
International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 2, February 2013
www.ijsr.net

 Review of Artificial Intelligence

Jameela Ali Akrimi1, Abdul Rahim Ahmad2, Loay E. George3, Sherna Aziz4

1College of Graduate Studies
2College of Information Technology

University Tenaga National -Malaysia
3,4Baghdad University-Iraq

PT20346@ uniten.edu.my
abdrahim@uniten.edu.my
loayedwar57@yahoo.com

Abstract: Over many centuries, tools of increasing sophistication have been developed to serve the human race Digital computers are,
in many respects, just another tool. They can perform the same sort of numerical and symbolic manipulations that an ordinary person
can, but faster and more reliably. This paper represents review of artificial intelligence algorithms applying in computer application and
software. Include knowledge-based systems; computational intelligence, which leads to Artificial intelligence, is the science of
mimicking human mental faculties in a computer. That assists Physician to make dissection in medical diagnosis.

Keywords: knowledge-based systems, computational intelligence, symbolic learning, intelligent agents, WEKA machine learning

1. Introduction

Over many centuries, tools of increasing sophistication have
been developed to serve the human race. Digital computers
are, in many respects, just another tool. They can perform the
same sort of numerical and symbolic manipulations that an
ordinary person can, but faster and more reliably. A more
intriguing idea is whether we can build a computer (or a
computer program) that can think. As Penrose (1989) has
pointed out, most of us are quite happy with machines that
enable us to do physical things more easily or more quickly,
such as digging a hole or traveling along a freeway. We are
also happy to use machines that enable us to do physical
things that would otherwise be impossible, such as flying.
However, the idea of a machine that can think for us is a
huge leap forward in our ambitions, and one which raises
many ethical and philosophical questions. Research in
artificial intelligence (or simply AI) is directed toward
building such a machine and improving our understanding of
intelligence. Most of the definitions in the standard texts are
over-complex, so here is a simple one that will suffice
instead:

Artificial intelligence is the science of mimicking human
mental faculties in a computer.

The ultimate achievement in this field would be to construct
a machine that can mimic or exceed human mental
capabilities, including reasoning, understanding, imagination,
perception, recognition, creativity, and emotions. We are a
long way from achieving this, but some significant successes
have nevertheless been achieved.

Perhaps more importantly, in achieving these modest
successes, research into artificial intelligence has resulted in
the development of a family of extremely useful computing
tools. These tools have enabled a range of problems to be
tackled that were previously considered too difficult, and
have enabled a large number of other problems to be tackled
more effectively. From a pragmatic point of view, this in
itself makes them interesting and useful.

The tools of AI can be roughly divided into these broad
types:

• Knowledge based systems (KBSs), i.e., explicit models
using words and symbols;

• Computational intelligence (CI), i.e., implicit modeling
with numerical techniques; hybrids.

The first category includes techniques such as rule-based,
model-based, frame-based, and case-based reasoning. As the
knowledge is explicitly modeled in words and symbols, it
can be read and understood by a human. Although symbolic
techniques have had undoubted success in their narrow
domains, they are intrinsically limited in their ability to cope
only with situations that have been explicitly modeled.
Although some systems allow the model to expand with
experience, symbolic models are generally poor at dealing
with the unfamiliar.

Computational intelligence goes some way to overcoming
these difficulties by enabling the computer to build up its
own model, based on observations and experience. Here the
knowledge is not explicitly stated but is represented by
numbers that are adjusted as the system improves its
accuracy. This category includes neural networks, genetic
algorithms and other optimization algorithms, as well as
techniques for handling uncertainty, such as fuzzy logic.

Pinpointing the beginning of research into artificial
intelligence is tricky. George Boole (1815–1864) had plenty
of ideas on the mathematical analysis of thought processes,
and several of his ideas have been retained in the field of AI
today. However, since he had no computer, the above
definition appears to rule him out as the founder of AI. Just
as historians on either side of the Atlantic have different
opinions of who built the first programmable computer, the
same divergence of opinion occurs over the origins of AI.

487

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 2, February 2013
www.ijsr.net

British historians point to Alan Turing’s article in 1950
which included the so-called Turing test to determine
whether a computer displays intelligence (Turing, 1950).
American historians prefer to point to the Dartmouth
conference of 1956, which was explicitly billed as a study of
AI and is believed to be the first published use of the term
‘artificial intelligence’. As the golden jubilee of that historic
event approaches, a review of the field is timely.

The figure (figure 1) below illustrates the types and
relationships of the Artificial Intelligence Techniques.

Figure 1: Categories of intelligent system software.

2. Knowledge Based Systems

Knowledge-Based and Expert Systems

The principal difference between a knowledge-based system
and a conventional program lies in its structure. In a
conventional program, domain knowledge is intimately
intertwined with software for controlling the application of
that knowledge.

In a knowledge-based system, the two roles are explicitly
separated. In the simplest case there are two modules—the
knowledge module is called the knowledge base, and the
control module is called the inference engine (Figure 2).

Figure 2: The main components of a Knowledge-based

system

Within the knowledge base, the programmer expresses
information about the problem to be solved. Often this
information is declarative, i.e., the programmer states some
facts, rules, or relationships without having to be concerned
with the detail of how and when that information should be
applied. These details are implicit in the inference engine.

However, the domain expert will often wish to use meta-
knowledge (i.e. knowledge about knowledge) to steer the
inference engine. For instance, he or she may know that a
plumbing diagnostic system should examine rules about
valves before rules about pipes. In the most complex case,
the inference engine can become a meta-knowledge-based
system.

As the knowledge is represented explicitly in the knowledge
base, rather than implicitly within the structure of a program,
it can be entered and updated with relative ease by domain
experts who may not have any programming expertise. The
inference engine uses the knowledge base in a manner that
can be likened to a conventional program using a data file.
There is also an analogy with the brain, the control processes
of which are approximately unchanging in their nature (like
the inference engine), even though individual behavior is
continually modified by new knowledge and experience (like
updating the knowledge base).

Expert systems are a type of knowledge-based system
designed to embody expertise in a particular specialized
domain such as configuring computer networks or
diagnosing faulty equipment. An expert system is intended to
act as a human expert who can be consulted on a range of
problems within his or her domain of expertise.

Typically, the user of an expert system will enter into a
dialogue in which he or she describes the problem—such as
the symptoms of a fault—and the expert system offers
advice, suggestions, or recommendations. It is often
proposed that an expert system must offer certain capabilities
that mirror those of a human consultant. In particular, it is
often claimed that an expert system must be capable of
justifying its current line of inquiry and explaining its
reasoning in arriving at a conclusion. This is the purpose of
the explanation module in Figure 2.

The Limitations of Rules

When modeling a real system, the amount of knowledge that
can be represented in rules that operate on simple variables is
limited. Frames provide a flexible structure for modeling
complex entities, thereby allowing the creation of more
flexible and versatile rules. One key use of frames is in the
construction of model-based systems, which are particularly
important for fault diagnosis. The links between symptoms
and diagnosis are not explicitly stated but can be inferred by
comparing the characteristics of a model with those of the
real system.

Symbolic learning is an area in which rules can be expanded
and altered in the light of experience. An important class of
symbolic learning is case-based reasoning, in which
previously encountered cases are stored for possible future
retrieval and re-use. Finally, this section will consider some
of the ways in which rules can be embellished to represent
uncertainty and imprecision in the evidence, the conclusion,
or the link between them.

488

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 2, February 2013
www.ijsr.net

3. Frame Based Systems

Frames are data structures developed by AI researchers as a
means of representing and organizing knowledge. They are
similar in concept to objects, which were developed to meet
the needs of software engineers. Like object-oriented
systems, frame-based systems contain the ideas of classes,
instances, and inheritance. For example, the class vehicle
could be defined, along with subclasses car and truck.
Characteristics of vehicle are inherited by car and truck
classes, so that only information that is specific to the sub-
class, or which overrides the inherited information, needs to
be declared at the subclass level. Specific instances of classes
can then be declared, e.g., my truck can be represented by an
instance called my_truck. This instance inherits information
from its class truck, which itself inherits from its parent class
vehicle.

The attributes of a frame are sometimes called slots, into
which values can be inserted. They allow us to put
information onto a frame, such as the number of wheels on
my truck. Thus number_of_wheels could be a slot associated
with the frame instance my_truck. This slot could use the
default value of 4 inherited from vehicle or it may be a
locally defined value that overrides the default. The value
associated with a slot can be a number, a description, a
number range, a procedure, another frame, or anything
allowed by the particular implementation. Some frame-based
systems allow us to place multiple values in a slot. In such
systems, the different pieces of information that we might
want to associate with a slot are known as its facets. Each
facet can have a value associated with it, as shown in Figure
3. For example, we may wish to specify limits on the number
of wheels, provide a default, or calculate a value using a
function known as an access function. In this example, an
access function count_wheels could calculate the number of
wheels when a value is not previously known.

Figure 3: Example of a Frame-based Representation

Model Based Reasoning

Fulton and Pepe (1990) have highlighted three major
inadequacies of a purely rule-based system in the context of
diagnosing faults: (a) building a complete rule set is a
massive task; (b) there is uncertainty arising from whether
sensor readings can be believed; and (c) maintaining the
rules is a complex task because of the interdependence
between them. They used these arguments to justify a model-
based approach to fault diagnosis.

The principle of model-based reasoning is that, rather than
storing a huge collection of symptom–cause pairs in the form
of rules, these pairs can be generated by applying underlying
principles to the model. The model, which is often frame-
based, may describe any kind of system, including physical
(Fenton et al, 2001, Wotawa 2000), software (Mateis et al,
2000), medical (Montani et al, 2003) legal (Bruninghaus and
Ashley, 2003), and behavioral (Koning et al, 2000) systems.
This review will focus on fault diagnosis in physical systems,
which are made up of fundamental components such as
tubes, wires, batteries, and valves. As each of these
components performs a fairly simple role, it also has a simple
failure mode. For example, a wire may break and fail to
conduct electricity, a tube can spring a leak, a battery can
lose its charge, and a valve may become stuck. Given a
model of how these components operate and interact to form
a device, faults can be diagnosed by determining the effects
of local malfunctions on the overall device.

The diagnostic task is to determine which nonstandard
component behavior in the model could make the output
values of the model match those of the physical system.
When a malfunction has been detected, the single point of
failure assumption is often made. This is the assumption that
the malfunction has only one root cause. Such an approach is
justified by Fulton and Pepe (1990) on the basis that no two
failures are truly simultaneous. They argue that one failure
will always follow the other either independently or as a
direct result.

