
International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 3, March 2013
www.ijsr.net

VLSI Implementation of H.264 Transform and
Quantization Algorithms

G. Dileepvamshi1, P. Ramakrishna2

1M.Tech Student

CVSR College of Engineering, Hyderabad, India
dileep.vamshi@gmail.com

2Associate Prof, ECE Department

CVSR College of Engineering, Hyderabad, India
rkkittu111@gmail.com

Abstract: In this paper, we present a high performance and low cost hardware architecture for real-time implementation of forward
transform and quantization and inverse transform and inverse quantization used in H.264 / MPEG4 Part 10 video coding standard. The
hardware architecture is based on a reconfigurable data path with only one multiplier. This hardware is designed to be used as part of a
complete low power H.264 video coding system for portable applications. The proposed architecture is implemented in Verilog HDL. The
Verilog RTL code is verified to work at 81 MHz in a Xilinx Vertex II FPGA and it is verified to work at 210 MHz in a 0.18μ ASIC
implementation. The FPGA and ASIC implementations can code 27 and 70 VGA frames (640x480) per second respectively.

Keywords: H.264, forward transform and quantization.

1. Introduction

The video compression efficiency achieved in H.264
standard is not a result of any single feature but rather a
combination of a number of encoding tools. As it is shown in
the top-level block diagram of an H.264 Encoder in Figure 1,
two of these tools are the transform and quantization
algorithms. Even though most of the previous video coding
standards, e.g. MPEG-1, H.261, MPEG-2, H.263 and
MPEG-4, use the 8x8 Discrete Cosine Transform (DCT) to
transform the residual data, H.264 uses a 4x4 integer
transform for transforming residual data. The integer
transform achieves very similar results to 8x8 DCT without
any floating point operations. In addition, all the
multiplication operations in the forward and inverse
transform algorithms can be implemented in hardware with
low cost binary shifters. Since the inverse transform in H.264
is defined by exact integer operations, inverse transform
mismatches are avoided. Since a scaling factor is used in the
quantization algorithm, a multiplier is needed for its
implementation

2. Proposed Algorithm

Video compression systems are used in many commercial
products, from consumer electronic devices such as digital
camcorders, cellular phones to video teleconferencing
systems. These applications make the video compression
hardware devices an inevitable part of many commercial
products. To improve the performance of the existing
applications and to enable the applicability of video
compression to new real-time applications, recently, a new
international standard for video compression is developed.
This new standard, offering significantly better video
compression efficiency than previous International standards,
is developed with the collaboration of ITU and ISO
standardization organizations. Hence it is called with two
different names, H.264 and MPEG4 Part 10.

In this paper, we present a high performance and low cost
hardware architecture for real-time implementation of H.264
forward transform and quantization and inverse transform
and quantization algorithms. The hardware architecture is
based on a reconfigurable data path with only one multiplier.
This hardware is designed to be used as part of a complete
low power H.264 video coding system for portable
applications. The proposed architecture is implemented in
Verilog HDL. The Verilog RTL code is verified to work at
81 MHz in a Xilinx Virtex II FPGA and it is verified to work
at 210 MHz in a 0.18μ ASIC implementation. The FPGA and
ASIC implementations can code 27 and 70 VGA frames
(640x480) per second respectively.

Hardware architecture only for real-time implementation of
H.264 forward and inverse transform algorithms is presented
in [6]. This hardware achieves higher performance than our
hardware design at the expense of a much higher hardware
cost. Our hardware design is a more cost-effective solution
for portable applications. They use 16 adders and 16 internal
register files in their data path as opposed to 3 adders and 6
internal register files in the transform part of our data path.
Their data path has an area of 6538 gates in TSMC 0.35μ
technology. Our data path, on the other hand, has an area of
2904 gates in AMS 0.35μ technology.

80

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 3, March 2013
www.ijsr.net

3. Overview of H.264 Transform and

Quantization Algorithms

The basic transform coding process in H.264, shown in
Figure 1, is similar to that of previous standards. The process
includes a forward transform and quantization followed by
zig-zag ordering and entropy coding. The transform coded
residual data is also reconstructed. The reconstruction
process includes an inverse quantization and inverse
transform followed by motion compensation. The
reconstructed data before de blocking filter is used for intra
prediction in current frame, and the reconstructed data after
de blocking filter is used for motion estimation in future
frames

A more detailed flow of the transform and quantization
algorithms is presented in Figure 2. The input to the forward
transform algorithm is a 4x4 block of residual data obtained
by subtracting the prediction from the original image data.
The transform and quantization algorithms process the blocks
in a macro block as explained in the following sections, and
send the resulting data to entropy coding and reconstruction
as shown in the figure.

