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Abstract: Over many centuries, tools of increasing sophistication have been developed to serve the human race Digital computers are, 
in many respects, just another tool. They can perform the same sort of numerical and symbolic manipulations that an ordinary person 
can, but faster and more reliably.  This paper represents review of artificial intelligence algorithms applying in computer application and 
software. Include knowledge-based systems; computational intelligence, which leads to Artificial intelligence, is the science of 
mimicking human mental faculties in a computer. That assists Physician to make dissection in medical diagnosis. 
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1. Introduction 

Over many centuries, tools of increasing sophistication have 
been developed to serve the human race. Digital computers 
are, in many respects, just another tool. They can perform the 
same sort of numerical and symbolic manipulations that an 
ordinary person can, but faster and more reliably. A more 
intriguing idea is whether we can build a computer (or a 
computer program) that can think. As Penrose (1989) has 
pointed out, most of us are quite happy with machines that 
enable us to do physical things more easily or more quickly, 
such as digging a hole or traveling along a freeway. We are 
also happy to use machines that enable us to do physical 
things that would otherwise be impossible, such as flying. 
However, the idea of a machine that can think for us is a 
huge leap forward in our ambitions, and one which raises 
many ethical and philosophical questions. Research in 
artificial intelligence (or simply AI) is directed toward 
building such a machine and improving our understanding of 
intelligence. Most of the definitions in the standard texts are 
over-complex, so here is a simple one that will suffice 
instead: 
 
Artificial intelligence is the science of mimicking human 
mental faculties in a computer. 
 
The ultimate achievement in this field would be to construct 
a machine that can mimic or exceed human mental 
capabilities, including reasoning, understanding, imagination, 
perception, recognition, creativity, and emotions. We are a 
long way from achieving this, but some significant successes 
have nevertheless been achieved. 
 
Perhaps more importantly, in achieving these modest 
successes, research into artificial intelligence has resulted in 
the development of a family of extremely useful computing 
tools. These tools have enabled a range of problems to be 
tackled that were previously considered too difficult, and 
have enabled a large number of other problems to be tackled 
more effectively. From a pragmatic point of view, this in 
itself makes them interesting and useful. 

 
The tools of AI can be roughly divided into these broad 
types: 
 

•  Knowledge based systems (KBSs), i.e., explicit models 
using words and symbols; 

•  Computational intelligence (CI), i.e., implicit modeling 
with numerical techniques; hybrids. 
 
The first category includes techniques such as rule-based, 
model-based, frame-based, and case-based reasoning. As the 
knowledge is explicitly modeled in words and symbols, it 
can be read and understood by a human. Although symbolic 
techniques have had undoubted success in their narrow 
domains, they are intrinsically limited in their ability to cope 
only with situations that have been explicitly modeled. 
Although some systems allow the model to expand with 
experience, symbolic models are generally poor at dealing 
with the unfamiliar. 
 
Computational intelligence goes some way to overcoming 
these difficulties by enabling the computer to build up its 
own model, based on observations and experience. Here the 
knowledge is not explicitly stated but is represented by 
numbers that are adjusted as the system improves its 
accuracy. This category includes neural networks, genetic 
algorithms and other optimization algorithms, as well as 
techniques for handling uncertainty, such as fuzzy logic. 
 
Pinpointing the beginning of research into artificial 
intelligence is tricky. George Boole (1815–1864) had plenty 
of ideas on the mathematical analysis of thought processes, 
and several of his ideas have been retained in the field of AI 
today. However, since he had no computer, the above 
definition appears to rule him out as the founder of AI. Just 
as historians on either side of the Atlantic have different 
opinions of who built the first programmable computer, the 
same divergence of opinion occurs over the origins of AI.  
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British historians point to Alan Turing’s article in 1950 
which included the so-called Turing test to determine 
whether a computer displays intelligence (Turing, 1950). 
American historians prefer to point to the Dartmouth 
conference of 1956, which was explicitly billed as a study of 
AI and is believed to be the first published use of the term 
‘artificial intelligence’. As the golden jubilee of that historic 
event approaches, a review of the field is timely. 
 
The figure (figure 1) below illustrates the types and 
relationships of the Artificial Intelligence Techniques. 

 

 
Figure 1: Categories of intelligent system software. 

 
2. Knowledge Based Systems 

Knowledge-Based and Expert Systems 
 
The principal difference between a knowledge-based system 
and a conventional program lies in its structure. In a 
conventional program, domain knowledge is intimately 
intertwined with software for controlling the application of 
that knowledge. 
 
In a knowledge-based system, the two roles are explicitly 
separated. In the simplest case there are two modules—the 
knowledge module is called the knowledge base, and the 
control module is called the inference engine (Figure 2). 
 

 
Figure 2: The main components of a Knowledge-based 

system 
 
Within the knowledge base, the programmer expresses 
information about the problem to be solved. Often this 
information is declarative, i.e., the programmer states some 
facts, rules, or relationships without having to be concerned 
with the detail of how and when that information should be 
applied. These details are implicit in the inference engine. 

However, the domain expert will often wish to use meta-
knowledge (i.e. knowledge about knowledge) to steer the 
inference engine. For instance, he or she may know that a 
plumbing diagnostic system should examine rules about 
valves before rules about pipes. In the most complex case, 
the inference engine can become a meta-knowledge-based 
system. 
 
As the knowledge is represented explicitly in the knowledge 
base, rather than implicitly within the structure of a program, 
it can be entered and updated with relative ease by domain 
experts who may not have any programming expertise. The 
inference engine uses the knowledge base in a manner that 
can be likened to a conventional program using a data file. 
There is also an analogy with the brain, the control processes 
of which are approximately unchanging in their nature (like 
the inference engine), even though individual behavior is 
continually modified by new knowledge and experience (like 
updating the knowledge base). 
 
Expert systems are a type of knowledge-based system 
designed to embody expertise in a particular specialized 
domain such as configuring computer networks or 
diagnosing faulty equipment. An expert system is intended to 
act as a human expert who can be consulted on a range of 
problems within his or her domain of expertise. 
 
Typically, the user of an expert system will enter into a 
dialogue in which he or she describes the problem—such as 
the symptoms of a fault—and the expert system offers 
advice, suggestions, or recommendations. It is often 
proposed that an expert system must offer certain capabilities 
that mirror those of a human consultant. In particular, it is 
often claimed that an expert system must be capable of 
justifying its current line of inquiry and explaining its 
reasoning in arriving at a conclusion. This is the purpose of 
the explanation module in Figure 2. 
 
The Limitations of Rules 
 
When modeling a real system, the amount of knowledge that 
can be represented in rules that operate on simple variables is 
limited. Frames provide a flexible structure for modeling 
complex entities, thereby allowing the creation of more 
flexible and versatile rules. One key use of frames is in the 
construction of model-based systems, which are particularly 
important for fault diagnosis. The links between symptoms 
and diagnosis are not explicitly stated but can be inferred by 
comparing the characteristics of a model with those of the 
real system. 
 
Symbolic learning is an area in which rules can be expanded 
and altered in the light of experience. An important class of 
symbolic learning is case-based reasoning, in which 
previously encountered cases are stored for possible future 
retrieval and re-use. Finally, this section will consider some 
of the ways in which rules can be embellished to represent 
uncertainty and imprecision in the evidence, the conclusion, 
or the link between them. 
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3. Frame Based Systems 

Frames are data structures developed by AI researchers as a 
means of representing and organizing knowledge. They are 
similar in concept to objects, which were developed to meet 
the needs of software engineers. Like object-oriented 
systems, frame-based systems contain the ideas of classes, 
instances, and inheritance. For example, the class vehicle 
could be defined, along with subclasses car and truck. 
Characteristics of vehicle are inherited by car and truck 
classes, so that only information that is specific to the sub-
class, or which overrides the inherited information, needs to 
be declared at the subclass level. Specific instances of classes 
can then be declared, e.g., my truck can be represented by an 
instance called my_truck. This instance inherits information 
from its class truck, which itself inherits from its parent class 
vehicle. 
 
