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Abstract: In this paper we proved that the lattice  of all L-closure operators  on a  fixed set  X  is not  modular. We  identified  the  
infra  L-closure operators and ultra  L-closure operators.  Also established  the relation between ultra L-topologies and ultra  L-
closure operators.  
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1. Introduction 
In 1965 L. A Zadeh [11] introduced fuzzy sets as a 
generalization  of ordinary sets.  After that C. L. Chang  
[2] introduced  fuzzy topology and  that  led to the 
discussion of various aspects of L-topology by many 
authors.  The Čech closure spaces introduced by Čech E. 
[1] is a generalization  of the topological spaces. The 
theory of fuzzy closure spaces has been established by 
Mashhour and Ghanim [4] and Srivastava et.  al [6],[7]. 
The definition of Mashhour and Ghanim  is an analogue 
of Čech closure spaces and Srivastava  et.  al.  have 
introduced  it as an analogue of Birkhoff closure spaces in 
[7]. Based on [7], Rekha  Srivastava  and  Manjari  
Srivastava  studied  the  subspace  of a fuzzy closure space.   
The  notion  of T0-fuzzy closure spaces and  T1 fuzzy 
closure spaces were also introduced  in [6].  In [5] P. T. 
Ramachandran studied  the properties  of lattice  of closure 
operators.  In [3] T. P. Johnson studied some properties  
of the lattice  L(X ) of all fuzzy closure operators  on a 
fixed set X . In [9] Wu-Neng Zhou introduced the concept 
of L-closure spaces and the convergence in L-closure 
spaces.  In this  paper we study the  lattice  LC (X ) of L-
closure operators  and L-closure spaces which is a 
generalization  of the concept  of fuzzy closure spaces.  
Here we proved that  the  complete  lattice LC (X ) is not  
modular.   Also we identify  the  infra L-closure operator  
and ultra L-closure operator  and establish the relation  
between ultra  L-topology and  ultra  L-closure  operator.   
We proved that  an L-closure operator  is an ultra  L-
closure operator  if and only if it is the L-closure operator  
associated with an ultra  L-topology.  Also proved that  
infra Lclosure operators  are less than  or equal to any 
nonprincipal  ultra  L-closure operator  and no nonprincipal 
ultra L-closure operator has a complement so that  the 
lattice of L-closure operators  is not complemented  in 
general. 
 
2. Preliminaries  
 
A completely distributive  lattice  L is called a Fuzzy 
lattice,  if there is an order reversing  involution  from L  
 

to  L.  Let  X  be any nonempty  set  and  L is a Fuzzy 
lattice.  The fundamental  definition of L-fuzzy set theory  
and L-fuzzy topology are  assumed  to  be  familiar  to  the  
reader  as in [10].Here we call L-fuzzy subsets as L 
subsets and L-fuzzy topology as L-topology. 

 
2.1   Definition 
A  Čech fuzzy closure operator  on a set  X  is a function 
χ : I X   → I X , satisfying the following three  axioms 
1. χ(0) = 0  
2. f ≤ χ(f ) for every f in IX . 
3. χ(f ∨ g) = χ(f ) ∨ χ(g) where I = [0, 1] 

 
For convenience it is called fuzzy closure operator o n  X 
and (X, χ) is called fuzzy closure space.  In [9] Wu-Neng 
Zhou defined L-closure operator as follows. 

 
2.2. Definition 
A mapping C: LX   → LX   is called an L-closure operator 
or an L-closure, if it satisfies the following conditions for 
any A, B ∈ LX   : 
1. C (0X ) = 0X 
2. A ≤ C (A) 
3. A ≤ B implies C (A) ≤ C (B) 
4. C (C (A)) = C (A) 

 
But in this paper we take the definition of L-closure 
operator  as a generalization  of fuzzy closure operator  in 
[4] 
 
2.3.  Definition 
Let X  be a nonempty  set and  L be a Fuzzy  lattice.   An 
L-closure operator  on LX is a mapping ψ: LX  →  LX  

satisfying the following conditions: 
1. ψ(0) = 0 
2. f ≤ ψ(f ) 
3. ψ(f ∨ g) = ψ(f ) ∨ ψ(g) for every f, g ∈ LX . 
The pair (X, ψ) is called an L-closure space. An L-subset  
f of X is said to be an L-closed set in (X, ψ) if ψ(f ) = 
f .  An L subset  f of X  is open if its complement is 
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closed in (X, ψ).  The  set of all open L subsets  of (X, ψ) 
form an L-topology on X called the L-topology associated 
with the L-closure operator  ψ. 
 
Let F  be an L-topology  on a set  X . Then  a function  ψ 
: LX   → LX  defined by ψ(f ) = f̄  for all f ∈ LX , 
where f̄  denotes  the closure of f with respect to F  is 
called the L-closure operator  associated with the L-
topology F . 
 