In summary, the key advantages of model-based reasoning
for fault diagnosis are:

 A model is less cumbersome to maintain than a rule base.
Real-world changes are easily reflected in changes in the
model.
 The model need not waste effort looking for sensor
verification. Sensors are treated identically to other
components, and therefore a faulty sensor is as likely to be
detected as any other fault.
 Unusual failures are just as easy to diagnose as common
ones. This is not the case in a rule-based system, which is
likely to be most comprehensive in the case of common
faults.
 The separation of function, structure, and state may help a
diagnostic system to reason about a problem that is outside
its area of expertise.
 The model can simulate a physical system, for the purpose
of monitoring or for verifying a hypothesis.

Symbolic Learning

The preceding sections have discussed ways of representing
knowledge and drawing inferences. It was assumed that the
knowledge itself was readily available and could be
expressed explicitly. However, there are many circumstances
where this is not the case, such as those listed below.

 The software engineer may need to obtain the knowledge
from a domain expert. This task of knowledge acquisition is
extensively discussed in the literature (Xing et al, 2003),
often as an exercise in psychology.

489

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 2, February 2013
www.ijsr.net

 The rules that describe a particular domain may not be
known.
 The problem may not be expressible explicitly in terms of
rules, facts or relationships. This category includes skills,
such as welding or painting.

One way around these difficulties is to have the system learn
for itself from a set of example solutions. Two approaches
can be broadly recognized—symbolic learning and numerical
learning. Symbolic learning describes systems that formulate
and modify rules, facts, and relationships, explicitly
expressed in words and symbols. In other words, they create
and modify their own knowledge base. Numerical learning
refers to systems that use numerical models—learning in this
context refers to techniques for optimizing the numerical
parameters. Numerical learning includes genetic algorithms
and artificial neural networks.

A learning system is usually given some feedback on its
performance. The source of this feedback is called the
teacher or the oracle. Often the teacher role is fulfilled by the
environment, within which the knowledge-based system is
working, i.e., the reaction of the environment to a decision is
sufficient to indicate whether the decision was right or
wrong. Learning with a teacher is sometimes called
supervised learning.

Learning can be classified as follows, where each category
involves a different level of supervision:

(i) Rote learning. The system receives confirmation of
correct decisions. When it produces an incorrect decision, it
is “spoon-fed” with the correct rule or relationship that it
should have used.
(ii) Learning from advice. Rather than being given a specific
rule that should apply in a given circumstance, the system is
given a piece of general advice, such as “gas is more likely to
escape from a valve than from a pipe.” The system must sort
out for itself how to move from this high-level abstract
advice to an immediately usable rule.
(iii) Learning by induction. The system is presented with sets
of example data and is told the correct conclusions that it
should draw from each. The system continually refines its
rules and relations so as to correctly handle each new
example.
(iv) Learning by analogy. The system is told the correct
response to a similar, but not identical, task. The system must
adapt the previous response to generate a new rule applicable
to the new circumstances.
(v) Explanation-based learning (EBL). The system analyzes a
set of example solutions and their outcomes to determine
why each one was successful or otherwise. Explanations are
generated, which are used to guide future problem solving.
EBL is incorporated into PRODIGY, a general-purpose
problem-solver (Minton et al, 1989).
(vi) Case-based reasoning. Any case about which the system
has reasoned is filed away, together with the outcome,
whether it be successful or otherwise. Whenever a new case
is encountered, the system adapts its stored behavior to fit the
new circumstances. Case-based reasoning is discussed in
further detail.
(vii) Explorative or unsupervised learning. Rather than
having an explicit goal, an explorative system continuously

searches for patterns and relationships in the input data,
perhaps marking some patterns as interesting and warranting
further investigation. Examples of the use of unsupervised
learning include:
 data mining, where patterns are sought among large or
complex data sets;
 identifying clusters, possibly for compressing the data;
 learning to recognize fundamental features, such as edges,
from pixel images;
 Designing products, where innovation is a desirable
characteristic.

In rote learning and learning from advice, the sophistication
lies in the ability of the teacher rather than the learning
system. If the teacher is a human expert, these two
techniques can provide an interactive means of eliciting the
expert’s knowledge in a suitable form for addition to the
knowledge base. However, most of the interest in symbolic
learning has focused on case-based reasoning, described in
more detail below. Reasoning by analogy is similar to case-
based reasoning, while many of the problems and solutions
associated with learning by induction also apply to the other
categories of symbolic learning.

Case Based Reasoning

A characteristic of human intelligence is the ability to recall
previous experience whenever a similar problem arises. This
is the essence of case-based reasoning (CBR). As Riesbeck
and Schank (1989) put it, a case-based reasoner solves new
problems by adapting solutions that were used to solve old
problems.

Consider the example of diagnosing a fault in a refrigerator.
If an expert system has made a successful diagnosis of the
fault, given a set of symptoms, it can file away this
information for future use. If the expert system is
subsequently presented with details of another faulty
refrigerator of exactly the same type, displaying exactly the
same symptoms in exactly the same circumstances, then the
diagnosis can be completed simply by recalling the previous
solution. However, a full description of the symptoms and
the environment would need to be very detailed, and it is
unlikely to be reproduced exactly. What we need is the
ability to identify a previous case, the solution of which can
be modified to reflect the slightly altered circumstances, and
then saved for future use. Aamodt and Plaza (1994) have
therefore proposed that CBR can be described by a four-
stage cycle:

 retrieve the most similar case(s);
 reuse the case(s) to attempt to solve the problem;
 revise the proposed solution if necessary;
 retain the new solution as a part of a new case.

Such an approach is arguably a good model of human
reasoning. Indeed case-based reasoning is often used in a
semi-automated manner, where a human can intervene at any
stage in the cycle.

490

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 2, February 2013
www.ijsr.net

4. Intelligent Agents

Characteristics of an Intelligent Agent

Agent-based technologies have been growing apace, both
within the world of AI and in more general software
engineering. One motivation has been the rapid escalation in
the quantity of information available. Software assistants-or
agents-are needed to take care of specific tasks for us. For
example, much of the trading on the world’s stock exchanges
is performed by agents that can react quickly to minor price
fluctuations.

While noting that not all agents are intelligent, Wooldridge
(1997) gives the following definition for an agent:

An agent is an encapsulated computer system that is situated
in some environment, and that is capable of flexible,
autonomous action in that environment in order to meet its
design objectives.

From this definition we can see that the three key
characteristics of an agent are autonomy, persistence, and the
ability to interact with its environment. Autonomy refers to
an agent’s ability to make its own decisions based on its own
expertise and circumstances, and to control its own internal
state and behavior. The definition implies that an agent
functions continuously within its environment, i.e., it is
persistent over time. Agents are also said to be situated, i.e.,
they are responsive to the demands of their environment and
are capable of acting upon it. Interaction with a physical
environment requires perception through sensors, and action
through actuators or effectors. Interaction with a purely
software environment requires only access to and
manipulation of data and programs.

We might reasonably expect an intelligent agent to be all of
the following:
 reactive,
 goal-directed,
 adaptable,
 socially capable.

Social capability refers to the ability to cooperate and
negotiate with other agents (or humans). It is quite easy to
envisage an agent that is purely reactive, e.g., one whose
only role is to place a warning on your computer screen
when the printer has run out of paper. Likewise, modules of
conventional computer code can be thought of as goal-
directed in the limited sense that they have been programmed
to perform a specific task regardless of their environment.
Since it is autonomous, an intelligent agent can decide its
own goals and choose its own actions in pursuit of those
goals. At the same time, it must also be able to respond to
unexpected changes in its environment. It, therefore, has to
balance reactive and goal-directed behavior, typically
through a mixture of problem solving, planning, searching,
decision making, and learning through experience.

5. Computational Intelligence

WEKA (Waikato Environment for Knowledge Analysis):
The Software

Overview

An exciting and potentially far-reaching development in
computer science and Artificial Intelligence is the invention
and application of methods of machine learning. These
enable a computer program to automatically analyze a large
body of data and decide what information is most relevant.
This crystallized (clustered, sorted or classified) information
can then be used to automatically make predictions or to help
people make decisions faster and more accurately.

Goal

The overall goal is to build a state-of-the-art facility for
developing machine learning (ML) techniques and to apply
them to real-world data mining problems. Several standard
ML techniques were incorporated into a software
"workbench" called WEKA, for Waikato Environment for
Knowledge Analysis. With WEKA, a specialist in a
particular field is able to use ML to derive useful knowledge
from databases that are far too large to be analyzed by hand.
WEKA's users are ML researchers and industrial scientists,
but it is also widely used for teaching (Schools of higher
learning).

Objectives:

i. Make Machine Learning (ML) techniques generally

available;
ii. Apply them to practical problems that matter to New

Zealand industry;
iii. Develop new machine learning algorithms and give them

to the world;
iv. Contribute to a theoretical framework for the field.

WEKA machine learning package is publically available and
presents a collection of algorithms for solving real-world
data mining problems. The software is written entirely in
Java (distributed under the GNU Public License) and
includes a uniform interface to a number of standard ML
techniques.

Main features

i. Comprehensive set of data pre-processing tools, learning

algorithms and evaluation methods.
ii. Graphical user interfaces (incl. data visualization)

iii. Environment for comparing learning algorithms

The Explorer

As an explorer, WEKA can be functional in the follow;
i. Classification and Regression

ii. Clustering
iii. Association Rules
iv. Attribute Selection
v. Data Visualization

491

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 2, February 2013
www.ijsr.net

History

WEKA was developed by Machine Learning Project Team at
the University of Waikato in New Zealand funded by the
New Zealand Government since 1993.

Late 1992 - Funding was applied for by Ian Witten
1993 - Development of the interface and infrastructure
WEKA acronym coined by Geoff Holmes
WEKA’s file format “ARFF” was created by Andrew
Donkin
ARFF was rumored to stand for Andrew’s Ridiculous File
Format

Sometime in 1994 - first internal release of WEKA
TCL/TK user interface + learning algorithms written mostly
in C. It is very much beta software.