The attributes of a frame are sometimes called slots, into 
which values can be inserted. They allow us to put 
information onto a frame, such as the number of wheels on 
my truck. Thus number_of_wheels could be a slot associated 
with the frame instance my_truck. This slot could use the 
default value of 4 inherited from vehicle or it may be a 
locally defined value that overrides the default. The value 
associated with a slot can be a number, a description, a 
number range, a procedure, another frame, or anything 
allowed by the particular implementation. Some frame-based 
systems allow us to place multiple values in a slot. In such 
systems, the different pieces of information that we might 
want to associate with a slot are known as its facets. Each 
facet can have a value associated with it, as shown in Figure 
3. For example, we may wish to specify limits on the number 
of wheels, provide a default, or calculate a value using a 
function known as an access function. In this example, an 
access function count_wheels could calculate the number of 
wheels when a value is not previously known. 

 
Figure 3: Example of a Frame-based Representation 

 
Model Based Reasoning 
 
Fulton and Pepe (1990) have highlighted three major 
inadequacies of a purely rule-based system in the context of 
diagnosing faults: (a) building a complete rule set is a 
massive task; (b) there is uncertainty arising from whether 
sensor readings can be believed; and (c) maintaining the 
rules is a complex task because of the interdependence 
between them. They used these arguments to justify a model-
based approach to fault diagnosis. 
 

The principle of model-based reasoning is that, rather than 
storing a huge collection of symptom–cause pairs in the form 
of rules, these pairs can be generated by applying underlying 
principles to the model. The model, which is often frame-
based, may describe any kind of system, including physical 
(Fenton et al, 2001, Wotawa 2000), software (Mateis et al, 
2000), medical (Montani et al, 2003) legal (Bruninghaus and 
Ashley, 2003), and behavioral (Koning et al, 2000) systems. 
This review will focus on fault diagnosis in physical systems, 
which are made up of fundamental components such as 
tubes, wires, batteries, and valves. As each of these 
components performs a fairly simple role, it also has a simple 
failure mode. For example, a wire may break and fail to 
conduct electricity, a tube can spring a leak, a battery can 
lose its charge, and a valve may become stuck. Given a 
model of how these components operate and interact to form 
a device, faults can be diagnosed by determining the effects 
of local malfunctions on the overall device. 
 
The diagnostic task is to determine which nonstandard 
component behavior in the model could make the output 
values of the model match those of the physical system. 
When a malfunction has been detected, the single point of 
failure assumption is often made. This is the assumption that 
the malfunction has only one root cause. Such an approach is 
justified by Fulton and Pepe (1990) on the basis that no two 
failures are truly simultaneous. They argue that one failure 
will always follow the other either independently or as a 
direct result. 
 
In summary, the key advantages of model-based reasoning 
for fault diagnosis are: 
 
 A model is less cumbersome to maintain than a rule base. 
Real-world changes are easily reflected in changes in the 
model. 
 The model need not waste effort looking for sensor 
verification. Sensors are treated identically to other 
components, and therefore a faulty sensor is as likely to be 
detected as any other fault. 
 Unusual failures are just as easy to diagnose as common 
ones. This is not the case in a rule-based system, which is 
likely to be most comprehensive in the case of common 
faults. 
 The separation of function, structure, and state may help a 
diagnostic system to reason about a problem that is outside 
its area of expertise. 
 The model can simulate a physical system, for the purpose 
of monitoring or for verifying a hypothesis. 
 
Symbolic Learning 
 
The preceding sections have discussed ways of representing 
knowledge and drawing inferences. It was assumed that the 
knowledge itself was readily available and could be 
expressed explicitly. However, there are many circumstances 
where this is not the case, such as those listed below. 
 
 The software engineer may need to obtain the knowledge 
from a domain expert. This task of knowledge acquisition is 
extensively discussed in the literature (Xing et al, 2003), 
often as an exercise in psychology. 
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 The rules that describe a particular domain may not be 
known. 
 The problem may not be expressible explicitly in terms of 
rules, facts or relationships. This category includes skills, 
such as welding or painting. 
 
One way around these difficulties is to have the system learn 
for itself from a set of example solutions. Two approaches 
can be broadly recognized—symbolic learning and numerical 
learning. Symbolic learning describes systems that formulate 
and modify rules, facts, and relationships, explicitly 
expressed in words and symbols. In other words, they create 
and modify their own knowledge base. Numerical learning 
refers to systems that use numerical models—learning in this 
context refers to techniques for optimizing the numerical 
parameters. Numerical learning includes genetic algorithms 
and artificial neural networks. 
 
A learning system is usually given some feedback on its 
performance. The source of this feedback is called the 
teacher or the oracle. Often the teacher role is fulfilled by the 
environment, within which the knowledge-based system is 
working, i.e., the reaction of the environment to a decision is 
sufficient to indicate whether the decision was right or 
wrong. Learning with a teacher is sometimes called 
supervised learning. 
 
Learning can be classified as follows, where each category 
involves a different level of supervision: 
 
(i) Rote learning. The system receives confirmation of 
correct decisions. When it produces an incorrect decision, it 
is “spoon-fed” with the correct rule or relationship that it 
should have used. 
(ii) Learning from advice. Rather than being given a specific 
rule that should apply in a given circumstance, the system is 
given a piece of general advice, such as “gas is more likely to 
escape from a valve than from a pipe.” The system must sort 
out for itself how to move from this high-level abstract 
advice to an immediately usable rule. 
(iii) Learning by induction. The system is presented with sets 
of example data and is told the correct conclusions that it 
should draw from each. The system continually refines its 
rules and relations so as to correctly handle each new 
example. 
(iv) Learning by analogy. The system is told the correct 
response to a similar, but not identical, task. The system must 
adapt the previous response to generate a new rule applicable 
to the new circumstances. 
(v) Explanation-based learning (EBL). The system analyzes a 
set of example solutions and their outcomes to determine 
why each one was successful or otherwise. Explanations are 
generated, which are used to guide future problem solving. 
EBL is incorporated into PRODIGY, a general-purpose 
problem-solver (Minton et al, 1989). 
(vi) Case-based reasoning. Any case about which the system 
has reasoned is filed away, together with the outcome, 
whether it be successful or otherwise. Whenever a new case 
is encountered, the system adapts its stored behavior to fit the 
new circumstances. Case-based reasoning is discussed in 
further detail. 
(vii) Explorative or unsupervised learning. Rather than 
having an explicit goal, an explorative system continuously 

searches for patterns and relationships in the input data, 
perhaps marking some patterns as interesting and warranting 
further investigation. Examples of the use of unsupervised 
learning include: 
 data mining, where patterns are sought among large or 
complex data sets; 
 identifying clusters, possibly for compressing the data; 
 learning to recognize fundamental features, such as edges, 
from pixel images; 
 Designing products, where innovation is a desirable 
characteristic. 
 
In rote learning and learning from advice, the sophistication 
lies in the ability of the teacher rather than the learning 
system. If the teacher is a human expert, these two 
techniques can provide an interactive means of eliciting the 
expert’s knowledge in a suitable form for addition to the 
knowledge base. However, most of the interest in symbolic 
learning has focused on case-based reasoning, described in 
more detail below. Reasoning by analogy is similar to case-
based reasoning, while many of the problems and solutions 
associated with learning by induction also apply to the other 
categories of symbolic learning. 
 
Case Based Reasoning 
 
A characteristic of human intelligence is the ability to recall 
previous experience whenever a similar problem arises. This 
is the essence of case-based reasoning (CBR). As Riesbeck 
and Schank (1989) put it, a case-based reasoner solves new 
problems by adapting solutions that were used to solve old 
problems. 
 
Consider the example of diagnosing a fault in a refrigerator. 
If an expert system has made a successful diagnosis of the 
fault, given a set of symptoms, it can file away this 
information for future use. If the expert system is 
subsequently presented with details of another faulty 
refrigerator of exactly the same type, displaying exactly the 
same symptoms in exactly the same circumstances, then the 
diagnosis can be completed simply by recalling the previous 
solution. However, a full description of the symptoms and 
the environment would need to be very detailed, and it is 
unlikely to be reproduced exactly. What we need is the 
ability to identify a previous case, the solution of which can 
be modified to reflect the slightly altered circumstances, and 
then saved for future use. Aamodt and Plaza (1994) have 
therefore proposed that CBR can be described by a four-
stage cycle: 
 
 retrieve the most similar case(s); 
 reuse the case(s) to attempt to solve the problem; 
 revise the proposed solution if necessary; 
 retain the new solution as a part of a new case. 
 