An L-closure operator  on a set X  is called L-topological 
if it is the  L- closure  operator  associated  with  an L-
topology on X .  That  is ψ(ψ(f )) = ψ(f ) for all f ∈ LX  
 
 Note that  different  L-closure operators  can have the 
same associated L-topology.  But different L -topologies 
cannot have the same associated L-closure operator. 

 
3. Lattice of L-closure operators 

 
Let ψ1   and ψ2   be L-closure operators  on X .  Then  ψ1   
≤ ψ2   if and only if ψ2 (f ) ≤ ψ1(f ) for every f in LX. 
The relation  ≤ defined above is a partial order on the  set 
of all L-closure operators  on LX.  We denote the  poset 
by LC(X ).  Then  LC (X ) is a lattice.   The  L-closure 
operator  D on X  defined by D(f ) = f  for every f in LX   

is called the discrete L-closure operator. The L-closure 
operator I on X defined by I(f) =  0 if f=0                    

                                                              1 otherwise     
is called the indiscrete L-closure operator. 

 
Remark 3.1   
D and I are the L-closure operators  associated  with the 
discrete  and  indiscrete  L-topologies on X  respectively.  
Moreover D  is the unique L-closure  operator who’s 
associated  L-topology is discrete.   Also I and D are the 
smallest and the largest elements of LC (X) respectively. 
 
Theorem 3.1.    
LC (X ) is a complete lattice. 

 
Proof.  Can be easily proved. 

 
Definition 3.1. 

 
Lattice of L closure operators LC(X) is modular if and only if 
χ ≥ η ⇒ χ ˄ (ψ ˅ η) = (χ ˄ ψ) ˅ η, ∀  χ, ψ,  η ϵ LC(X) 

 
Theorem 3.2.  

 
LC(X) is not modular 
Proof.  Let X be any set and x ϵ X. Define ψx, χx, ηx from LX 
→ LX  by ψx (0) = 0 

ψx (f)(y) =                                                                                                                                     

 

χx (0) = 0 

χx (f)(y) =                                                  

ηx (0) = 0 

ηx (f)(y) =         and   ᵝ ≥ f(y) 

           
Then χx(f)(y) ≤ ηx(f)(y), ∀ y . Hence χx  ≥ ηx 
χx ˄ ψx = inf (χx, ψx) 
= sup (χx(f)(y), ψx(f)(y)) 
= 1 
(χx ˄ ψx) ˅ ηx = inf (1, ηx(f)(y)) 
= f(y) 
ψx ˅ ηx = sup (ψx, ηx) 
= inf (ψx(f)(y), ηx(f)(y)) 
= f(y) 
χx  ˄ (ψx ˅ ηx) = sup (χx(f)(y), f(y)) 
= 1 
        Therefore χx ∧ (ψx ∨ ηx)  ≠ (χx ∧ ψx) ∨ ηx 
So LC (X ) is not modular. 
 

Definition 3.2.    
 

An L-closure operator on X is called an infra L-closure 
operator  if the only L-closure operator  on X strictly  
smaller than  it is I . 

 
Let X be any set and a, b ∈ X such that  a ≠ b. Define 
ψa,b  : LX → LX   by  

Ψa,b(f) =     f     if f = 0 
                gα,b    if f= aα                                                                                                        

1        otherwise  
α is a dual atom in L and gα,b is defined by 

      gα,b(a) =       1   if a ≠ b 
                         α  if a=b   

In the topological context Ramachandran [5] proved that  a 
closure operator on X  is an  infra  closure operator  if and  
only if it  is of the  form Va,b   for some a, b in  X, a ≠ b, 
where Va,b is defined by 

       Va,b(A) =     φ         if A=φ 
                          X \{b}  if A={a} 
                           X       otherwise     

Analogously in the L-topological context we prove the 
following theorem. 
 
Theorem 3.3.  

 
An L-closure operator  is an infra L-closure operator  if 
and only if it is of the form ψa,b   for some a, b ∈ X, a ≠ b. 

 
Proof.  Let ψ is an  L-closure  operator  on X  strictly  
smaller  than  ψa,b , then  ψ(aα) will be strictly  greater  
than  ψa,b (aα ) = gα,b   and hence equal to 1 so that  ψ(f ) 
= 1, ∀ f  ∈ LX  other than  0. Hence ψ = I .  Thus all L-
closure operators  of the form ψa,b   are infra L-closure 
operators. 
 