Changes for the b1 release included (among others):

“Ambiguous and Unsupported menu commands removed.”
“Crashing processes handled (in most cases :-)”
October 1996 - first public release: WEKA 2.1
July 1997 – WEKA 2.2
Schemes: 1R, T2, K*, M5, M5Class, IB1-4, FOIL, PEBLS,
support for C5
Included a facility (based on UNIX makefiles) for
configuring and running large scale experiments
Early 1997 - decision was made to rewrite WEKA in Java
Originated from code written by Eibe Frank for his PhD
Originally codenamed JAWS (JAva Weka System)
May 1998 - WEKA 2.3
Last release of the TCL/TK-based system
Mid 1999 - WEKA 3 (100% Java) released
Version to complement the Data Mining book
Development version (including GUI)

WEKA Versions:

There are several versions of WEKA:

WEKA 3.4: “book version” compatible with description in
data mining book

WEKA 3.5.5: “development version” with lots of
improvements

Projects based on WEKA

I. 45 projects currently (30/01/07) listed on the WekaWiki

II. Incorporate/wrap WEKA
a. GRB Tool Shed - a tool to aid gamma ray burst research
b. YALE - facility for large scale ML experiments
c. GATE - NLP workbench with a WEKA interface
d. Judge - document clustering and classification
e. RWeka - an R interface to Weka

III. Extend/modify WEKA
a. BioWeka - extension library for knowledge discovery in

biology
b. WekaMetal - metal learning extension to WEKA
c. Weka-Parallel - parallel processing for WEKA
d. Grid Weka - grid computing using WEKA
e. Weka-CG - computational genetics tool library

Limitations of WEKA

 Traditional algorithms need to have all data in main
memory.
 Big datasets are an issue.

Solution

 Incremental schemes; having the datasets in several
schemes or sizes.
 Stream algorithms; the use of MOA “Massive Online
Analysis” (Coincidentally, Mao is not only a streaming
algorithm but a flightless bird which also is extinct!)

Symbolic Learning Methods in WEKA

 ID3: uses Information Gain heuristic which is based on
Shannon’s entropy to build efficient decision trees. But one
disadvantage with ID3 is that it over fits the training data. So,
it gives rise to decision trees which are too specific and
hence this approach is not noise resistant when tested on
novel examples. Another disadvantage is that it cannot deal
with missing attributes and requires all attributes to have
nominal values. Also, it can be run only on datasets where all
the attributes are nominal.

 C4.5: is an improved version of ID3 which prevents over-
fitting of training data by pruning the decision tree when
required, thus making it more noise resistant.

 J48: J48 (Quinlan, 1992) implements Quinlan’s C4.5
algorithm (Quinlan, 1993) for generating a pruned or
unpruned C4.5 decision tree. C4.5 is an extension of
Quinlan's earlier ID3 algorithm. The decision trees generated
by J48 can be used for classification. J48 builds decision
trees from a set of labeled training data using the concept of
information entropy. It uses the fact that each attribute of the
data can be used to make a decision by splitting the data into
smaller subsets. J48 examines the normalized information
gain (difference in entropy) that results from choosing an
attribute for splitting the data. To make the decision, the
attribute with the highest normalized information gain is
used. Then the algorithm recurs on the smaller subsets. The
splitting procedure stops if all instances in a subset belong to
the same class. Then a leaf node is created in the decision
tree telling to choose that class. But it can also happen that
none of the features give any information gain. In this case
J48 creates a decision node higher up in the tree using the
expected value of the class. J48 can handle both continuous
and discrete attributes, training data with missing attribute
values and attributes with differing costs. Further it provides
an option for pruning trees after creation.

Neural Network Method in WEKA

a) Multi-Layer Perceptron (MLP): Multilayer Perceptron
is a layered network comprising of input nodes, hidden nodes
and output nodes. The error values are back propagated from
the output nodes to the input nodes via the hidden nodes.
Considerable time is required to build a neural network but
once it is done, classification is quite fast. Neural networks
are robust to noisy data as long as too many epochs are not
considered since they do not over fit the training data. In

492

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 2, February 2013
www.ijsr.net

Weka, nominal attributes are automatically converted to
numeric ones for neural network learning methods. So,
preprocessing is not required in this type of datasets.
Numeric Datasets are those which contain few nominal and
few numeric attributes.

Differences between Symbolic Learning and Neural
Network

The most often application of both neural network and
symbolic learning systems is the inductive (the system is
presented with sets of example data and is told the correct
conclusions that it should draw from each) acquisition of
concepts from examples. The system continually refines its
rules and relations so as to correctly handle each new
example. (Hopgood, 2002)

1 Symbolic learning describes systems that formulate and
modify rules, facts, and relationships, explicitly expressed in
words and symbols. In other words, they create and modify
their own knowledge base, the system constructs a decision
tree from a set of training objects; hence they are knowledge
based systems while the Numerical learning refers to systems
that use numerical models; learning in this context refers to
techniques for optimizing the numerical parameters such as
weights and bias with back propagated error (The error
values are back propagated from the output nodes to the
input nodes via the hidden nodes). They are computational
methods in Artificial intelligence (AI).

2 Using algorithms that construct decision trees for symbolic
methods and for networks the use of back propagation to
determine appropriate weights as in Table 1 (Results
extracted from Weiss and Kapouleas) (Quinlan), it was
discovered that both methods performed well but Neural
networks took more CPU time in Thyroid domain training.

3 In all, Back propagation (Neural Network) usually
requires a great deal more computation compared to Decision
Tree (Symbolic Learning). (Quinlan; Shravya)

4 However in general, the predictive accuracy of both
approaches is roughly the same with back propagation
often slightly more accurate. (Quinlan; Shravya)

5 ID3 (symbolic learning) is that it over fits the training
data. So, it gives rise to decision trees which are too specific
and hence this approach is not noise resistant when tested on
novel (new) examples though it was corrected in C4.5 which
prevents over-fitting of training data by pruning the decision
tree when required. Another disadvantage is that it cannot
deal with missing attributes and requires all attributes to have
nominal values while Neural Networks are robust to noisy
data as long as too many epochs are not considered since
they do not over fit the training data. In other words, Back
propagation is more adaptive in a noisy datasets but
Symbolic learning tends to perform better in a noise free
datasets. (Shravya)

6. Validation

 Percentage Split (Holdout Method): It is the simplest
kind of cross validation. The data set is separated into two

sets, called the training set and the testing set. The function
approximator fits a function using the training set only. Then
the function approximator is asked to predict the output
values for the data in the testing set (it has never seen these
output values before). The errors it makes are accumulated as
before to give the mean absolute test set error, which is used
to evaluate the model. The advantage of this method is that it
is usually preferable to the residual method and takes no
longer to compute. However, its evaluation can have a high
variance. The evaluation may depend heavily on which data
points end up in the training set and which end up in the test
set, and thus the evaluation may be significantly different
depending on how the division is made. In general, the data
will be split up randomly into training data and test data. In
the experiments conducted, the data will be split such that
training data comprises 66% of the entire data and the rest is
used for testing. (Shravya, Schneider, 1997)

Holdout (Percentage split in WEKA) validation is not strictly
cross-validation, because the data never are crossed over.
Observations are chosen randomly from the initial sample to
form the testing data, and the remaining observations are
retained as the training data. Normally, less than a third of
the initial sample is used for testing data. (Martin, 2009)

 K-fold Cross-validation: In general, is one way to
improve over the holdout method. The data is split into k
disjoint subsets and one of it is used as testing data and the
rest of them are used as training data. This is continued till
every subset has been used once as a testing dataset. In other
words, the data set is divided into k subsets, and the holdout
method is repeated k times. Each time, one of the k subsets is
used as the test set and the other k-1 subsets are put together
to form a training set. Then the average error across all k
trials is computed. The advantage of this method is that it
matters less how the data gets divided. Every data point gets
to be in a test set exactly once, and gets to be in a training set
k-1 times. The variance of the resulting estimate is reduced
as k is increased. The disadvantage of this method is that the
training algorithm has to be rerun from scratch k times,
which means it takes k times as much computation to make
an evaluation. A variant of this method is to randomly divide
the data into a test and training set k different times. The
advantage of doing this is that you can independently choose
how large each test set is and how many trials you average
over. In the experiments conducted, 5-fold cross validation
was done. (Shravya, Schneider, 1997)

7. Artificial Neural Networks (Ann)

Artificial Neural Networks are a programming paradigm that
seek to emulate the microstructure of the brain, and are used
extensively in artificial intelligence problems from simple
pattern-recognition tasks, to advanced symbolic
manipulation. (Noriega, 2005)

The Multilayer Perceptron is an example of an artificial
neural network that is used extensively for the solution of a
number of different problems, including pattern recognition
and interpolation. It is a development of the Perceptron
neural network model, that was originally developed in the
early 1960s but found to have serious limitations.

493

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 2, February 2013
www.ijsr.net

An Artificial Neural Network (ANN) consists of a collection
of processing units called neurons that are highly
interconnected according to a given topology. ANNs have
the ability of learning-by-example and generalization from
limited, noisy, and incomplete data. They have been
successfully employed in a broad spectrum of data-intensive
applications (Xiaonan et al, 2008). In this section, we will
review their contributions and performance on intrusion
detection domain. This section is organized by the types of
ANNs illustrated in fig below

Figure 4: ANN Hierarchy

History and Theoretical Background (Noriega, 2005)

Biological Basis of Neural Networks

Artificial Neural Networks attempt to model the functioning
of the human brain. The human brain for example consists of
billions of individual cells called neurons. It is believed by
many (the issue is contentious) that all knowledge and
experience is encoded by the connections that exist between
neurons. Given that the human brain consists of such a large
number of neurons (so many that it is impossible to count
them with any certainty), the quantity and nature of the
connections between neurons is, at present levels of
understanding, almost impossible to assess.

Understanding the Neuron

Intelligence is arguably encoded at the connections between
neurons (the synapses), but before examining what happens
at these connections, we need to understand how the neuron
functions.

Modern computers use a single, highly complex processing
unit (eg. Intel Pentium) which performs a large number of
different functions. All of the processing on a conventional
computer is handled by this single unit, which processes
commands at great speed.

The human brain is different in that it has billions of simple
processing units (neurons). Each of these units is slow when
compared to say a Pentium 4, but only ever performs one
simple task. A neuron activates (fires) or remains inactive.
One may observe in this a kind of binary logic, where
activation may be denoted by a '1’ and inactivation by a '0'.
Neurons can be modeled as simple switches therefore, the
only problem remains in understanding what determines
whether a neuron fires.

Neurons can be modeled as simple input-output devices,
linked together in a network. Input is received from neurons
found lower down a processing chain, and the output
transmitted to neurons higher up the chain. When a neuron
fires, information is passed up the processing chain. This
innate simplicity makes neurons fairly straightforward
entities to model; it is in modeling the connections that the
greatest challenges occur.

Understanding the Connections (Synapses)

When real neurons fire or are activated, they transmit
chemicals (neurotransmitters) to the next group of neurons
up the processing chain alluded to in the previous subsection.
These neurotransmitters form the input to the next neuron,
and constitute the messages neurons send to each other.
These messages can assume one of three different forms.