Such an approach is arguably a good model of human 
reasoning. Indeed case-based reasoning is often used in a 
semi-automated manner, where a human can intervene at any 
stage in the cycle. 
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4. Intelligent Agents 

Characteristics of an Intelligent Agent 
 
Agent-based technologies have been growing apace, both 
within the world of AI and in more general software 
engineering. One motivation has been the rapid escalation in 
the quantity of information available. Software assistants-or 
agents-are needed to take care of specific tasks for us. For 
example, much of the trading on the world’s stock exchanges 
is performed by agents that can react quickly to minor price 
fluctuations. 
 
While noting that not all agents are intelligent, Wooldridge 
(1997) gives the following definition for an agent:  
 
An agent is an encapsulated computer system that is situated 
in some environment, and that is capable of flexible, 
autonomous action in that environment in order to meet its 
design objectives. 
 
From this definition we can see that the three key 
characteristics of an agent are autonomy, persistence, and the 
ability to interact with its environment. Autonomy refers to 
an agent’s ability to make its own decisions based on its own 
expertise and circumstances, and to control its own internal 
state and behavior. The definition implies that an agent 
functions continuously within its environment, i.e., it is 
persistent over time. Agents are also said to be situated, i.e., 
they are responsive to the demands of their environment and 
are capable of acting upon it. Interaction with a physical 
environment requires perception through sensors, and action 
through actuators or effectors. Interaction with a purely 
software environment requires only access to and 
manipulation of data and programs. 
 
We might reasonably expect an intelligent agent to be all of 
the following:  
 reactive, 
 goal-directed, 
 adaptable, 
 socially capable. 
 
Social capability refers to the ability to cooperate and 
negotiate with other agents (or humans). It is quite easy to 
envisage an agent that is purely reactive, e.g., one whose 
only role is to place a warning on your computer screen 
when the printer has run out of paper. Likewise, modules of 
conventional computer code can be thought of as goal-
directed in the limited sense that they have been programmed 
to perform a specific task regardless of their environment. 
Since it is autonomous, an intelligent agent can decide its 
own goals and choose its own actions in pursuit of those 
goals. At the same time, it must also be able to respond to 
unexpected changes in its environment. It, therefore, has to 
balance reactive and goal-directed behavior, typically 
through a mixture of problem solving, planning, searching, 
decision making, and learning through experience. 
 
5. Computational Intelligence 

WEKA (Waikato Environment for Knowledge Analysis): 
The Software 

 
Overview 
 
An exciting and potentially far-reaching development in 
computer science and Artificial Intelligence is the invention 
and application of methods of machine learning. These 
enable a computer program to automatically analyze a large 
body of data and decide what information is most relevant. 
This crystallized (clustered, sorted or classified) information 
can then be used to automatically make predictions or to help 
people make decisions faster and more accurately.  
 
Goal 
 
The overall goal is to build a state-of-the-art facility for 
developing machine learning (ML) techniques and to apply 
them to real-world data mining problems. Several standard 
ML techniques were incorporated into a software 
"workbench" called WEKA, for Waikato Environment for 
Knowledge Analysis. With WEKA, a specialist in a 
particular field is able to use ML to derive useful knowledge 
from databases that are far too large to be analyzed by hand. 
WEKA's users are ML researchers and industrial scientists, 
but it is also widely used for teaching (Schools of higher 
learning). 
 
Objectives: 
 
i. Make Machine Learning (ML) techniques generally 

available;  
ii. Apply them to practical problems that matter to New 

Zealand industry; 
iii. Develop new machine learning algorithms and give them 

to the world; 
iv. Contribute to a theoretical framework for the field. 

 
WEKA machine learning package is publically available and 
presents a collection of algorithms for solving real-world 
data mining problems. The software is written entirely in 
Java (distributed under the GNU Public License) and 
includes a uniform interface to a number of standard ML 
techniques. 
 
Main features 
 
i. Comprehensive set of data pre-processing tools, learning 

algorithms and evaluation methods. 
ii. Graphical user interfaces (incl. data visualization) 

iii. Environment for comparing learning algorithms 
 
The Explorer 
 
As an explorer, WEKA can be functional in the follow; 
i. Classification and Regression 

ii. Clustering 
iii. Association Rules 
iv. Attribute Selection 
v. Data Visualization 
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History 
 
WEKA was developed by Machine Learning Project Team at 
the University of Waikato in New Zealand funded by the 
New Zealand Government since 1993. 
 
Late 1992 - Funding was applied for by Ian Witten 
1993 - Development of the interface and infrastructure 
WEKA acronym coined by Geoff Holmes 
WEKA’s file format “ARFF” was created by Andrew 
Donkin 
ARFF was rumored to stand for Andrew’s Ridiculous File 
Format 
 
Sometime in 1994 - first internal release of WEKA 
TCL/TK user interface + learning algorithms written mostly 
in C. It is very much beta software. 
 
Changes for the b1 release included (among others): 
 
“Ambiguous and Unsupported menu commands removed.” 
“Crashing processes handled (in most cases :-)” 
October 1996 - first public release: WEKA 2.1 
July 1997 – WEKA 2.2 
Schemes: 1R, T2, K*, M5, M5Class, IB1-4, FOIL, PEBLS, 
support for C5 
Included a facility (based on UNIX makefiles) for 
configuring and running large scale experiments 
Early 1997 - decision was made to rewrite WEKA in Java 
Originated from code written by Eibe Frank for his PhD 
Originally codenamed JAWS (JAva Weka System) 
May 1998 - WEKA 2.3 
Last release of the TCL/TK-based system 
Mid 1999 - WEKA 3 (100% Java) released 
Version to complement the Data Mining book 
Development version (including GUI) 
 
WEKA Versions: 
 
There are several versions of WEKA: 
 
WEKA 3.4: “book version” compatible with description in 
data mining book 
 
WEKA 3.5.5: “development version” with lots of 
improvements 
 
Projects based on WEKA 
 
I. 45 projects currently (30/01/07) listed on the WekaWiki 

II. Incorporate/wrap WEKA 
a. GRB Tool Shed - a tool to aid gamma ray burst research 
b. YALE - facility for large scale ML experiments 
c. GATE - NLP workbench with a WEKA interface 
d. Judge - document clustering and classification 
e. RWeka - an R interface to Weka  

III. Extend/modify WEKA 
a. BioWeka - extension library for knowledge discovery in 

biology 
b. WekaMetal - metal learning extension to WEKA 
c. Weka-Parallel - parallel processing for WEKA 
d. Grid Weka - grid computing using WEKA 
e. Weka-CG - computational genetics tool library  

Limitations of WEKA 
 
 Traditional algorithms need to have all data in main 
memory. 
 Big datasets are an issue. 

Solution 
 
 Incremental schemes; having the datasets in several 
schemes or sizes. 
 Stream algorithms; the use of MOA “Massive Online 
Analysis” (Coincidentally, Mao is not only a streaming 
algorithm but a flightless bird which also is extinct!) 

Symbolic Learning Methods in WEKA 
 
 ID3: uses Information Gain heuristic which is based on 
Shannon’s entropy to build efficient decision trees. But one 
disadvantage with ID3 is that it over fits the training data. So, 
it gives rise to decision trees which are too specific and 
hence this approach is not noise resistant when tested on 
novel examples. Another disadvantage is that it cannot deal 
with missing attributes and requires all attributes to have 
nominal values. Also, it can be run only on datasets where all 
the attributes are nominal.  
 
 C4.5: is an improved version of ID3 which prevents over-
fitting of training data by pruning the decision tree when 
required, thus making it more noise resistant. 
 
 J48: J48 (Quinlan, 1992) implements Quinlan’s C4.5 
algorithm (Quinlan, 1993) for generating a pruned or 
unpruned C4.5 decision tree. C4.5 is an extension of 
Quinlan's earlier ID3 algorithm. The decision trees generated 
by J48 can be used for classification. J48 builds decision 
trees from a set of labeled training data using the concept of 
information entropy. It uses the fact that each attribute of the 
data can be used to make a decision by splitting the data into 
smaller subsets. J48 examines the normalized information 
gain (difference in entropy) that results from choosing an 
attribute for splitting the data. To make the decision, the 
attribute with the highest normalized information gain is 
used. Then the algorithm recurs on the smaller subsets. The 
splitting procedure stops if all instances in a subset belong to 
the same class. Then a leaf node is created in the decision 
tree telling to choose that class. But it can also happen that 
none of the features give any information gain. In this case 
J48 creates a decision node higher up in the tree using the 
expected value of the class. J48 can handle both continuous 
and discrete attributes, training data with missing attribute 
values and attributes with differing costs. Further it provides 
an option for pruning trees after creation. 