Conversely let ψ be any L closure operator other  than me. 
Then we can find a nonzero L subset f such that  ψ(f ) ≠ I 
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(f ) = 1 (i.e. ψ(f ) ≠ 1) and elements aα , bβ ,where α, β ϵ L 
such  that  aα  ≤ f and bβ  not in ψ(f ).  Then  bβ   is not an 
element  of ψ(aα ). That  is bβ ≰ ψ(aα ) ⇒ gα,b ≰ ψ(aα ). That  
is ψa,b(aα ) ≰ψ(aα). Also ψa,b (k) = 1 for every nonzero L 
subset k other than aα . So ψa,b (f ) ≥ ψ(f ), ∀f . That  is ψa,b   
≤ ψ. Thus all infra L-closure operators  are of the form 
ψa,b   for a, b ∈ X such that  a ≠ b. 

 
3.2 Remark 

 
When L = I there  is no infra L-closure operator. 

 
Definition 3.3  

 
An L-topology F  on X  is an ultra  L-topology if the only 
L-topology on X strictly  finer than  F  is the discrete L-
topology. 
 
Let X be a nonempty set and L is a finite pseudo 
complemented chain. 
If G= G(a, U (bλ)) = {f|f(a) = 0} ∪ {f|f ≥ bλ},then a principal 
ultra L-topology = G(a, U (bλ), aβ) = G(aβ), which is the 
simple extension of G by aβ  i.e. G(aβ) = {f ∨ (g ∧ aβ), f, g ϵ 
G, aβ  ∉ G }, where a, b ϵ X, λ and β are the atom and dual 
atom in L respectively. 
 
Let X be a nonempty set and L is a Boolean lattice. If G = 
G(a, U  (bλ))={f|f(a) = 0} ∪ {f|f ≥ bλ}, where a, b ϵ X, λ is an 
atom, then a principal ultra L-topology denoted by G (βj) = 
L-topology generated by any                                                                                                                                                                                                          
(m-1), G(aβi) among  m, G(aβi),i = 1, 2, , ..., m, j = 1, 2, ,..., 
m, i ≠ j if there are m dual atoms β1, β2, ..., βm, where G(aβi) 
= simple extension of G by aβi.Let X be an infinite set and L 
is a finite pseudo complemented chain. 
 
If G = G(a, U) = {f|f(a) = 0} ∪ U  where U  is a non 
principal ultra L-filter not containing aλ, 0 ≠ λ ϵ L. Then the 
non principal ultra L-topology = G(a, U , aβ) = G(aβ), is the 
simple extension of G by aβ, where a ϵ X, β is the dual atom 
in L. 
 
Let X be an infinite set and L is a Boolean lattice. If G = 
G(a, U ), a ϵ X, then a non principal ultra L-topology G(βj) 
= L-topology generated by any (m -1), G(aβi)  among  m, 
G(aβi), i = 1, 2, ,..., m, j = 1, 2, ..., m, i ≠ j, if there are m dual 
atoms β1, β2, ,..., βm where (aβi) = simple extension of G by 
aβi. Here m can be assumed infinite value. 
If X is a non empty set and L is a diamond lattice {0, α, β, 1} 
then the L-closure operator ψ  associated with an ultra L-
topology G(a, U , aβ), a ϵ X,  is given by 

 
 ψ(f)=    f       if f=0 or aα≤ f or cf ϵU                                         
          f  ∨ aα   otherwise 

 
In topological context it is known that [5] a closure operator 
on X is an ultraclosure operator if and only if it is the closure 
operator associated with some ultra topology on X and in L-
topological context we prove the following  theorem. 

 
Theorem 3.4 

 
Let X is a non empty set and L is a diamond lattice {0, α, β, 
1}. Then an L-closure operator on X is an ultra L-closure 
operator if and only if it is the L-closure operator associated 
with some ultra L-topology on X . 

 
Proof .Let G(a, U ,aβ) be an ultra L-topology on X and ψ be 
the associated L-closure operator . Let ψ’  be an L-closure 
operator on X strictly larger than ψ. Then there exists an L 
subset f of X such that ψ’(f) < ψ(f). 
 
But ψ’(f) ≠ (f). Then  ψ(f) = f ˅ aα and ψ’(f) = f, which means 
that complement of f is open in (X, ψ’) and not open in (X, 
ψ). Also every open set in (X, ψ) is open in (X, ψ’) . Thus the 
associated L- topology of ψ’ is strictly larger than the ultra L-
topology and hece is discrete. Thus ψ’ = D. 
 
Hence the L-closure operator associated with an ultra L-
topology is an ultra L-closure operator. 
 
Next to prove that every ultra L-closure operator is the L-
closure operator associated with an ultra L-topology. 
 
Let  ψ be an L-closure operator on X other than D. It suffices 
to prove that there exists an L-closure operator associated 
with an ultra L-topology larger than ψ. Since ψ ≠ D there 
exists an element a of X such that aα is not open in (X, ψ). 
Now consider G= {f|f(a) = 0} ∪ U  where U   is an ultra L-
filter not containing aλ ,0 ≠ λ ϵ L. Then aα  is not an element 
of G. Now consider the ultra L-topology G (a,U , aα) = 
simple extension of G by aα. Let ψ’  be the L-closure 
operator associated with it . Then ψ ≤ ψ’ . Otherwise if  ψ’ ≤ 
ψ, then every open set in ψ’ is open in  ψ’. But aα is open  in 
ψ’ . So it must be open in ψ, which is a contradiction. 