 Excitation - Excitatory neurotransmitters increase the
likelihood of the next neuron in the chain to fire.
 Inhibition - Inhibitory neurotransmitters decrease the
likelihood of the next neuron to fire.
 Potentiation - Adjusting the sensitivity of the next neurons
in the chain to excitation or inhibition (this is the learning
mechanism).

If we can model neurons as simple switches, we model
connections between neurons as matrices of numbers (called
weights), such that positive weights indicate excitation,
negative weights indicate inhibition. How learning is
modelled depends on the paradigm used.

Modelling Learning

Using artificial neural networks it is impossible to model the
full complexity of the brain of anything other than the most
basic living creatures, and generally ANNs will consist of at
most a few hundred (or few thousand) neurons, and very
limited connections between them. Nonetheless quite small
neural networks have been used to solve what have been
quite difficult computational problems.

Generally Artificial Neural Networks are basic input and
output devices, with the neurons organized into layers.
Simple Perceptrons consist of a layer of input neurons,
coupled with a layer of output neurons, and a single layer of
weights between them, as shown in Figure 5.

The learning process consists of finding the correct values
for the weights between the input and output layer. The
schematic representation given in Figure 5 is often how
neural nets are depicted in the literature, although
mathematically it is useful to think of the input and output
layers as vectors of values(I and O respectively), and the
weights as a matrix.

494

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 2, February 2013
www.ijsr.net

Figure 5: Simple Perceptron Architecture

We define the weight matrix Wio as an i X o matrix, where i
is the number of input nodes, and o is the number of output
nodes. The network output is calculated as follows.

 (1)

Generally data is presented at the input layer, the network
then processes the input by multiplying it by the weight
layer. The result of this multiplication is processed by the
output layer nodes, using a function that determines whether
or not the output node fires.

The process of finding the correct values for the weights is
called the learning rule, and the process involves initializing
the weight matrix to a set of random numbers between -1 and
+1. Then as the network learns, these values are changed
until it has been decided that the network has solved the
problem. Finding the correct values for the weights is
effected using a learning paradigm called supervised
learning. Supervised learning is sometimes referred to as
training.

Data is used to train the network; this constitutes input data
for which the correct output is known. Starting with random
weights, an input pattern is presented to the network; it
makes an initial guess as to what the correct output should
be.

During the training phase, the difference between the guess
made by the network and the correct value for the output is
assessed, and the weights are changed in order to minimize
the error. The error minimization technique is based on
traditional gradient descent techniques. While this may sound
frighteningly mathematical, the actual functions used in
neural networks to make the corrections to the weights are
chosen because of their simplicity, and the implementation of
the algorithm is invariably uncomplicated.

The Activation Function

The basic model of a neuron used in Perceptrons and MLPs
is the McCulloch-Pitts model, which dates from the late
1940s. This modeled a neuron as a simple threshold function.

 (2)

This activation function was used in the Perceptron neural
network model, and as can be seen this is a relatively
straightforward activation function to implement.

The Learning Rule

The perceptron learning rule is comparatively
straightforward. Starting with a matrix of random weights,

we present a training pattern to the network, and calculate the
network output. We determine an error function E

 (3)

where in this case, T is the target output vector for a training
input to the ANN. In order to determine how the weights
should change, this function has to minimize. What this
means is find the point at which the function reaches its
minimum value. The assumption we make about the error
function is that if we were to plot all of its potential values
into a graph, it would be shaped like a bowl, with sides
sloping down to a minimum value at the bottom.

In order to find the minimum values of a function
differentiation is used. Differentiation is used to give the rate
at which functions change, and is often defined as the tangent
on a curve at a particular point. If our function is perfectly
bowl shaped, then there will only be one point at which the
minimum value of a function has a tangent of zero (i.e. have
a perfectly at tangent), and that is at its minimum point (see
Figure 6.)

Figure 6: Function Minimization using Differentiation

In neural network programming the intention is to assess the
effect of the weights on the overall error function. We can
take Equation 3 and combine it with Equation 1 to obtain the
following.

 (4)

We then differentiate the error function with respect to the
weight matrix. The discussion on Multilayer Perceptrons will
look at the issues of function minimization in greater detail.
Function minimization in the Simple Perceptron Algorithm is
very straightforward. We consider the error each individual
output node, and add that error to the weights feeding into
that node. The Perceptron learning algorithm works as
follows.

1. Initialize the weights to random values on the interval [-1,
1].
2. Present an input pattern to the network.
3. Calculate the network output.
4. for each node n in the output layer...
(a) Calculate the error En = Tn - On
(b) Add En to all of the weights that connect to node n (add
En to column n of the weight matrix.
5. Repeat the process from 2 for the next pattern in the
training set.

495

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 2, February 2013
www.ijsr.net

This is the essence of the perceptron algorithm. It can be
shown that this technique minimizes the error function. In its
current form it will work, but the time taken to converge to a
solution (i.e. the time taken to find the minimum value) may
be unpredictable because adding the error to the weight
matrix is something of a 'blunt instrument' and results in the
weights gaining high values if several iterations are required
to obtain a solution. This is akin to taking large steps around
the bowl in order to find the minimum value; if smaller steps
are taken we are more likely to find the bottom.

In order to control the convergence rate, and reduce the size
of the steps being taken, a parameter called a learning rate is
used. This parameter is set to a value that is less than unity,
and means that the weights are updated in smaller steps
(using a fraction of the error). The weight update rule
becomes the following.

 (5)

which means that the weight value at iteration t+1 of the
algorithm is equivalent to a fraction of the error added
to the weight value at iteration t.

Supervised Learning (Xiaonan et al, 2008)

Feed Forward Neural Networks: Feed forward neural
networks are the first and arguably the simplest type of
artificial neural networks devised. Two types of feed forward
neural networks are commonly used in modeling either
normal or intrusive patterns. Multi-layered Feed Forward
(MLFF) Neural Networks MLFF networks use various
learning techniques, the most popular being back-
propagation (MLFF-BP). Network traffic is another
indispensable data source.

MLFF-BP can also be used as a multi-class classifier (MCC).
MCC neural networks can either have multiple output
neurons or assemble multiple binary neural network
classifiers. Apparently, the latter is more flexible than the
former when facing a new class. Except for the BP learning
algorithm, there are many other learning options in MLFF
networks. S. Mukkamala and A. H. Sung (2003) compared
12 different learning algorithms on the KDD99 dataset, and
found that resilient back propagation achieved the best
performance among the neural networks in terms of accuracy
(97.04%) and training time (67 epochs).

Radial Basis Function Neural Networks: Radial Basis
Function (RBF) neural networks are another widely used
type of feed forward neural networks. Since they perform
classification by measuring the distances between inputs and
the centers of the RBF hidden neurons, they are much faster
than time consuming back-propagation, and more suitable for
problems with large sample size [S. Cayzer and J. Smith,
2006]. Other than being a classifier, the RBF network was
also used to fuse results from multiple classifiers [S. Cayzer
and J. Smith, 2006]. It outperformed five different decision
fusion functions, such as Dempster-Shafer combination and
Weighted Majority Vote.

Comparison between MLFF-BP and RBF networks Since
RBF and MLFF-BP networks are widely used, a comparison
between them is naturally required. [Jiang et al, 2003] and
[Zhang et al, 2003] compared the RBF and MLFF-BP
networks for misuse and anomaly detection on the KDD99
dataset. Their experiments have shown that for misuse
detection, BP has a slightly better performance than RBF in
terms of detection rate and false positive rate, but requires
longer training time, while for anomaly detection, the RBF
network improves the performance with a high detection rate
and a low false positive rate, and requires less training time
(cutting it down from hours to minutes). All in all, RBF
networks achieve better performance.

Another interesting comparison has been made between the
binary and decimal input encoding schemes of MLFFBP and
RBF [Liu et al, 2002]. The results showed that binary
encoding has lower error rates than decimal encoding,
because decimal encoding only computes the frequency
without considering the order of system calls. Decimal
encoding, however, handles noise well and the classifiers can
be trained with fewer data. Furthermore, there are fewer
input nodes in decimal encoding than in binary encoding,
which decreases the training and testing time and simplifies
the network structure.

Unsupervised Learning (Xiaonan et al, 2008)

Self-Organizing Maps and Adaptive Resonance Theory are
two typical unsupervised neural networks. Similar to
statistical clustering algorithms, they group objects by
similarity. They are suitable for intrusion detection tasks in
that normal behavior is densely populated around one or two
centers, while abnormal behavior and intrusions appear in
sparse regions of the pattern space outside of normal clusters.

Self-Organizing Maps: Self-organizing maps (SOM), also
known as Kohonen maps, are single-layer feed forward
networks where outputs are clustered in a low dimensional
(usually 2D or 3D) grid. It preserves topological
relationships of input data according to their similarity. SOM
can function as a data pre-processor to cluster input data.
Other classification algorithms, such as feed forward neural
networks, were trained using the outputs from the SOM.
Sometimes SOMs map data from different classes into one
neuron. SOMs are the most popular neural networks to be
trained for anomaly detection tasks; an example is a proposed
multi-layer detection framework, where the first layer used a
SOM to cluster the payload, and compressed it into a single
feature.

Unlike other unsupervised approaches, SOMs are useful to
visualize the analysis which took advantage of topology-
preserving and dimensionality reducing properties of SOMs.
Although SOM shows very high accuracy in usage, the
training procedure suffers from a high computational
overhead, especially when the size of the training set is over
10,000.

Adaptive Resonance Theory (ART): The Adaptive
Resonance Theory (ART) embraces a series of neural
network models that perform unsupervised or supervised
learning, pattern recognition, and prediction, since it has

496

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 2, February 2013
www.ijsr.net

been invented by Stephen Grossberg in 1976. Unsupervised
learning models include ART-1, ART-2, ART-3, and Fuzzy
ART. Various supervised ones are named with the suffix
“MAP”, such as ARTMAP, Fuzzy ARTMAP, and Gaussian
ARTMAP. Compared with SOMs who cluster data objects
based on the absolute distance, ARTs cluster objects based
on the relative similarity of input patterns to the weight
vector.

In comparing the performance of ARTs and SOMs, the
results showed that ART nets have better intrusion detection
performance than SOMs on either offline or online data in
Intrusion Detection.