Neural Network Method in WEKA 
 
a) Multi-Layer Perceptron (MLP): Multilayer Perceptron 
is a layered network comprising of input nodes, hidden nodes 
and output nodes. The error values are back propagated from 
the output nodes to the input nodes via the hidden nodes. 
Considerable time is required to build a neural network but 
once it is done, classification is quite fast. Neural networks 
are robust to noisy data as long as too many epochs are not 
considered since they do not over fit the training data. In 
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Weka, nominal attributes are automatically converted to 
numeric ones for neural network learning methods. So, 
preprocessing is not required in this type of datasets. 
Numeric Datasets are those which contain few nominal and 
few numeric attributes. 
 
Differences between Symbolic Learning and Neural 
Network 
 
The most often application of both neural network and 
symbolic learning systems is the inductive (the system is 
presented with sets of example data and is told the correct 
conclusions that it should draw from each) acquisition of 
concepts from examples. The system continually refines its 
rules and relations so as to correctly handle each new 
example. (Hopgood, 2002) 
  
1 Symbolic learning describes systems that formulate and 
modify rules, facts, and relationships, explicitly expressed in 
words and symbols. In other words, they create and modify 
their own knowledge base, the system constructs a decision 
tree from a set of training objects; hence they are knowledge 
based systems while the Numerical learning refers to systems 
that use numerical models; learning in this context refers to 
techniques for optimizing the numerical parameters such as 
weights and bias with back propagated error (The error 
values are back propagated from the output nodes to the 
input nodes via the hidden nodes). They are computational 
methods in Artificial intelligence (AI). 
 
2 Using algorithms that construct decision trees for symbolic 
methods and for networks the use of back propagation to 
determine appropriate weights as in Table 1 (Results 
extracted from Weiss and Kapouleas) (Quinlan), it was 
discovered that both methods performed well but Neural 
networks took more CPU time in Thyroid domain training. 
 
3 In all, Back propagation (Neural Network) usually 
requires a great deal more computation compared to Decision 
Tree (Symbolic Learning). (Quinlan; Shravya) 
 
4 However in general, the predictive accuracy of both 
approaches is roughly the same  with back propagation 
often slightly more accurate. (Quinlan; Shravya) 
 
5 ID3 (symbolic learning) is that it over fits the training 
data. So, it gives rise to decision trees which are too specific 
and hence this approach is not noise resistant when tested on 
novel (new) examples though it was corrected in C4.5 which 
prevents over-fitting of training data by pruning the decision 
tree when required. Another disadvantage is that it cannot 
deal with missing attributes and requires all attributes to have 
nominal values while Neural Networks are robust to noisy 
data as long as too many epochs are not considered since 
they do not over fit the training data. In other words, Back 
propagation is more adaptive in a noisy datasets but 
Symbolic learning tends to perform better in a noise free 
datasets. (Shravya) 
 
6. Validation 

 Percentage Split (Holdout Method): It is the simplest 
kind of cross validation. The data set is separated into two 

sets, called the training set and the testing set. The function 
approximator fits a function using the training set only. Then 
the function approximator is asked to predict the output 
values for the data in the testing set (it has never seen these 
output values before). The errors it makes are accumulated as 
before to give the mean absolute test set error, which is used 
to evaluate the model. The advantage of this method is that it 
is usually preferable to the residual method and takes no 
longer to compute. However, its evaluation can have a high 
variance. The evaluation may depend heavily on which data 
points end up in the training set and which end up in the test 
set, and thus the evaluation may be significantly different 
depending on how the division is made. In general, the data 
will be split up randomly into training data and test data. In 
the experiments conducted, the data will be split such that 
training data comprises 66% of the entire data and the rest is 
used for testing. (Shravya, Schneider, 1997) 
 
Holdout (Percentage split in WEKA) validation is not strictly 
cross-validation, because the data never are crossed over. 
Observations are chosen randomly from the initial sample to 
form the testing data, and the remaining observations are 
retained as the training data. Normally, less than a third of 
the initial sample is used for testing data. (Martin, 2009) 
 
 K-fold Cross-validation: In general, is one way to 
improve over the holdout method. The data is split into k 
disjoint subsets and one of it is used as testing data and the 
rest of them are used as training data. This is continued till 
every subset has been used once as a testing dataset. In other 
words, the data set is divided into k subsets, and the holdout 
method is repeated k times. Each time, one of the k subsets is 
used as the test set and the other k-1 subsets are put together 
to form a training set. Then the average error across all k 
trials is computed. The advantage of this method is that it 
matters less how the data gets divided. Every data point gets 
to be in a test set exactly once, and gets to be in a training set 
k-1 times. The variance of the resulting estimate is reduced 
as k is increased. The disadvantage of this method is that the 
training algorithm has to be rerun from scratch k times, 
which means it takes k times as much computation to make 
an evaluation. A variant of this method is to randomly divide 
the data into a test and training set k different times. The 
advantage of doing this is that you can independently choose 
how large each test set is and how many trials you average 
over. In the experiments conducted, 5-fold cross validation 
was done. (Shravya, Schneider, 1997) 
 
7. Artificial Neural Networks (Ann) 
 
Artificial Neural Networks are a programming paradigm that 
seek to emulate the microstructure of the brain, and are used 
extensively in artificial intelligence problems from simple 
pattern-recognition tasks, to advanced symbolic 
manipulation. (Noriega, 2005) 
 
The Multilayer Perceptron is an example of an artificial 
neural network that is used extensively for the solution of a 
number of different problems, including pattern recognition 
and interpolation. It is a development of the Perceptron 
neural network model, that was originally developed in the 
early 1960s but found to have serious limitations. 
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An Artificial Neural Network (ANN) consists of a collection 
of processing units called neurons that are highly 
interconnected according to a given topology. ANNs have 
the ability of learning-by-example and generalization from 
limited, noisy, and incomplete data. They have been 
successfully employed in a broad spectrum of data-intensive 
applications (Xiaonan et al, 2008). In this section, we will 
review their contributions and performance on intrusion 
detection domain. This section is organized by the types of 
ANNs illustrated in fig below 
 

 
 

Figure 4:  ANN Hierarchy 
 
History and Theoretical Background (Noriega, 2005) 
 
Biological Basis of Neural Networks 
 
Artificial Neural Networks attempt to model the functioning 
of the human brain. The human brain for example consists of 
billions of individual cells called neurons. It is believed by 
many (the issue is contentious) that all knowledge and 
experience is encoded by the connections that exist between 
neurons. Given that the human brain consists of such a large 
number of neurons (so many that it is impossible to count 
them with any certainty), the quantity and nature of the 
connections between neurons is, at present levels of 
understanding, almost impossible to assess. 
 
Understanding the Neuron 
 
Intelligence is arguably encoded at the connections between 
neurons (the synapses), but before examining what happens 
at these connections, we need to understand how the neuron 
functions. 
 
Modern computers use a single, highly complex processing 
unit (eg. Intel Pentium) which performs a large number of 
different functions. All of the processing on a conventional 
computer is handled by this single unit, which processes 
commands at great speed. 
 
The human brain is different in that it has billions of simple 
processing units (neurons). Each of these units is slow when 
compared to say a Pentium 4, but only ever performs one 
simple task. A neuron activates (fires) or remains inactive. 
One may observe in this a kind of binary logic, where 
activation may be denoted by a '1’ and inactivation by a '0'. 
Neurons can be modeled as simple switches therefore, the 
only problem remains in understanding what determines 
whether a neuron fires. 
 

Neurons can be modeled as simple input-output devices, 
linked together in a network. Input is received from neurons 
found lower down a processing chain, and the output 
transmitted to neurons higher up the chain. When a neuron 
fires, information is passed up the processing chain. This 
innate simplicity makes neurons fairly straightforward 
entities to model; it is in modeling the connections that the 
greatest challenges occur. 
 