A.Transformation algorithm oveview

The purpose of the transform stage is to convert residual data
into another domain (the transform domain). The choice of
transform depends on a number of criteria:

a. Data in the transform domain should be de-correlated

(separated into components with minimal inter-
dependence) and compact (most of the energy in the
transformed data should be concentrated in to a small
number of values).

b. The transform should be reversible.
c. The transform should be computationally tractable (low

memory requirement, achievable using limited-precision
arithmetic, low number of arithmetic operations, etc.).

Discrete Cosine Transform which is a block-based transform
requires low memory but tend to suffer from arte-facts at
edges (blockiness) and also complex floating point
multiplications are involved in its computation which
decreases the computational speed. Discrete Wavelet
Transform an image-based transform considers entire image
as a single tile and operates on it, in this process it takes high
memory as the whole image is being processed as a single
unit. Integer transformation which we are going to use shares
the common properties of DCT as it is developed from it.

The main advantage of this is only integer values will be
involved in computation process so finally we go
transformation without the need of a multiplier we just fulfill
our requirement with just adders and some shifters.

i. Development of Integer Transform from DCT

Discrete Cosine Transform:
 Y = A× X × AT

 Where X is the residual matrix, A is the DCT kernel given
as

Aij = Ci Cos (2j+1) iπ /2N where Ci= sqrt(1/N) for i=0;
Ci=sqrt (2/N) for i>0 N-1 N-1

Yxy = CxCy ∑ ∑ Xij (cos ((2j+1)y*π/2N) (cos((2i+1)x*π/2N)
i=0 j=0 N-1 N-1
 Xij = ∑ ∑ CxCyYxy (cos ((2j+1)y*π/2N) (cos((2i+1)x*π/2N)
i=0 j=0

B. Quantization Algorithm Overview

1. Consider a block of pixel data that is processed by a two-

dimensional Discrete Cosine Transform (DCT) followed
by quantization, i.e. rounded division by a quantization
step size, Qstep.

2. Rearrange the DCT process into a core transform (Cf4) and
a scaling matrix (Sf4).

3. Scale the quantization process by a constant (215) and
compensate by dividing and rounding the final result.
The constant factor 215 is chosen as a compromise
between higher accuracy and limited arithmetic
precision. Combine Sf4 and the quantization process into
Mf4 , where:

Mf ----------- (1)

Mf is actually derived from Vi (from eq: 2)

Development of Rescaling and Inverse
Transform Process:

 Consider a re-scaling or ‘inverse quantization’ operation
followed by a two-dimensional inverse DCT (IDCT).

 Rearrange the IDCT process into a core transform (Ci) and a
scaling matrix (Si)

 Scale the re-scaling process by a constant (26) and
compensate by dividing and rounding the final result Note
that rounding need not be to the nearest integer.

 Combine the re-scaling process and Si into Vi where:
 Vi Si

.
step ------------ (2)

Developing Cf4 and Sf4 (for 4 X 4 blocks):

Consider a 4 X 4 two dimensional DCT of a block X:

 Y = A·X·AT ------------ (3)

Where · indicates matrix multiplication and

81

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 3, March 2013
www.ijsr.net

a =

b= cos =0.6532….

 c= cos =0.2706…

The rows of A are orthogonal and have unit norms (i.e. the
rows are orthonormal).Calculation of Eq (3) on a practical
processor requires approximation of the irrational numbers b
and c. A fixed-point approximation is equivalent to scaling
each row of A and rounding to the nearest integer. Choosing
a particular approximation (multiply by 2.5 and round) gives
Cf4:

This approximation is chosen to minimize the complexity of
implementing the transform (multiplication by Cf4 requires
only additions and binary shifts) whilst maintaining good
compression performance.

The rows of Cf4 have different norms. To restore the
orthonormal property of the original matrix A, multiply all

the values cij in row r by

Then the matrix computation in eq(3) can be factorized to the
following equivalent form

 Y = [· X ·] • Sf4

Where • denotes element by element multiplication where
P=Q•R means that each element pij = qij·rij and

Since the scaling matrix Sf4 could be merged in to

quantization process, then the core transform (·X·)

become 4X4 forward integer transform without
multiplications.