Fuzzy ART nets combine fuzzy set theory and adaptive
resonance theory. This combination is faster and more stable
than ART nets alone in responding to arbitrary input
sequences. Liao et al (2007) and Durgin et al (2005) are two
examples of using Fuzzy ART to detect anomalies. Liao et
al: deployed Fuzzy ART in an adaptive learning framework
which is suitable for dynamic changing environments.
Normal behavior changes are efficiently accommodated
while anomalous activities can still be identified. Durgin et al
(2005) investigated in detail the capabilities of SOMs and
Fuzzy ARTs. Both SOMs and Fuzzy ARTs show promise in
detecting network abnormal behavior. The sensitivity of
Fuzzy ARTs seems to be much higher than that of SOMs.

Summary

All these research works took advantage of ANNs’ ability to
generalize from limited, noisy, and incomplete data. Some
researchers attempted to address disadvantages of ANNs as
well such as long training time and retraining.

To further correct some of the disadvantages, the following
practice has been proven useful in ANNs:

 Datasets and features. Neural networks only recognize
whatever is fed to them in the form of inputs. Although they
have the ability of generalization, they are still unable to
recognize unseen patterns sometimes. One cause of this
difficulty is incomplete training sets. To address this
problem, randomly generated anomalous inputs are inserted
into the training set with the purpose of exposing the network
to more patterns, hence making the training sets more
complete. Selecting good feature sets is another way to
improve performance.

8. Fuzzy Sets

The past decades have witnessed a rapid growth in the
number and variety of applications of fuzzy logic. Fuzzy
logic, dealing with the vague and imprecise, is appropriate
for intrusion detection for two major reasons. First, the
intrusion detection problem involves many numeric attributes
in collected audit data, and various derived statistical
measures. Building models directly on numeric data causes
high detection errors. For example, an intrusion that deviates
only slightly from a model may not be detected or a small
change in normal behavior may cause a false alarm. Second,
the security itself includes fuzziness, because the boundary
between the normal and anomaly is not well defined.

Genetic Algorithm (Mahmud et al., 2009)

Genetic algorithm (GA) is an adaptive heuristic search
method for solving optimization problems. It was formally
introduced in the United States in the 1970s by John Holland
at the University of Michigan (Goldberg, 1989). They have a
solid basis in genetics and evolutionary biological systems.
Genetic Algorithms comprise a kind of effective searching
and optimizing technique that outperforms most of traditional
methods. In particular, GAs work very well on combinatorial
problems such as reduct finding in rough set theory.
Furthermore, finding the minimal reducts is a NP-hard
problem [Abraham et al, 2007b]. Hence, GA is a good
candidate as a methodology for finding minimal reducts.

In classical GA, individuals are encoded as binary strings of
the attributes ((e.g. 0100110100 {a2; a5; a6; a8}). Each
individual represents a set of attributes generated by
mutation, crossover and selection procedures using some
fitness criteria. Individuals with maximal fitness are highly
probable to be reducts but there is no full guarantee.

Parallel Genetic Algorithm, PGA was first attempted by
Grefenstette. Parallelism refers to many processors, with
distributed operational load. Each GA is a good candidate for
parallelization. Processor may independently work with
different parts of a search space and evolve new generations
in parallel. This helps to find out the optimum solution for
the complex problems by searching massive populations and
increases quality of the solutions by overcoming premature
convergence. There are many types of Parallel Genetic
Algorithm taxonomies [Abraham ett al, 2007a]. One of the
most ingenious taxonomies is the Island Model (IM)
[Abraham et al, 2007b], where processors are globally
controlled by message passing within Master-Slave
architecture. Master processor sends "START" signal to the
slave processors to start generations and continue sending
"MIGRATION" message to partially exchange the best
chromosomes between the processors. So the worst
chromosomes are replaced by the best received ones. Time
between two consecutive MIGRATION signals is called the
migration step; percentage of the best chromosomes is called
migration percentage. Migrations should occur after a time
period long enough for allowing development of good
characteristics in each subpopulation.

9. Simulated Annealing

Definition: A technique to finding a good solution to an
optimization problem by trying random variations of the
current solution is called Simulated Annealing. A worse
variation is accepted as the new solution with a probability
that decreases as the computation proceeds. The slower the
cooling schedule, or rate of decrease, the more likely the
algorithm is to find an optimal or near-optimal solution.

History

A simple Monte Carlo simulation samples the possible states
of a system by randomly choosing new parameters. At the
end of the simulation, the collection, or ensemble, of

497

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 2, February 2013
www.ijsr.net

randomly chosen points in search space gives you
information about this space.

For example, the web page Simple Monte Carlo Simulation
gives an example of a unit square containing one-quarter of a
unit circle whose center is in the lower left corner. The
search space is the unit square, and any point in this space
can be in one of two possible states; inside of the quarter-
circle, or outside. Each point in the search space is
determined by the value of two parameters, its x- and y-
coordinate. The possible values for each parameter can be
any real number in the range [0.0, 1.0]. Each step in the
simulation consists of choosing random, allowed values for
both of the parameters. This generates a point in the search
space that is associated with one of the two states. At the end
of the simulation, there will be an ensemble of N points, of
which Nin are inside of the quarter-circle. The ratio of Nin to
N is just the ratio of the area inside the quarter-circle to the
area of the unit square.

Therefore, a simple Monte Carlo simulation randomly selects
a point somewhere is the search space and all points are used
to find out information about the search space. This
procedure has use in some problems, like the one described
above for finding the area of certain regions, but does not
give physically realistic results when the search space
represents an energy surface. For example, assume that the
simulation studies a collection of M helium atoms in a cube.
The position of each atom is described by three parameters
that give its coordinates within the cube. The energy of this
system is given by the sum of all pair-wise interaction
energies. If you wanted to calculate the average energy of
this system, a simple Monte Carlo simulation should not be
used. This is because a random placement of the M atoms
may, at some point of the simulation, place two of the atoms
so close together that their interaction energy is virtually
infinite. This adds an infinite energy to the ensemble of atom
distributions and produces an infinite average energy. In the
real world, two helium atoms would never get that close
together. Therefore, a modification to the simple Monte
Carlo simulation needs to be made so that unrealistic samples
are not placed into the ensemble. Such a modification was
proposed in 1953 by Nicholas Metropolis and coworkers
(Metropolis, 1953). This modified procedure is known as a
Metropolis Monte Carlo simulation.

In contrast with the simple Monte Carlo simulation, a new
point in search space is sampled by making a slight change to
the current point. In the example used here, a new orientation
of the helium atoms is created by making a random, small
change to each atom's coordinates. If the energy of this new
orientation is less than that of the old, this orientation is
added to the ensemble. If the energy rises, a Boltzmann
acceptance criterion is used. If the energy rise is small
enough, the new orientation is added to the ensemble.
Conversely, if the energy rise is too large, the new
orientation is rejected and the old orientation is again added
to the ensemble (see Metropolis Monte Carlo Simulation for
more details).

By using this acceptance probability one can prove that the
average of any property, such as the energy, over the
ensemble is equal to the Boltzmann average of this property

as determined by the Boltzmann Distribution Law, for a
sufficiently large ensemble. What is unique about this
Boltzmann acceptance probability is that the temperature of
the system must be used. Therefore, the Boltzmann average
of a property is the expected value of this property at the
given temperature.

In 1983, Kirkpatrick and coworkers (1983) proposed a
method of using a Metropolis Monte Carlo simulation to find
the lowest energy (most stable) orientation of a system. Their
method is based upon the procedure used to make the
strongest possible glass. This procedure heats the glass to a
high temperature so that the glass is a liquid and the atoms
can move relatively freely. The temperature of the glass is
slowly lowered so that at each temperature the atoms can
move enough to begin adopting the most stable orientation. If
the glass is cooled slowly enough, the atoms are able to
"relax" into the most stable orientation. This slow cooling
process is known as annealing, and so their method is known
as Simulated Annealing.

 Simulated Annealing (Algorithm)

A Simulated Annealing optimization starts with a Metropolis
Monte Carlo simulation at a high temperature. This means
that a relatively large percentage of the random steps that
result in an increase in the energy will be accepted. After a
sufficient number of Monte Carlo steps, or attempts, the
temperature is decreased. The Metropolis Monte Carlo
simulation is then continued. This process is repeated until
the final temperature is reached.

A Simulated Annealing program consists of a pair of nested
DO-loops. The outer-most loop sets the temperature and the
inner-most loop runs a Metropolis Monte Carlo simulation at
that temperature. The way in which the temperature is
decreased is known as the cooling schedule. In practice, two
different cooling schedules are predominantly used; a linear
cooling schedule (Tnew=Told-dT) and a proportional cooling
schedule (Tnew=C×Told) where C<1.0. These are not the only
possible cooling schedules; they are just the ones that appear
the most in the literature.

As described in more detail in the discussion of a Metropolis
Monte Carlo simulation, a more difficult aspect is to
determine who long to run this simulation at each
temperature. This depends upon the maximum size of the
Monte Carlo step at each temperature. While a pure
Metropolis Monet Carlo simulation attempts to reproduce the
correct Boltzmann distribution at a given temperature, the
inner-loop of a Simulated Annealing optimization only needs
to be run long enough to explore the regions of search space
that should be reasonably populated. This allows for a
reduction in the number of Monte Carlo steps at each
temperature, but the balance between the maximum step size
and the number of Monte Carlo steps is often difficult to
achieve, and depends very much on the characteristics of the
search space or energy landscape.

Simulated annealing has been used in various combinatorial
optimization problems and has been particularly successful in
circuit design problems (see Kirkpatrick et al. 1983).

498

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 2, February 2013
www.ijsr.net

10. Benefits of AI

This chapter has reviewed a range of AI techniques. Whether
the resultant systems display true intelligence remains
questionable. Nevertheless, the following practical benefits
have stemmed from the development of AI techniques:

Reliability and Consistency: An AI system makes decisions
that are consistent with its input data and its knowledge base
(for a knowledge-based system) or numerical parameters (for
a computational intelligence technique). It may, therefore, be
more reliable than a person, particularly where repetitive
mundane judgments have to be made.

Automation: In many applications, such as visual inspection
on a production line, judgmental decision-making has to be
performed repeatedly. A well-designed AI system ought to
be able to deal with the majority of such cases, while
highlighting any that lie beyond the scope of its capabilities.
Therefore, only the most difficult cases, which are normally
the most interesting, are deferred to a person.

Speed: AI systems are designed to automatically make
decisions that would otherwise require human reasoning,
judgment, expertise, or common sense. Any lack of true
intelligence is compensated by the system’s processing
speed. An AI system can make decisions informed by a
wealth of data and information that a person would have
insufficient time to assimilate.

Improved Domain Understanding: The process of
constructing a knowledge-based system requires the
decision-making criteria to be clearly identified and assessed.
This process frequently leads to a better understanding of the
problem being tackled. Similar benefits can be obtained by
investigating the decision-making criteria used by the
computational intelligence techniques.