Understanding the Connections (Synapses) 
 
When real neurons fire or are activated, they transmit 
chemicals (neurotransmitters) to the next group of neurons 
up the processing chain alluded to in the previous subsection. 
These neurotransmitters form the input to the next neuron, 
and constitute the messages neurons send to each other. 
These messages can assume one of three different forms.  
 
 Excitation - Excitatory neurotransmitters increase the 
likelihood of the next neuron in the chain to fire. 
 Inhibition - Inhibitory neurotransmitters decrease the 
likelihood of the next neuron to fire. 
 Potentiation - Adjusting the sensitivity of the next neurons 
in the chain to excitation or inhibition (this is the learning 
mechanism). 
 
If we can model neurons as simple switches, we model 
connections between neurons as matrices of numbers (called 
weights), such that positive weights indicate excitation, 
negative weights indicate inhibition. How learning is 
modelled depends on the paradigm used. 
 
Modelling Learning 
 
Using artificial neural networks it is impossible to model the 
full complexity of the brain of anything other than the most 
basic living creatures, and generally ANNs will consist of at 
most a few hundred (or few thousand) neurons, and very 
limited connections between them. Nonetheless quite small 
neural networks have been used to solve what have been 
quite difficult computational problems. 
 
Generally Artificial Neural Networks are basic input and 
output devices, with the neurons organized into layers. 
Simple Perceptrons consist of a layer of input neurons, 
coupled with a layer of output neurons, and a single layer of 
weights between them, as shown in Figure 5. 
 
The learning process consists of finding the correct values 
for the weights between the input and output layer. The 
schematic representation given in Figure 5 is often how 
neural nets are depicted in the literature, although 
mathematically it is useful to think of the input and output 
layers as vectors of values(I and O respectively), and the 
weights as a matrix. 
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Figure 5: Simple Perceptron Architecture 

 
We define the weight matrix Wio as an i X o matrix, where i 
is the number of input nodes, and o is the number of output 
nodes. The network output is calculated as follows. 
 

          (1) 
 
Generally data is presented at the input layer, the network 
then processes the input by multiplying it by the weight 
layer. The result of this multiplication is processed by the 
output layer nodes, using a function that determines whether 
or not the output node fires. 
 
The process of finding the correct values for the weights is 
called the learning rule, and the process involves initializing 
the weight matrix to a set of random numbers between -1 and 
+1. Then as the network learns, these values are changed 
until it has been decided that the network has solved the 
problem. Finding the correct values for the weights is 
effected using a learning paradigm called supervised 
learning. Supervised learning is sometimes referred to as 
training.  
 
Data is used to train the network; this constitutes input data 
for which the correct output is known. Starting with random 
weights, an input pattern is presented to the network; it 
makes an initial guess as to what the correct output should 
be. 
 
During the training phase, the difference between the guess 
made by the network and the correct value for the output is 
assessed, and the weights are changed in order to minimize 
the error. The error minimization technique is based on 
traditional gradient descent techniques. While this may sound 
frighteningly mathematical, the actual functions used in 
neural networks to make the corrections to the weights are 
chosen because of their simplicity, and the implementation of 
the algorithm is invariably uncomplicated. 
 
The Activation Function 
 
The basic model of a neuron used in Perceptrons and MLPs 
is the McCulloch-Pitts model, which dates from the late 
1940s. This modeled a neuron as a simple threshold function. 
 

       (2) 

This activation function was used in the Perceptron neural 
network model, and as can be seen this is a relatively 
straightforward activation function to implement. 
 
The Learning Rule 
 
The perceptron learning rule is comparatively 
straightforward. Starting with a matrix of random weights, 

we present a training pattern to the network, and calculate the 
network output. We determine an error function E 
 

       (3) 
 
where in this case, T is the target output vector for a training 
input to the ANN. In order to determine how the weights 
should change, this function has to minimize. What this 
means is find the point at which the function reaches its 
minimum value. The assumption we make about the error 
function is that if we were to plot all of its potential values 
into a graph, it would be shaped like a bowl, with sides 
sloping down to a minimum value at the bottom. 
 
In order to find the minimum values of a function 
differentiation is used. Differentiation is used to give the rate 
at which functions change, and is often defined as the tangent 
on a curve at a particular point. If our function is perfectly 
bowl shaped, then there will only be one point at which the 
minimum value of a function has a tangent of zero (i.e. have 
a perfectly at tangent), and that is at its minimum point (see 
Figure 6.) 
 

 
Figure 6: Function Minimization using Differentiation 

 
In neural network programming the intention is to assess the 
effect of the weights on the overall error function. We can 
take Equation 3 and combine it with Equation 1 to obtain the 
following. 
 

      (4) 
 
We then differentiate the error function with respect to the 
weight matrix. The discussion on Multilayer Perceptrons will 
look at the issues of function minimization in greater detail. 
Function minimization in the Simple Perceptron Algorithm is 
very straightforward. We consider the error each individual 
output node, and add that error to the weights feeding into 
that node. The Perceptron learning algorithm works as 
follows. 
 
1. Initialize the weights to random values on the interval [-1, 
1]. 
2. Present an input pattern to the network. 
3. Calculate the network output. 
4. for each node n in the output layer... 
(a) Calculate the error En = Tn - On 
(b) Add En to all of the weights that connect to node n (add 
En to column n of the weight matrix. 
5. Repeat the process from 2 for the next pattern in the 
training set. 
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This is the essence of the perceptron algorithm. It can be 
shown that this technique minimizes the error function. In its 
current form it will work, but the time taken to converge to a 
solution (i.e. the time taken to find the minimum value) may 
be unpredictable because adding the error to the weight 
matrix is something of a 'blunt instrument' and results in the 
weights gaining high values if several iterations are required 
to obtain a solution. This is akin to taking large steps around 
the bowl in order to find the minimum value; if smaller steps 
are taken we are more likely to find the bottom. 
 
In order to control the convergence rate, and reduce the size 
of the steps being taken, a parameter called a learning rate is 
used. This parameter is set to a value that is less than unity, 
and means that the weights are updated in smaller steps 
(using a fraction of the error). The weight update rule 
becomes the following. 
 

    (5) 
 
which means that the weight value at iteration t+1 of the 
algorithm is equivalent to a fraction of the error  added 
to the weight value at iteration t. 
 
Supervised Learning (Xiaonan et al, 2008) 
 
Feed Forward Neural Networks: Feed forward neural 
networks are the first and arguably the simplest type of 
artificial neural networks devised. Two types of feed forward 
neural networks are commonly used in modeling either 
normal or intrusive patterns. Multi-layered Feed Forward 
(MLFF) Neural Networks MLFF networks use various 
learning techniques, the most popular being back-
propagation (MLFF-BP). Network traffic is another 
indispensable data source.  
 
MLFF-BP can also be used as a multi-class classifier (MCC). 
MCC neural networks can either have multiple output 
neurons or assemble multiple binary neural network 
classifiers. Apparently, the latter is more flexible than the 
former when facing a new class. Except for the BP learning 
algorithm, there are many other learning options in MLFF 
networks. S. Mukkamala and A. H. Sung (2003) compared 
12 different learning algorithms on the KDD99 dataset, and 
found that resilient back propagation achieved the best 
performance among the neural networks in terms of accuracy 
(97.04%) and training time (67 epochs). 
 
Radial Basis Function Neural Networks: Radial Basis 
Function (RBF) neural networks are another widely used 
type of feed forward neural networks. Since they perform 
classification by measuring the distances between inputs and 
the centers of the RBF hidden neurons, they are much faster 
than time consuming back-propagation, and more suitable for 
problems with large sample size [S. Cayzer and J. Smith, 
2006]. Other than being a classifier, the RBF network was 
also used to fuse results from multiple classifiers [S. Cayzer 
and J. Smith, 2006]. It outperformed five different decision 
fusion functions, such as Dempster-Shafer combination and 
Weighted Majority Vote. 
 

Comparison between MLFF-BP and RBF networks Since 
RBF and MLFF-BP networks are widely used, a comparison 
between them is naturally required. [Jiang et al, 2003] and 
[Zhang et al, 2003] compared the RBF and MLFF-BP 
networks for misuse and anomaly detection on the KDD99 
dataset. Their experiments have shown that for misuse 
detection, BP has a slightly better performance than RBF in 
terms of detection rate and false positive rate, but requires 
longer training time, while for anomaly detection, the RBF 
network improves the performance with a high detection rate 
and a low false positive rate, and requires less training time 
(cutting it down from hours to minutes). All in all, RBF 
networks achieve better performance. 
 