 
Remark 3.3 
 
In a similar way we can prove the above theorem when L is a 
finite pseudo complemented chain or other Boolean lattice.

Definition 3.4 
 

Let x ϵ X, λ ϵ L. An L point xλ is defined by xλ(y) = 

     where 0 <    ≤ 1 

 
Definition 3.5 

 
An L-closure operator ψ on X is T1 if every L point is closed. 
That is  ψ(xλ) = xλ, ∀ x ϵ X, λ ϵ L. 

 

Definition 3.6 [8] 
 

Let ψ1 = {f|ψ(f) = f}. A fuzzy closure space (X, ψ) is called 
quasi-separated if and only if for any two fuzzy points xλ and 
yγ  with xλ ϵ C(yγ), there exist f, g ϵ ψ1  such that xλ ϵ f ≤ C(yγ) 
and yγ  ϵ g ≤ C(xλ). 

 
Theorem 3.5 [8] 
  
A fuzzy closure space is quasi-separated if and only if every 
fuzzy point in X is Čech-fuzzy closed. 
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Result 
 
Let  ψ1 = {f ϵ LX| ψ(f) = f}. An L-closure space (X, ψ) is said 
to be T1 if for every pair of distinct L points xλ and yγ, there 
exist f, g ϵ ψ1 such that xλ ϵ f ≤ C(yγ) and yγ  ϵ g ≤ C(xλ). 
 
Proof. Necessary part 
Suppose that the L-closure operator ψ  is T1. Then by 
definition  ψ (xλ) = xλ Then by theorem 3.5 the L-closure 
space(X, ψ) is quasi separated. Hence for every pair of 
distinct L points xλ and yγ, there exist f, g ϵ ψ1 such that xλ ϵ f 
≤ C(yγ) and yγ  ϵ g ≤ C(xλ). Sufficient part Suppose that for 
every pair of distinct L points xλ and yγ, there exist f, g ϵ ψ1 
such that xλ ϵ f ≤ C(yγ) and yγ  ϵ g ≤ C(xλ). Then by definition  
(X, ψ) is quasi separated. Then by theorem 3.5, (X, ψ) is a T1 
L-closure space. 
Proposition [8] An L-closure space (X, ψ) is T1 if and only if 
the associated L topological space (X, F) is T1 
 
Theorem 3.6. 
 
Infra L-closure operators are less than or equal to any 
non principal ultra L-closure operator. 
 
Proof. Let ψa,b be an infra L-closure operator and ψ be a non 
principal ultra L-closure operator. Since  ψa,b ψa,b(f) = 1  
 
Theorem 3.7 
 
No non principal ultra L-closure operator has a  
complement. 
 
Proof. Assume the contrary. Let ψ be a non principal ultra L-
closure operator with a complement  ψ’  in the lattice LC(X). 
Since  ψ’ is not indiscrete there exists an infra L-closure 
operator  ψa,b ≤ ψ’ by the proof of the theorem 3.3. But  ψa,b ≤ 
ψ by theorem 3.6. This contradicts the fact that ψ and ψ’ are 
complements in the lattice LC(X) and hence the proof of the 
theorem. 
 
Remark 3.4.  
 
The lattice of L-closure operators is not complemented in 
general. 
 
If L is a diamond lattice, the principal ultra L-closure 
operator associated with the principal ultra L-topology G(a,   
(bβ), aβ) is given by φa,b(f) = f if  f=0 or aα ≤ f or cf ϵ U  (bβ) 
 f ∨ aα   otherwise       
 
Theorem 3.8.  
 
An infra L-closure operator  ψa,b and φb,a are incomparable if 
L is a diamond lattice. 

Proof. We have  ψa,b(aα) = gα,b, Φb,a(aα) = aα  ∨ bβ. Since α 
and β  are not comparable,  ψa,b and φb,a are not comparable. 
 
Remark 3.5. 
 
In a similar way, we can discuss the above theorem if L is a 
finite pseudo complemented chain or other Boolean lattices. 
 
4 Conclusion 

 
In this paper we identified the infra L-closure operator and 
ultra L-closure in LC(X) and established the relation between 
ultra L-closure topology and ultra L-closure operator if there 
is a dual atom in the lattice L . Also it is proved that LC(X) is 
not modular and not complemented in general. 
 
5 Future Scope 
 
The problem of finding whether this lattice is atomic and 
dually atomic under any condition on the fuzzy lattice L, is 
not yet solved. Also, the problem of  semi-modularity and 
semi-complementation is not yet analyzed. 
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