Knowledge Archiving: The knowledge base is a repository
for the knowledge of one or more people. When these people
move on to new jobs, some of their expert knowledge is
saved in the knowledge base, which continues to evolve after
their departure.

New Approaches to Software Engineering: Since AI
systems are supposed to be flexible and adaptable,
development is usually based upon continuous refinements
of an initial prototype. This is the prototype–test–refine
cycle, which applies to both knowledge-based systems and
computational intelligence techniques.

The key stages in the development of a system are:

• decide the requirements;

• design and implement a prototype;

• continuously test and refine the prototype.

Rapid prototyping and iterative development have gained
respectability across most areas of software engineering in
recent years, replacing the traditional linear “waterfall
process” of meticulous specification, analysis, and design
phases prior to implementation and testing.

11. Applications of AI

Some approaches are pre-specified and structured, while
others specify only low-level behavior, leaving the
intelligence to emerge through complex interactions. Some
approaches are based on the use of knowledge expressed in
words and symbols, whereas others use only mathematical
and numerical constructions.

Overall, the tools and techniques of AI are ingenious,
practical, and useful. If these were the criteria by which the
successes of AI were measured, it would be heralded as one
of the most accomplished technological fields. However,
human mental faculties are incredibly complex and have
proved to be extremely difficult to mimic.

Nevertheless, the techniques presented here have
undoubtedly advanced humankind’s progress towards the
construction of an intelligent machine. AI research has made
significant advances from both ends of the intelligence
spectrum but a gap still exists in the middle. Building a
system that can make sensible decisions about unfamiliar
situations in everyday, non-specialist domains remains
difficult. This development requires progress in simulating
behaviors that humans take for granted—specifically
perception, language, common sense, and adaptability. Some
of the areas where AI has been successfully applied are as
follow:

Game playing

You can buy machines that can play master level chess for a
few hundred dollars. There is some AI in them, but they play
well against people mainly through brute force computation--
looking at hundreds of thousands of positions. To beat a
world champion by brute force and known reliable heuristics
requires being able to look at 200 million positions per
second.

Speech recognition

In the 1990s, computer speech recognition reached a
practical level for limited purposes. Thus United Airlines has
replaced its keyboard tree for flight information by a system
using speech recognition of flight numbers and city names. It
is quite convenient. On the other hand, while it is possible to
instruct some computers using speech, most users have gone
back to the keyboard and the mouse as still more convenient.

Understanding natural language

Just getting a sequence of words into a computer is not
enough. Parsing sentences is not enough either. The
computer has to be provided with an understanding of the
domain the text is about, and this is presently possible only
for very limited domains.

Computer vision

The world is composed of three-dimensional objects, but the
inputs to the human eye and computers' TV cameras are two
dimensional. Some useful programs can work solely in two
dimensions, but full computer vision requires partial three-

499

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 2, February 2013
www.ijsr.net

dimensional information that is not just a set of two-
dimensional views. At present there are only limited ways of
representing three-dimensional information directly, and they
are not as good as what humans evidently use.

Expert systems

A ``knowledge engineer'' interviews experts in a certain
domain and tries to embody their knowledge in a computer
program for carrying out some task. How well this works
depends on whether the intellectual mechanisms required for
the task are within the present state of AI. When this turned
out not to be so, there were many disappointing results. One
of the first expert systems was MYCIN in 1974, which
diagnosed bacterial infections of the blood and suggested
treatments. It did better than medical students or practicing
doctors, provided its limitations were observed. Namely, its
ontology included bacteria, symptoms, and treatments and
did not include patients, doctors, hospitals, death, recovery,
and events occurring in time. Its interactions depended on a
single patient being considered.

Since the experts consulted by the knowledge engineers
knew about patients, doctors, death, recovery, etc., it is clear
that the knowledge engineers forced what the experts told
them into a predetermined framework. In the present state of
AI, this has to be true. The usefulness of current expert
systems depends on their users having common sense.

Heuristic classification

One of the most feasible kinds of expert system given the
present knowledge of AI is to put some information in one of
a fixed set of categories using several sources of information.
An example is advising whether to accept a proposed credit
card purchase. Information is available about the owner of
the credit card, his record of payment and also about the item
he is buying and about the establishment from which he is
buying it (e.g., about whether there have been previous credit
card frauds at this establishment).Heuristic classifications can
also be applied in Medical fields like pathology, biometrics,
pharmacology, etc.

12. Support Vector Machine (SVM)

This review of Support Vector Machines attempts to detail
the background of Support Vector Machines, their strengths
in certain tasks and explains their usefulness to Semantic
Classification and Learning tasks. Support Vector Machine
(SVM) is a discriminative classifier that learns the decision
surface through a process of discrimination and with good
generalization characteristics. The approach is a systematic,
reproducible and properly motivated by statistical learning
theory. Training involves optimization of a convex cost
function: there are no false local minima to complicate the
learning process. SVMs are the most well-known of a class
of algorithms that use the idea of kernel substitution and
which are broadly referred to as Kernel Methods. Support
Vector Machines (SVM) are a hot topic in current research,
being used in a variety of research not just to solve a
multitude of different learning and classification problems
but also due to its high classification performance (Chapman,

2004; Scholkopf, 1997). For instance the following
examples;

 Protein Structure Prediction,
 Land Cover Classification,
 Network Intrusion Detection (Yao et all, 1996),
 Handwriting Recognition,
 Electricity Fraud Prediction (Ahmad, 2007),
 Detecting Steganography in digital images,
 Breast Cancer Diagnosis and Prognosis,
 Particle and Quark-Flavour Identification in High
Energy Physics,
 3D Computer Vision Object Detection,
 Combustion Engine Knock Detection,
 Protein Sequence Transitions,
 Detecting Protein Homologies,
 Text Categorization (Joachims, 1998),
 Predicting time series data,
 Micro array Gene Expression Classification,
 Database Marketing,
 Image Retrieval.

Advantages of SVM

The main success of the SVM is its good generalization
ability i.e. it can easily distribute data in its feature space and
a missing data usually does not affect its solution and output.
It also has high classification performance which can be
applied in solving various different learning and
classification problems. Through statistical learning, it is
proven that the bounds on the generalization error or future
points not on the training set can be obtained. These bounds
are a function of the misclassification error on the training
data and terms that measure the complexity or the capacity of
the classification function. The size of the margin is not
directly dependent on the dimensionality of the data and as
such the reason for good performance even for a very high
dimensional data (i.e., with a very large number of
attributes).

Another major advantage of the SVM approach is its
flexibility. Using a basic concept of maximizing margins,
duality and kernels, the paradigm can be adapted to many
types of inference problems. These maximizations could be
changing the norm used for regularization, i.e., how the
margin is measured, one can produce a linear program (LP)
model for classification; adapting the technique by
substituting the kernel functions and forming a dual
Lagrangian to do unsupervised learning task of novelty
detection and finally, two slack variables are introduced
where one computes for underestimating function and the
other, overestimating function. For points inside the tube, the
slack variables are zero and progressively increase for points
outside the tube according to the loss function used. The
same strategy of computing the Lagrangian dual and adding
kernel functions is then used to construct nonlinear
regression functions for regression tasks.

Other appealing features of SVM include the following:

500

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 2, February 2013
www.ijsr.net

1. SVM are a rare example of a methodology where
geometric intuition, elegant mathematics, theoretical
guarantees and practical algorithms meet.

2. They present a general methodology for many types of
problems where they are applied to many types or wide range
of classification, regression and novelty detection tasks.
However, they can also be applied to other areas such as
operator inversion and unsupervised learning.

3. The method eliminates many of the problems with other
inference methodologies like neural networks and decision
trees.

a. There are no problems with local minima. One can
construct highly nonlinear classification and regression
without worrying about getting stuck at local minima.
b. There are few model parameters to choose for example, if
one chooses to produce a radial basic function (RBF)
machine for classification, one need only two parameters: the
penalty parameter for miscalculation and the number of the
gaussian function. The number of the basic function is
automatically selected by the SVM.
c. The final results are stable, reproducible and largely
independent of the specific algorithm used to optimise the
SVM model. If two users apply the same SVM model with
the same parameters to the same data, they will get the same
solution modulo numeric issues. Compared with ANN, the
results are dependent on the particular algorithm and starting
point used.

4. Robust optimization algorithms exist for solving SVM
models. The problems are formulated as mathematical
programming models so a state-of-the-art research from the
area can be readily applied. Results have been reported in the
literature for classification problems with millions of data
points.

5. The method is relatively simple to use. One needs not to
be a SVM expert to successfully apply existing SVM
software to new problems.

6. There are many successful applications of SVM. They
have proven to be robust to noise and perform well on many
tasks.

Kernels Used in SVM.

In this section we consider a situation where the two classes
cannot be reasonably separated with a linear discriminant
function and nonlinear discriminant function must be used.
Figure 9 illustrates two linearly non-separable situations. In
a) it is clear that a classifier with a linear discriminant
function performs poorly while in b) the classes overlap and
the optimal discriminant function is at least roughly linear. In
practice, most real-world classification problems are at least
linearly non-separable but, in addition to this, the optimal
discriminant function is often nonlinear. Note that using a
nonlinear discriminant function of course does not guarantee
zero training error

Figure 7: In a) the optimal discriminant function is nonlinear
while the optimal classifiers have no errors. In b) the optimal
discriminant function is linear while the classes overlap and

thus optimal classifier is not error free.

We will map the vectors Xi, i = 1,…, n, into a new space in
the hope that the optimal separating hyperplane in new space
performs better classifications than the optimal hyperplane in
the original space. More specifically the mapping that will
be considered is of the form

Where and are the eigenvalues and the normalized
eigen functions of an integral operator

. In the SVM literature the

space is often called a feature space and the 's are
called feature vectors. Calculating the feature vectors can be
computationally expensive, or even impossible, if the
dimension of feature space is high or infinite. It should be
noted that in the SVM algorithm all the calculations
involving the s appear as inner products. Instead of
explicitly mapping the vectors into a high dimensional
feature space and computing the inner product there it is
under certain condition possible to use a function K (u, v)
whose value directly gives the inner product between two
vectors and Direct consequence is that using
K the inner products can be computed roughly the same time
in the feature space and in the original space. In the literature
the function K (,) is usually called a kernel.