Another interesting comparison has been made between the 
binary and decimal input encoding schemes of MLFFBP and 
RBF [Liu et al, 2002]. The results showed that binary 
encoding has lower error rates than decimal encoding, 
because decimal encoding only computes the frequency 
without considering the order of system calls. Decimal 
encoding, however, handles noise well and the classifiers can 
be trained with fewer data. Furthermore, there are fewer 
input nodes in decimal encoding than in binary encoding, 
which decreases the training and testing time and simplifies 
the network structure. 
 
Unsupervised Learning (Xiaonan et al, 2008) 
 
Self-Organizing Maps and Adaptive Resonance Theory are 
two typical unsupervised neural networks. Similar to 
statistical clustering algorithms, they group objects by 
similarity. They are suitable for intrusion detection tasks in 
that normal behavior is densely populated around one or two 
centers, while abnormal behavior and intrusions appear in 
sparse regions of the pattern space outside of normal clusters. 
 
Self-Organizing Maps: Self-organizing maps (SOM), also 
known as Kohonen maps, are single-layer feed forward 
networks where outputs are clustered in a low dimensional 
(usually 2D or 3D) grid. It preserves topological 
relationships of input data according to their similarity. SOM 
can function as a data pre-processor to cluster input data. 
Other classification algorithms, such as feed forward neural 
networks, were trained using the outputs from the SOM. 
Sometimes SOMs map data from different classes into one 
neuron. SOMs are the most popular neural networks to be 
trained for anomaly detection tasks; an example is a proposed 
multi-layer detection framework, where the first layer used a 
SOM to cluster the payload, and compressed it into a single 
feature. 
 
Unlike other unsupervised approaches, SOMs are useful to 
visualize the analysis which took advantage of topology-
preserving and dimensionality reducing properties of SOMs. 
Although SOM shows very high accuracy in usage, the 
training procedure suffers from a high computational 
overhead, especially when the size of the training set is over 
10,000. 
 
Adaptive Resonance Theory (ART): The Adaptive 
Resonance Theory (ART) embraces a series of neural 
network models that perform unsupervised or supervised 
learning, pattern recognition, and prediction, since it has 
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been invented by Stephen Grossberg in 1976. Unsupervised 
learning models include ART-1, ART-2, ART-3, and Fuzzy 
ART. Various supervised ones are named with the suffix 
“MAP”, such as ARTMAP, Fuzzy ARTMAP, and Gaussian 
ARTMAP. Compared with SOMs who cluster data objects 
based on the absolute distance, ARTs cluster objects based 
on the relative similarity of input patterns to the weight 
vector. 
 
In comparing the performance of ARTs and SOMs, the 
results showed that ART nets have better intrusion detection 
performance than SOMs on either offline or online data in 
Intrusion Detection. 
 
Fuzzy ART nets combine fuzzy set theory and adaptive 
resonance theory. This combination is faster and more stable 
than ART nets alone in responding to arbitrary input 
sequences. Liao et al (2007) and Durgin et al (2005) are two 
examples of using Fuzzy ART to detect anomalies. Liao et 
al: deployed Fuzzy ART in an adaptive learning framework 
which is suitable for dynamic changing environments. 
Normal behavior changes are efficiently accommodated 
while anomalous activities can still be identified. Durgin et al 
(2005) investigated in detail the capabilities of SOMs and 
Fuzzy ARTs. Both SOMs and Fuzzy ARTs show promise in 
detecting network abnormal behavior. The sensitivity of 
Fuzzy ARTs seems to be much higher than that of SOMs. 
 
Summary 
 
All these research works took advantage of ANNs’ ability to 
generalize from limited, noisy, and incomplete data. Some 
researchers attempted to address disadvantages of ANNs as 
well such as long training time and retraining.  
 
To further correct some of the disadvantages, the following 
practice has been proven useful in ANNs: 
 
 Datasets and features. Neural networks only recognize 
whatever is fed to them in the form of inputs. Although they 
have the ability of generalization, they are still unable to 
recognize unseen patterns sometimes. One cause of this 
difficulty is incomplete training sets. To address this 
problem, randomly generated anomalous inputs are inserted 
into the training set with the purpose of exposing the network 
to more patterns, hence making the training sets more 
complete. Selecting good feature sets is another way to 
improve performance.  
 
8. Fuzzy Sets 

The past decades have witnessed a rapid growth in the 
number and variety of applications of fuzzy logic. Fuzzy 
logic, dealing with the vague and imprecise, is appropriate 
for intrusion detection for two major reasons. First, the 
intrusion detection problem involves many numeric attributes 
in collected audit data, and various derived statistical 
measures. Building models directly on numeric data causes 
high detection errors. For example, an intrusion that deviates 
only slightly from a model may not be detected or a small 
change in normal behavior may cause a false alarm. Second, 
the security itself includes fuzziness, because the boundary 
between the normal and anomaly is not well defined. 

Genetic Algorithm (Mahmud et al., 2009) 
 
Genetic algorithm (GA) is an adaptive heuristic search 
method for solving optimization problems. It was formally 
introduced in the United States in the 1970s by John Holland 
at the University of Michigan (Goldberg, 1989). They have a 
solid basis in genetics and evolutionary biological systems. 
Genetic Algorithms comprise a kind of effective searching 
and optimizing technique that outperforms most of traditional 
methods. In particular, GAs work very well on combinatorial 
problems such as reduct finding in rough set theory. 
Furthermore, finding the minimal reducts is a NP-hard 
problem [Abraham et al, 2007b]. Hence, GA is a good 
candidate as a methodology for finding minimal reducts. 
 
In classical GA, individuals are encoded as binary strings of 
the attributes ((e.g. 0100110100 {a2; a5; a6; a8}). Each 
individual represents a set of attributes generated by 
mutation, crossover and selection procedures using some 
fitness criteria. Individuals with maximal fitness are highly 
probable to be reducts but there is no full guarantee. 
 
Parallel Genetic Algorithm, PGA was first attempted by 
Grefenstette. Parallelism refers to many processors, with 
distributed operational load. Each GA is a good candidate for 
parallelization. Processor may independently work with 
different parts of a search space and evolve new generations 
in parallel. This helps to find out the optimum solution for 
the complex problems by searching massive populations and 
increases quality of the solutions by overcoming premature 
convergence. There are many types of Parallel Genetic 
Algorithm taxonomies [Abraham ett al, 2007a]. One of the 
most ingenious taxonomies is the Island Model (IM) 
[Abraham et al, 2007b], where processors are globally 
controlled by message passing within Master-Slave 
architecture. Master processor sends "START" signal to the 
slave processors to start generations and continue sending 
"MIGRATION" message to partially exchange the best 
chromosomes between the processors. So the worst 
chromosomes are replaced by the best received ones. Time 
between two consecutive MIGRATION signals is called the 
migration step; percentage of the best chromosomes is called 
migration percentage. Migrations should occur after a time 
period long enough for allowing development of good 
characteristics in each subpopulation. 
 
9. Simulated Annealing  
 
Definition: A technique to finding a good solution to an 
optimization problem by trying random variations of the 
current solution is called Simulated Annealing. A worse 
variation is accepted as the new solution with a probability 
that decreases as the computation proceeds. The slower the 
cooling schedule, or rate of decrease, the more likely the 
algorithm is to find an optimal or near-optimal solution. 
 
History 
 
A simple Monte Carlo simulation samples the possible states 
of a system by randomly choosing new parameters. At the 
end of the simulation, the collection, or ensemble, of 
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randomly chosen points in search space gives you 
information about this space. 
 
For example, the web page Simple Monte Carlo Simulation 
gives an example of a unit square containing one-quarter of a 
unit circle whose center is in the lower left corner. The 
search space is the unit square, and any point in this space 
can be in one of two possible states; inside of the quarter-
circle, or outside. Each point in the search space is 
determined by the value of two parameters, its x- and y-
coordinate. The possible values for each parameter can be 
any real number in the range [0.0, 1.0]. Each step in the 
simulation consists of choosing random, allowed values for 
both of the parameters. This generates a point in the search 
space that is associated with one of the two states. At the end 
of the simulation, there will be an ensemble of N points, of 
which Nin are inside of the quarter-circle. The ratio of Nin to 
N is just the ratio of the area inside the quarter-circle to the 
area of the unit square. 
 