Deriving Mf4:

The core inverse transform Ci and the rescaling matrix Vi are
defined in the H.264 standard. Hence now we will derive Mf
from Vi. H.264 supports a range of quantization step sizes
Qstep . The precise step sizes are not defined in the standard,
rather the scaling matrix Vi is specified. Qstep values

corresponding to the entries in Vi are shown in the following
Table:

Table 1: QP vs Qstep

The ratio between successive Qstep values is chosen to be

 so that Qstep doubles in size when QP

increases by 6. Any value of Qstep can be derived from the
first 6 values in the table (QP0 – QP5) as follows:

Qstep(QP) = Qstep(QP%6) · 2floor(QQP/6) The values in the matrix
Vi4 depend on Qstep and hence QP and on the scaling factor
matrix Si4. These are shown for QP 0 to 5 in Table below:

Table 2: Vi Defined in h.264 standard

Combining equations 1 and 2 we get Mf4

Si4,Sf4 are known and Vi is defined in the standard and we get
Mf4 as:

Table 3: Mi Defined in h.264 standard

Denoting this as Mf4 = Where is

row r, column n of v.

For values of QP>5, index the row of array v by QP%6 and
then multiply by 2floor (QP/6).
In general:
 Mf4 = m(QP%6, n) / 2floor(QP/6)
 Where is row r, column n of v.

The complete forward transform, scaling and quantization
process for 4 × 4 blocks

Y = round ([Cf4] · [X] · [CT

f4] ● m(QP%6, n)]
·(1/215+floor(QP/6)))

4. Conclusion

Hence the design and implementation of Forward Integer
Transformation and Inverse Integer Transformation are done
and the entire modules are simulated using Xilinx 12.2
version. There was no change in the output of the forward

82

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 3, March 2013
www.ijsr.net

integer transformation results compared to Mat lab results. In
case of Inverse Integer Transformation as we have taken
approximations, we got a PSNR of 40.44dB. Development of
Integer transformation from Discrete Cosine Transformation
has been studied and later development & implementation of
Integer transformation architecture is done in Xilinx ISE
using SPARTAN 3E family, XC3S1200E device, FG400
package. We got the maximum frequency of 138.22 MHz for
this architecture.

References

[1] T. Wiegand, G. J. Sullivan, G. Bjøntegaard, and A.

Luthra “Overview of the H.264/AVC Video Coding
Standard”, IEEE Trans. on Circuits and Systems for
Video Technology vol. 13, no. 7, pp. 560–576, July
2003

[2] I. Richardson, H.264 and MPEG-4 Video Compression,
Wiley,

[3] 2003
[4] Joint Video Team (JVT) of ITU-T VCEG and ISO/IEC

MPEG, Draft ITU-T Recommendation and Final Draft
International Standard of Joint Video Specification,
ITU-T Rec. H.264 and ISO/IEC 14496-10 AVC, M

[5] Joint Video Team (JVT) of ITU-T VCEG and ISO/IEC
MPEG, Joint Model (JM) Reference Software Version
9.2,

[6] http://bs.hhi.de/suehring/
[7] H. Malvar, A. Hallapuro, M. Karczewicz. and L.

Kerofsky, "Low-Complexity Transform and
Quantization in H.264 / AVC",

[8] IEEE Trans. on Circuits and Systems for Video
Technology, vol. 13, no. 7, pp. 598–603, July 2003.

[9] T. C. Wang, Y. W. Huang, H. C. Fang, and L. G. Chen,
“Parallel 4x4 2D Transform and Inverse Transform
Architecture for MPEG-4 AVC / H.264”, Proc. of
IEEE ISCAS, 20

[10] Xilinx Inc., Virtex-II™ Platform FPGAs: Complete
Data Sheet

[11] DS031, http://www.xilinx.com, March 2004

Authors Profile

G. Dileepvamshi received his B. Tech degree in
Electronics and Communication Engineering from
Swami Ramananda Thirtha Inst of Science and
Technology, JNTU University, Hyderabad in 2009, and
currently pursuing the M. Tech degree in VLSI System

Design from CVSR College of Engineering, JNTU University,
Hyderabad respectively. His research interests include Image
Processing and H.264 video compression.

P. Ramakrishna received the B. Tech degree in
Electronics and Communication Engineering from NIT,
Warangal in 2006, and the M. Tech degree in VLSI
System Design from CVR College of Engineering,
JNTU University, Hyderabad in 2009 respectively. He

is currently an Associate Professor with the CVSR College of
Engineering with 6 years of experience. He was with the
Department of Electronics and Communication Engineering, JNTU
University. His research interests include image processing and
H.264 video compression.

83