Some well-known kernels

There are also some difficulties associated with the mapping

 and the kernel K. Usually it is very difficult or even
impossible to find a mapping that corresponds to a particular
kernel and, vice versa, it is difficult to find a kernel that
corresponds to some particular mapping. The selection of a
kernel function is an important problem in applications
although there is no theory to tell which kernel to use.
Moreover, it can be difficult to check that some particular
kernel satisfies Mercer's conditions, since these conditions
must hold for every L2(C). In the following some well-
known and widely used kernels are presented. Selection of
the kernel, perhaps from among the presented kernels, is
usually based on experience and knowledge about the
classification problem at hand, and also on theoretical
considerations. The problem of choosing the kernel on the
basis of theoretical considerations is discussed in the next
subsection.

501

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 2, February 2013
www.ijsr.net

1. Polynomial kernel

The polynomial kernel of degree q is of the form

Where c is some non-negative constant, usually c = 1. Using
of a generalized inner-product instead of the standard inner-
product. In this case, the kernel is

Where the vector is such that the function satisfies the
Mercer's condition. When c is positive the kernel is called
inhomogeneous and, correspondingly, homogeneous when c
= 0. The inhomogeneous kernel avoids problems with the
Hessians becoming zero in numerical calculations.

2. Sigmoid-function

The sigmoid kernel is of the form

And it satisfies the Mercer condition only for certain values
of the parameters and . Currently there are no theoretical

results on the parameter values that satisfy the Mercer
condition and proper values are found by empirical means.
When the sigmoid kernel is used with the SVM one can
regard it as a two-layer neural network. In two-layer neural
network the vector X is mapped by the first layer into the
vector F = (F1,…., FN), where

, = 1,…,N, and the

dimension of this vector is called the number of hidden units.
In the second layer the sign of weighted sum of elements of F
is calculated by using weights .

The major difference between the SVM and a two-layer
neural network is in different optimization criterion: in the
SVM the goal is to find the optimal hyperplane that
maximizes the margin (in the feature space), while in a two-
layer neural network the optimization criterion usually is to
minimize the empirical risk associated with some loss
function, typically the mean squared error. It should be
pointed out that quite often in neural networks the optimal
network architecture is unknown. If one uses the sigmoid-
function with SVM then such problems are avoided, since
the number of hidden units (the number of support vectors),
the centers in the hidden layer (weights , that is, support
vectors) and the vector of weights in the output layer are all
determined automatically in the linearly separable case.

3. Radial basis function

The Gaussian kernel, known also as the radial basis function,
is of the form

Where σ stands for window width. It is also possible to
have different window widths for different vectors, that is, to
use a vector σ.

Using the Gaussian kernel with the SVM, the number of
basis functions (the number of support vectors), the centers
(the xi's corresponding to the nonzero Lagrangian multipliers,
i.e., support vectors) and the weights in the output layer

of the RBF-network are all determined

automatically. Furthermore, in some situations it can be
useful to use the centers given by the SVM in an RBF-
network if no other information is available for an optimal
placing of the centers. It should be pointed out again that the
RBF-SVM and the RBF-network use the different
optimization criteria.
Selecting the kernel and the parameters

When a kernel is used it is often unclear what the properties
of the mapping and the feature space are. It is always
possible to make a mapping into a potentially very high
dimensional space and to produce a classifier with no
classification errors on the training set. However, then the
performance of the classifier can be poor. On the other hand,
it is possible that a classifier with an infinite dimensional
feature space performs well. Thus, the dimension of the
feature space is not the essential quantity when choosing the
right kernel.

This is opposite to the usual curse of dimensionality problem.
One could try to select the kernel on the basis of some
functional analytic criteria, say using covering numbers that
were shown to be important in the upper bounds of the error

On the other hand, Vapnik argued that on the basis of
experiments the choice between the kernels presented in the
previous subsection does not make a big difference in
empirical performance. The more important, and usually the
more difficult problem is the selection of the parameters of
kernel function. This problem could be solved using a (leave-
one-out) cross-validation procedure but quite often with real-
world sized training sets this is computationally very costly
or even impossible since the quadratic optimization problem
of the SVM algorithm is computationally rather demanding.

One approach would be to use the linear approximation in
the cross-validation to make the parameter selection faster.
Recently, some more advanced approaches have been
proposed. Various kernel dependent upper bounds are given
on the leave-one-out error of the SVM. These upper bounds
are then differentiated with respect to kernel parameters and
then, by using some optimization algorithm (for example
Newton- Rhapson -method), the best values for a kernel are
found.

13. Conclusion

Support Vector Machines (SVM) is a method of calculating
the optimal separating hyperplane in the feature space.
Optimal separating hyperplane is defined as the maximum-
margin hyperplane in the higher dimensional feature space.

The use of the maximum-margin hyperplane is motivated by
statistical learning theory, which provides a probabilistic test

502

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 2, February 2013
www.ijsr.net

error bound which is minimized when the margin is
maximized. The parameters of the maximum-margin
hyperplane are derived by solving a quadratic programming
(QP) optimization problem. There exist several specialized
algorithms for quickly solving the QP problem that arises
from SVMs.

The original SVM was a linear classifier. However, Vapnik
suggested using the kernel trick (originally proposed by
Aizerman et al., 1964). In the kernel trick, each dot product
used in a linear algorithm is replaced with a non-linear kernel
function. This causes the linear algorithm to operate in a
different space. For SVMs, using the kernel trick makes the
maximum margin hyperplane be fit in a feature space. The
feature space is a non-linear map from the original input
space, usually of much higher dimensionality than the
original input space. In this way, non-linear SVMs can be
created. If the kernel used is a radial basis function, the
corresponding feature space is a Hilbert space of infinite
dimension.

Least Squares SVM (LS-SVM) simplifies the formulation by
replacing the inequality constraint in SVM with an equality
constraint. This approach significantly reduces the
complexity and the computation times, solving a set of linear
equations instead of solving the QP problem.

Maturity of Artificial Intelligence In Medicine

The earliest work in medical artificial intelligence (AI) dates
to the early 1970s, when the field of AI was about 15 years
old (the phrase ‘‘artificial intelligence’’ had been first coined
at a famous Dartmouth College conference in 1956
(Hoopgood, 2002). Early AI in medicine (AIM) researchers
had discovered the applicability of AI methods to life
sciences, most visibly in the Dendral experiments (Lindsay et
Al, 1980) of the late 1960s and early 1970s, which brought
together computer scientists (e.g., Edward Feigenbaum),
chemists (e.g., Carl Djerassi), geneticists (e.g., Joshua
Lederberg), and philosophers of science (e.g., Bruce
Buchanan) in collaborative work that demonstrated the
ability to represent and utilize expert knowledge in symbolic
form.

There was an explosive interest in biomedical applications of
AI during the 1970s, catalyzed in part by the creation of the
SUMEX-AIM Computing Resource (Freiherr, 1980) at
Stanford University, and a sister facility at Rutgers
University, which took advantage of the nascent ARPANET
to make computing cycles available to a national (and
eventually international) community of researchers applying
AI methods to problems in biology and medicine. Several
early AIM systems including Internist-1 (Miller et. Al.,
1982), CASNET (Weiss et. Al, 1978), and MYCIN
(Shortliffe, 1976), were developed using these shared
national resources, supported by the Division of Research
Resources at the National Institutes of Health.

The general AI research community was fascinated by the
applications being developed in the medical world, noting
that significant new AI methods were emerging as AIM
researchers struggled with challenging biomedical problems.
In fact, by 1978, the leading journal in the field (Artificial

Intelligence, Elsevier, Amsterdam) had devoted a special
issue (Sridharan, 1978) solely to AIM research papers. Over
the next decade, the community continued to grow, and with
the formation of the American Association for Artificial
Intelligence in 1980, a special subgroup on medical
applications (AAAI-M) was created. It was against this
background that Ted Shortliffe was asked to address the June
1991 conference of the organization that had become known
as Artificial Intelligence in Medicine Europe (AIME), held in
Maastricht, The Netherlands. By that time the field was in
the midst of ‘‘AI winter’’ (Wikipedia, 2008), although the
introduction of personal computers and high-performance
workstations was enabling new types of AIM research and
new models for technology dissemination. In that talk, he
attempted to look back on the progress of AI in medicine to
date, and to anticipate the major challenges for the decade
ahead. A paper based on that talk was later published in
Artificial Intelligence in Medicine (Shortliffe, 1993).

Medical Data Mining

Human medical data are at once the most rewarding and
difficult of all biological data to mine and analyze. Humans
are the most closely watched species on earth. Human
subjects can provide observations that cannot easily be
gained from animal studies, such as visual and auditory
sensations, the perception of pain, discomfort, hallucinations,
and recollection of possibly relevant prior traumas and
exposures. Most animal studies are short-term, and therefore
cannot track long-term disease processes of medical interest,
such as preneoplasia or atherosclerosis. With human data,
there is no issue of having to extrapolate animal observations
to the human species.

Some three-quarter billions of persons living in North
America, Europe, and Asia have at least some of their
medical information collected in electronic form, at least
transiently. These subjects generate volumes of data that an
animal experimentalist can only dream of. On the other hand,
there are ethical, legal, and social constraints on data
collection and distribution, that do not apply to non-human
species, and that limit the scientific conclusions that may be
drawn. The major points of uniqueness of medical data may
be organized under four general headings:

 Heterogeneity of medical data
o Volume and complexity of medical data
o Physician’s interpretation
o Sensitivity and specificity analysis
o Poor mathematical characterization
o Canonical form
 Ethical, legal, and social issues
o Data ownership
o Fear of lawsuits
o Privacy and security of human data
o Expected benefits
o Administrative issues
 Statistical philosophy
o Ambush in statistics
o Data mining as a superset of statistics
o Data mining and knowledge discovery process
 Special status of medicine: Finally, medicine has a special
status in science, philosophy, and daily life. The outcomes of

503

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 2, February 2013
www.ijsr.net

medical care are life-or-death, and they apply to everybody.
Medicine is a necessity, not merely an optional luxury,
pleasure, or convenience.

In summary, data mining in medicine is distinct from that in
other fields, because the data are heterogeneous; special
ethical, legal, and social constraints apply to private medical
information; statistical methods must address these
heterogeneity and social issues; and because medicine itself
has a special status in life.

Data from medical sources are voluminous, but they come
from many different sources, not all commensurate structure
or quality. The physician’s interpretations are an essential
component of these data. The accompanying mathematical
models are poorly characterized compared to the physical
sciences. Medicine is far, far from the intellectual gold
standard of a canonical form for its basic concepts.

The ethical, legal, and social limitations on medical data
mining relate to privacy and security considerations, fear of
lawsuits, and the need to balance the expected benefits of
research against any inconvenience or possible injury to the
patient. Methods of medical data mining must address the
heterogeneity of data sources, data structures, and the
pervasiveness of missing values for both technical and social
reasons.