Therefore, a simple Monte Carlo simulation randomly selects 
a point somewhere is the search space and all points are used 
to find out information about the search space. This 
procedure has use in some problems, like the one described 
above for finding the area of certain regions, but does not 
give physically realistic results when the search space 
represents an energy surface. For example, assume that the 
simulation studies a collection of M helium atoms in a cube. 
The position of each atom is described by three parameters 
that give its coordinates within the cube. The energy of this 
system is given by the sum of all pair-wise interaction 
energies. If you wanted to calculate the average energy of 
this system, a simple Monte Carlo simulation should not be 
used. This is because a random placement of the M atoms 
may, at some point of the simulation, place two of the atoms 
so close together that their interaction energy is virtually 
infinite. This adds an infinite energy to the ensemble of atom 
distributions and produces an infinite average energy. In the 
real world, two helium atoms would never get that close 
together. Therefore, a modification to the simple Monte 
Carlo simulation needs to be made so that unrealistic samples 
are not placed into the ensemble. Such a modification was 
proposed in 1953 by Nicholas Metropolis and coworkers 
(Metropolis, 1953). This modified procedure is known as a 
Metropolis Monte Carlo simulation. 
 
In contrast with the simple Monte Carlo simulation, a new 
point in search space is sampled by making a slight change to 
the current point. In the example used here, a new orientation 
of the helium atoms is created by making a random, small 
change to each atom's coordinates. If the energy of this new 
orientation is less than that of the old, this orientation is 
added to the ensemble. If the energy rises, a Boltzmann 
acceptance criterion is used. If the energy rise is small 
enough, the new orientation is added to the ensemble. 
Conversely, if the energy rise is too large, the new 
orientation is rejected and the old orientation is again added 
to the ensemble (see Metropolis Monte Carlo Simulation for 
more details). 
 
By using this acceptance probability one can prove that the 
average of any property, such as the energy, over the 
ensemble is equal to the Boltzmann average of this property 

as determined by the Boltzmann Distribution Law, for a 
sufficiently large ensemble. What is unique about this 
Boltzmann acceptance probability is that the temperature of 
the system must be used. Therefore, the Boltzmann average 
of a property is the expected value of this property at the 
given temperature. 
 
In 1983, Kirkpatrick and coworkers (1983) proposed a 
method of using a Metropolis Monte Carlo simulation to find 
the lowest energy (most stable) orientation of a system. Their 
method is based upon the procedure used to make the 
strongest possible glass. This procedure heats the glass to a 
high temperature so that the glass is a liquid and the atoms 
can move relatively freely. The temperature of the glass is 
slowly lowered so that at each temperature the atoms can 
move enough to begin adopting the most stable orientation. If 
the glass is cooled slowly enough, the atoms are able to 
"relax" into the most stable orientation. This slow cooling 
process is known as annealing, and so their method is known 
as Simulated Annealing. 
 
 Simulated Annealing (Algorithm) 
 
A Simulated Annealing optimization starts with a Metropolis 
Monte Carlo simulation at a high temperature. This means 
that a relatively large percentage of the random steps that 
result in an increase in the energy will be accepted. After a 
sufficient number of Monte Carlo steps, or attempts, the 
temperature is decreased. The Metropolis Monte Carlo 
simulation is then continued. This process is repeated until 
the final temperature is reached. 
 
A Simulated Annealing program consists of a pair of nested 
DO-loops. The outer-most loop sets the temperature and the 
inner-most loop runs a Metropolis Monte Carlo simulation at 
that temperature. The way in which the temperature is 
decreased is known as the cooling schedule. In practice, two 
different cooling schedules are predominantly used; a linear 
cooling schedule (Tnew=Told-dT) and a proportional cooling 
schedule (Tnew=C×Told) where C<1.0. These are not the only 
possible cooling schedules; they are just the ones that appear 
the most in the literature.  
 
As described in more detail in the discussion of a Metropolis 
Monte Carlo simulation, a more difficult aspect is to 
determine who long to run this simulation at each 
temperature. This depends upon the maximum size of the 
Monte Carlo step at each temperature. While a pure 
Metropolis Monet Carlo simulation attempts to reproduce the 
correct Boltzmann distribution at a given temperature, the 
inner-loop of a Simulated Annealing optimization only needs 
to be run long enough to explore the regions of search space 
that should be reasonably populated. This allows for a 
reduction in the number of Monte Carlo steps at each 
temperature, but the balance between the maximum step size 
and the number of Monte Carlo steps is often difficult to 
achieve, and depends very much on the characteristics of the 
search space or energy landscape. 
 
Simulated annealing has been used in various combinatorial 
optimization problems and has been particularly successful in 
circuit design problems (see Kirkpatrick et al. 1983). 
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10. Benefits of AI 

This chapter has reviewed a range of AI techniques. Whether 
the resultant systems display true intelligence remains 
questionable. Nevertheless, the following practical benefits 
have stemmed from the development of AI techniques: 
 
Reliability and Consistency: An AI system makes decisions 
that are consistent with its input data and its knowledge base 
(for a knowledge-based system) or numerical parameters (for 
a computational intelligence technique). It may, therefore, be 
more reliable than a person, particularly where repetitive 
mundane judgments have to be made. 
 
Automation: In many applications, such as visual inspection 
on a production line, judgmental decision-making has to be 
performed repeatedly. A well-designed AI system ought to 
be able to deal with the majority of such cases, while 
highlighting any that lie beyond the scope of its capabilities. 
Therefore, only the most difficult cases, which are normally 
the most interesting, are deferred to a person. 
 
Speed: AI systems are designed to automatically make 
decisions that would otherwise require human reasoning, 
judgment, expertise, or common sense. Any lack of true 
intelligence is compensated by the system’s processing 
speed. An AI system can make decisions informed by a 
wealth of data and information that a person would have 
insufficient time to assimilate. 
 
Improved Domain Understanding: The process of 
constructing a knowledge-based system requires the 
decision-making criteria to be clearly identified and assessed. 
This process frequently leads to a better understanding of the 
problem being tackled. Similar benefits can be obtained by 
investigating the decision-making criteria used by the 
computational intelligence techniques. 
 
Knowledge Archiving: The knowledge base is a repository 
for the knowledge of one or more people. When these people 
move on to new jobs, some of their expert knowledge is 
saved in the knowledge base, which continues to evolve after 
their departure. 
 
New Approaches to Software Engineering: Since AI 
systems are supposed to be flexible and adaptable, 
development is usually based upon continuous refinements 
of an initial prototype. This is the prototype–test–refine 
cycle, which applies to both knowledge-based systems and 
computational intelligence techniques. 
 
The key stages in the development of a system are: 

•  decide the requirements; 

•  design and implement a prototype; 

•  continuously test and refine the prototype. 
 
Rapid prototyping and iterative development have gained 
respectability across most areas of software engineering in 
recent years, replacing the traditional linear “waterfall 
process” of meticulous specification, analysis, and design 
phases prior to implementation and testing. 
 

11. Applications of AI 

Some approaches are pre-specified and structured, while 
others specify only low-level behavior, leaving the 
intelligence to emerge through complex interactions. Some 
approaches are based on the use of knowledge expressed in 
words and symbols, whereas others use only mathematical 
and numerical constructions. 
 
Overall, the tools and techniques of AI are ingenious, 
practical, and useful. If these were the criteria by which the 
successes of AI were measured, it would be heralded as one 
of the most accomplished technological fields. However, 
human mental faculties are incredibly complex and have 
proved to be extremely difficult to mimic. 
 
Nevertheless, the techniques presented here have 
undoubtedly advanced humankind’s progress towards the 
construction of an intelligent machine. AI research has made 
significant advances from both ends of the intelligence 
spectrum but a gap still exists in the middle. Building a 
system that can make sensible decisions about unfamiliar 
situations in everyday, non-specialist domains remains 
difficult. This development requires progress in simulating 
behaviors that humans take for granted—specifically 
perception, language, common sense, and adaptability. Some 
of the areas where AI has been successfully applied are as 
follow: 
 
Game playing 
 
You can buy machines that can play master level chess for a 
few hundred dollars. There is some AI in them, but they play 
well against people mainly through brute force computation--
looking at hundreds of thousands of positions. To beat a 
world champion by brute force and known reliable heuristics 
requires being able to look at 200 million positions per 
second. 
 
