forward Integer 
Transformation and Inverse Integer Transformation are done 
and the entire modules are simulated using Xilinx 12.2 
version. There was no change in the output of the forward 
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integer transformation results compared to Mat lab results. In 
case of Inverse Integer Transformation as we have taken 
approximations, we got a PSNR of 40.44dB. Development of 
Integer transformation from Discrete Cosine Transformation 
has been studied and later development & implementation of 
Integer transformation architecture is done in Xilinx ISE 
using SPARTAN 3E family, XC3S1200E device, FG400 
package. We got the maximum frequency of 138.22 MHz for 
this architecture. 
 
References 
 
[1] T. Wiegand, G. J. Sullivan, G. Bjøntegaard, and A. 

Luthra “Overview of the H.264/AVC Video Coding 
Standard”, IEEE Trans. on Circuits and Systems for 
Video Technology vol. 13, no. 7, pp. 560–576, July 
2003 

[2] I. Richardson, H.264 and MPEG-4 Video Compression, 
Wiley, 

[3] 2003 
[4] Joint Video Team (JVT) of ITU-T VCEG and ISO/IEC 

MPEG, Draft ITU-T Recommendation and Final Draft 
International Standard of Joint Video Specification, 
ITU-T Rec. H.264 and ISO/IEC 14496-10 AVC, M 

[5] Joint Video Team (JVT) of ITU-T VCEG and ISO/IEC 
MPEG, Joint Model (JM) Reference Software Version 
9.2, 

[6] http://bs.hhi.de/suehring/ 
[7] H. Malvar, A. Hallapuro, M. Karczewicz. and L. 

Kerofsky, "Low-Complexity Transform and 
Quantization in H.264 / AVC", 

[8] IEEE Trans. on Circuits and Systems for Video 
Technology, vol. 13, no. 7, pp. 598–603, July 2003. 

[9] T. C. Wang, Y. W. Huang, H. C. Fang, and L. G. Chen, 
“Parallel 4x4 2D Transform and Inverse Transform 
Architecture for MPEG-4 AVC / H.264”, Proc. of 
IEEE ISCAS, 20 

[10] Xilinx Inc., Virtex-II™ Platform FPGAs: Complete 
Data Sheet 

[11] DS031, http://www.xilinx.com, March 2004 
 
Authors Profile 
 

G. Dileepvamshi received his B. Tech degree in 
Electronics and Communication Engineering from 
Swami Ramananda Thirtha Inst of Science and 
Technology, JNTU University, Hyderabad in 2009, and 
currently pursuing the M. Tech degree in VLSI System 

Design from CVSR College of Engineering, JNTU University, 
Hyderabad respectively. His research interests include Image 
Processing and H.264 video compression. 
 

P. Ramakrishna received the B. Tech degree in 
Electronics and Communication Engineering from NIT, 
Warangal in 2006, and the M. Tech degree in VLSI 
System Design from CVR College of Engineering, 
JNTU University, Hyderabad in 2009 respectively. He 

is currently an Associate Professor with the CVSR College of 
Engineering with 6 years of experience. He was with the 
Department of Electronics and Communication Engineering, JNTU 
University. His research interests include image processing and 
H.264 video compression. 

83