The natural history of disease affects statistical hypotheses in
an unknown way. Statistical hypothesis tests often take the
form of an ambush or a contest with a winner and a loser.
The relevance of this model to the natural processes of
medicine is questionable. For all its perils, medical data
mining can also be the most rewarding. For an appropriately
formulated scientific question, thousands of data-elements
can be brought to bear on finding a solution. For an
appropriately formulated medical question, finding an
answer could mean extending a life, or giving comfort to an
ill person. These potential rewards more than compensate for
the many extraordinary difficulties along the pathway to
success. For more info, see Cios and Moore (2002)

References

[1] Wa'el M. Mahmud, Hamdy N.Agiza, and Elsayed
Radwan, Intrusion Detection Using Rough Sets based
Parallel Genetic Algorithm Hybrid Model, Proceedings
of the World Congress on Engineering and Computer
Science 2009 Vol II WCECS 2009, October 20-22,
2009, San Francisco, USA

[2] Mariusz Nowostawski and Riccardo Poli, "Parallel
genetic algorithm taxonomy" Knowledge-Based
Intelligent Information Engineering Systems, 1999,
Third International Conference Volume, Issue, Dec
1999 Page(s) 88 – 92.

[3] Mohammad M. Rahman1, Dominik Slezak, and Jakub
Wroblewski, "Parallel island model for attribute
reduction" Lecture Notes in Computer Science. 2005.

[4] S. Mukkamala and A. H. Sung, A comparative study of
techniques for intrusion detection, In Proceedings of
15th IEEE International Conference on Tools with
Artificial Intelligence, pages 570– 577. IEEE Press, 3-5
Nov. 2003.

[5] S. Cayzer and J. Smith, Gene libraries: Coverage,
efficiency and diversity. In H. Bersini and J. Carneiro,
editors, Artificial Immune Systems, volume 4163 of
Lecture Notes in Computer Science, pages 136–149,
Springer Berlin/Heidelberg, 2006.

[6] J. Jiang, C. Zhang, and M. Kame, RBF-based real-time
hierarchical intrusion detection systems, In Proceedings
of the International Joint Conference on Neural
Networks (IJCNN ’03), volume 2, pages 1512–1516,
Portland, OR, USA, 20-24 July 2003. IEEE Press

[7] C. Zhang, J. Jiang, and M. Kamel. Comparison of BPL
and RBF network in intrusion detection system, In G.
Wang, Q. Liu, Y. Yao, and A. Skowron, editors,
Proceedings of the 9th International Conference on
Rough Sets, Fuzzy Sets, Data Mining, and Granular
Computing (RSFDGrC ’03), 26-29 May, Chongqing,
China, volume [8]2639 of Lecture Notes in Computer
Science, chapter Proceedings of the 9th International
Conference on Rough Sets, Fuzzy Sets, Data Mining,
and Granular Computing (RSFDGrC ’03), pages 466–
470. Springer Berlin / Heidelberg, 2003

[8] Z. Liu, G. Florez, and S. M. Bridges. A comparison of
input representations in neural networks: A case study
in intrusion detection. In Proceedings of the
International Joint Conference on Neural Networks
(IJCNN ’02), volume 2, pages 1708–1713, Honolulu,
HI, USA, 12-17 May 2002. IEEE Press.

[9] Y. Liao, V. R. Vemuri, and A. Pasos, Adaptive
anomaly detection with evolving connectionist systems.
Journal of Network and Computer Applications,
30(1):60–80, 2007. Special Issue on Network and
Information Security: A Computational Intelligence
Approach.

[10] N. A. Durgin and P. Zhang, Profile-based adaptive
anomaly detection for network security, Technical
report, Sandia National Laboratories, 2005.

[11] A. Abraham, C. Grosan, and C. Martin-Vide,
Evolutionary design of intrusion detection programs.
International Journal of Network Security, 4(3):328–
339, 2007. (a)

[12] A. Abraham, R. Jain, J. Thomas, and S. Y. Han. D-
SCIDS: Distributed soft computing intrusion detection
system. Journal of Network and Computer
Applications, 30(1):81–98, 2007. (b)

[13] Leonardo Noriega, Multilayer Perceptron Tutorial,
School of Computing Staffordshire University
November 17, 2005

[14] Quinlan J.R.; Comparing Connectionist and Symbolic
Learning Methods, Basser Department of Computer
Science, University of Sydney

[15] Shravya R. K.; A Comparative Evaluation of Symbolic
Learning Methods and Neural Learning Methods,
Department of Computer Science, University of
Maryland, College Park

[16] Hopgood A. A (2002), Intelligent Systems for
Engineers and Scientists, CRC Press, pp 158-175, 206-
233.

[17] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard
Pfahringer, Peter Reutemann, Ian H. Witten (2009),
The WEKA Data Mining Software: An Update;
SIGKDD Explorations, Volume 11, Issue 1.

[18] Jeff Schneider, Cross Validation, Feb 7, 1997,
http://www.cs.cmu.edu/~schneide/tut5/node42.html

504

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 2, February 2013
www.ijsr.net

[19] Martin D. S., Data Mining - Classification II, Tutorial
07, Friday 24th April 2009.

[20] Quinlan R. J. (1992): Learning with Continuous
Classes. In: 5th Australian Joint Conference on
Artificial Intelligence, Singapore, 343-348.

[21] Quinlan R. J. (1993): C4.5: Programs for Machine
Learning, Morgan Kaufmann Publishers, San Mateo,
CA.

[22] Hopgood, Adrian A., the State of Artificial Intelligence,
School of Computing & Informatics Nottingham Trent
University, Burton Street, Nottingham, NG1 4BU, UK.
2005.

[23] Penrose R., The Emperor’s New Mind, Oxford
University Press, London, 1989

[24] Turing A.M., “Computing machinery and intelligence”,
Mind 59 (1950) 433–460

[25] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth.
A.H. Teller and E. Teller, J. Chem. Phys. 21 (1953)
1087-1092.

[26] Kirkpatrick, S., C. D. Gelatt Jr., M. P. Vecchi,
"Optimization by Simulated annealing", Science, 220,
4598, 671-680, 1983.

[27] Krzysztof J. Cios and G. William Moore, Uniqueness
of medical data mining, Artificial Intelligence in
Medicine 26 (2002) 1–24

[28] Lindsay R. K., Buchanan B. G., Feigenbaum E. A. and
Lederberg J., Applications of artificial intelligence for
organic chemistry: the DENDRAL Project. New York:
McGraw-Hill; 1980

[29] History of Artificial Intelligence;
http://en.wikipedia.org/wiki/History_of_artificial_intell
igence (Accessed June 1, 2008)

[30] Freiherr G. The seeds of artificial intelligence:
SUMEX-AIM (1980). U.S. G.P.O; DHEW publication
no.(NIH) 80-2071, Washington, D.C.; U.S. Dept. of
Health, Education, and Welfare, Public Health Service,
National Institutes of Health; 1980.

[31] Miller R. A., Pople H. E. and Myers J. D. Internist-1: an
experimental computer-based diagnostic consultant for
general internal medicine. New England Journal of
Medicine 1982; 307(8): 468-76.

[32] Weiss S. M., Kulikowski C. A., Amarel S. and Safir A.,
A model-based method for computer-aided medical
decision making, Artificial Intelligence 1978; 11: 145-
72.

[33] Shortliffe E. H., Computer-based medical consultations:
MYCIN. New York: Elsevier; 1976.

[34] Sridharan N. S., Guest editorial. Artificial Intelligence
1978:11 (1-2); 1-4.

[35] Shortliffe E. H., The adolescence of AI in medicine:
will the field come of age in the 90s? Artificial
Intelligence in Medicine 1993; 5: 93-106

[36] Fulton S.L. and Pepe C.O., “An introduction to model-
based reasoning”, AI Expert (January 1990) 48–55

[37] Fenton W.G., Mcginnity T.M. and Maguire L.P., “Fault
diagnosis of electronic systems using intelligent
techniques: a review”, IEEE Transactions on Systems
Man and Cybernetics Part C—Applications and
Reviews 31 (2001) 269–281.

[38] Wotawa F., “Debugging VHDL designs using model-
based reasoning”, Artificial Intelligence in Engineering
14 (2000) 331–351.

[39] Mateis C., Stumptner M. and Wotawa F., “Locating
bugs in Java programs—first results of the Java
diagnosis experiments project”, in: Lecture Notes in
Artificial Intelligence, vol. 1821, Springer-Verlag,
Berlin/New York, 2000, pp. 174–183.

[40] Montani S., Magni P., Bellazzi R., Larizza C., Roudsari
A.V. and Carson E.R., “Integrating model-based
decision support in a multi-modal reasoning system for
managing type 1 diabetic patients”, Artificial
Intelligence in Medicine 29 (2003) 131–151.

[41] Bruninghaus S. and Ashley K.D., Combining case-
based and model-based reasoning for predicting the
outcome of legal cases, in: Lecture Notes in Artificial
Intelligence, vol. 2689, Springer-Verlag, Berlin/New
York, 2003, pp. 65–79.

[42] Koning K., Bredeweg B., Breuker J. and Wielinga B.,
“Model-based reasoning about learner behaviour”,
Artificial Intelligence 117 (2000) 173–229

[43] Xing H., Huang S.H. and Shi J., “Rapid development of
knowledge-based systems via integrated knowledge
acquisition”, Artificial Intelligence for Engineering
Design Analysis and Manufacturing 17 (2003) 221–
234

[44] Minton S., Carbonell J.G., Knoblock C.A., Kuokka
D.R., Etzioni O. and Gil Y., “Explanation-based
learning: a problem-solving perspective”, Artificial
Intelligence 40 (1989) 63–118.

[45] Aamodt A. and Plaza E., “Case-based reasoning—
foundational issues, methodological variations, and
system approaches”, AI Communications 7 (1994) 39–
59.

[46] Wooldridge M.J., “Agent-based software engineering”,
IEE Proc. Software Engineering 144 (1997) 26–37.

[47] M.A. Aizerman, E.M. Braverman and L.I. Rozonoer,
“Theoretical Foundations of the Potential Function
Method in Pattern Recognition Learning”; A

[48] Shelly Xiaonan Wu and Wolfgang Banzhaf, The Use of
Computational intelligence in Intrusion Detection
Systems: A Review, Technical Report #2008-05.
November 2008.

[49] Riesbeck C.K. and Schank R.C., Inside Case-based
Reasoning, Lawrence Erlbaum Associates, Hillsdale,
NJ, 1989

505