Speech recognition 
 
In the 1990s, computer speech recognition reached a 
practical level for limited purposes. Thus United Airlines has 
replaced its keyboard tree for flight information by a system 
using speech recognition of flight numbers and city names. It 
is quite convenient. On the other hand, while it is possible to 
instruct some computers using speech, most users have gone 
back to the keyboard and the mouse as still more convenient. 
 
Understanding natural language 
 
Just getting a sequence of words into a computer is not 
enough. Parsing sentences is not enough either. The 
computer has to be provided with an understanding of the 
domain the text is about, and this is presently possible only 
for very limited domains. 
 
Computer vision 
 
The world is composed of three-dimensional objects, but the 
inputs to the human eye and computers' TV cameras are two 
dimensional. Some useful programs can work solely in two 
dimensions, but full computer vision requires partial three-
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dimensional information that is not just a set of two-
dimensional views. At present there are only limited ways of 
representing three-dimensional information directly, and they 
are not as good as what humans evidently use. 
 
Expert systems 
 
A ``knowledge engineer'' interviews experts in a certain 
domain and tries to embody their knowledge in a computer 
program for carrying out some task. How well this works 
depends on whether the intellectual mechanisms required for 
the task are within the present state of AI. When this turned 
out not to be so, there were many disappointing results. One 
of the first expert systems was MYCIN in 1974, which 
diagnosed bacterial infections of the blood and suggested 
treatments. It did better than medical students or practicing 
doctors, provided its limitations were observed. Namely, its 
ontology included bacteria, symptoms, and treatments and 
did not include patients, doctors, hospitals, death, recovery, 
and events occurring in time. Its interactions depended on a 
single patient being considered. 
 
Since the experts consulted by the knowledge engineers 
knew about patients, doctors, death, recovery, etc., it is clear 
that the knowledge engineers forced what the experts told 
them into a predetermined framework. In the present state of 
AI, this has to be true. The usefulness of current expert 
systems depends on their users having common sense. 
 
Heuristic classification 
 
One of the most feasible kinds of expert system given the 
present knowledge of AI is to put some information in one of 
a fixed set of categories using several sources of information. 
An example is advising whether to accept a proposed credit 
card purchase. Information is available about the owner of 
the credit card, his record of payment and also about the item 
he is buying and about the establishment from which he is 
buying it (e.g., about whether there have been previous credit 
card frauds at this establishment).Heuristic classifications can 
also be applied in Medical fields like pathology, biometrics, 
pharmacology, etc. 
 
12. Support Vector Machine (SVM) 

This review of Support Vector Machines attempts to detail 
the background of Support Vector Machines, their strengths 
in certain tasks and explains their usefulness to Semantic 
Classification and Learning tasks. Support Vector Machine 
(SVM) is a discriminative classifier that learns the decision 
surface through a process of discrimination and with good 
generalization characteristics. The approach is a systematic, 
reproducible and properly motivated by statistical learning 
theory. Training involves optimization of a convex cost 
function: there are no false local minima to complicate the 
learning process. SVMs are the most well-known of a class 
of algorithms that use the idea of kernel substitution and 
which are broadly referred to as Kernel Methods. Support 
Vector Machines (SVM) are a hot topic in current research, 
being used in a variety of research not just to solve a 
multitude of different learning and classification problems 
but also due to its high classification performance (Chapman, 

2004; Scholkopf, 1997). For instance the following 
examples; 

 Protein Structure Prediction, 
 Land Cover Classification, 
 Network Intrusion Detection (Yao et all, 1996), 
 Handwriting Recognition, 
 Electricity Fraud Prediction (Ahmad, 2007), 
 Detecting Steganography in digital images, 
 Breast Cancer Diagnosis and Prognosis, 
 Particle and Quark-Flavour Identification in High 
Energy Physics, 
 3D Computer Vision Object Detection, 
 Combustion Engine Knock Detection, 
 Protein Sequence Transitions, 
 Detecting Protein Homologies, 
 Text Categorization (Joachims, 1998), 
 Predicting time series data, 
 Micro array Gene Expression Classification, 
 Database Marketing, 
 Image Retrieval. 
 
Advantages of SVM 
 
The main success of the SVM is its good generalization 
ability i.e. it can easily distribute data in its feature space and 
a missing data usually does not affect its solution and output. 
It also has high classification performance which can be 
applied in solving various different learning and 
classification problems. Through statistical learning, it is 
proven that the bounds on the generalization error or future 
points not on the training set can be obtained. These bounds 
are a function of the misclassification error on the training 
data and terms that measure the complexity or the capacity of 
the classification function. The size of the margin is not 
directly dependent on the dimensionality of the data and as 
such the reason for good performance even for a very high 
dimensional data (i.e., with a very large number of 
attributes). 
 
Another major advantage of the SVM approach is its 
flexibility. Using a basic concept of maximizing margins, 
duality and kernels, the paradigm can be adapted to many 
types of inference problems. These maximizations could be 
changing the norm used for regularization, i.e., how the 
margin is measured, one can produce a linear program (LP) 
model for classification; adapting the technique by 
substituting the kernel functions and forming a dual 
Lagrangian to do unsupervised learning task of novelty 
detection and finally, two slack variables are introduced 
where one computes for underestimating function and the 
other, overestimating function. For points inside the tube, the 
slack variables are zero and progressively increase for points 
outside the tube according to the loss function used. The 
same strategy of computing the Lagrangian dual and adding 
kernel functions is then used to construct nonlinear 
regression functions for regression tasks. 
 
Other appealing features of SVM include the following: 
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1. SVM are a rare example of a methodology where 
geometric intuition, elegant mathematics, theoretical 
guarantees and practical algorithms meet. 
 
2. They present a general methodology for many types of 
problems where they are applied to many types or wide range 
of classification, regression and novelty detection tasks. 
However, they can also be applied to other areas such as 
operator inversion and unsupervised learning. 
 
3. The method eliminates many of the problems with other 
inference methodologies like neural networks and decision 
trees. 
 
a. There are no problems with local minima. One can 
construct highly nonlinear classification and regression 
without worrying about getting stuck at local minima. 
b. There are few model parameters to choose for example, if 
one chooses to produce a radial basic function (RBF) 
machine for classification, one need only two parameters: the 
penalty parameter for miscalculation and the number of the 
gaussian function. The number of the basic function is 
automatically selected by the SVM. 
c. The final results are stable, reproducible and largely 
independent of the specific algorithm used to optimise the 
SVM model. If two users apply the same SVM model with 
the same parameters to the same data, they will get the same 
solution modulo numeric issues. Compared with ANN, the 
results are dependent on the particular algorithm and starting 
point used. 
 
4. Robust optimization algorithms exist for solving SVM 
models. The problems are formulated as mathematical 
programming models so a state-of-the-art research from the 
area can be readily applied. Results have been reported in the 
literature for classification problems with millions of data 
points. 
 
5. The method is relatively simple to use. One needs not to 
be a SVM expert to successfully apply existing SVM 
software to new problems. 
 
6. There are many successful applications of SVM. They 
have proven to be robust to noise and perform well on many 
tasks. 
 
Kernels Used in SVM. 
 
In this section we consider a situation where the two classes 
cannot be reasonably separated with a linear discriminant 
function and nonlinear discriminant function must be used. 
Figure 9 illustrates two linearly non-separable situations. In 
a) it is clear that a classifier with a linear discriminant 
function performs poorly while in b) the classes overlap and 
the optimal discriminant function is at least roughly linear. In 
practice, most real-world classification problems are at least 
linearly non-separable but, in addition to this, the optimal 
discriminant function is often nonlinear. Note that using a 
nonlinear discriminant function of course does not guarantee 
zero training error  
 

 
 

Figure 7: In a) the optimal discriminant function is nonlinear 
while the optimal classifiers have no errors. In b) the optimal 
discriminant function is linear while the classes overlap and 

thus optimal classifier is not error free. 

 
We will map the vectors Xi, i = 1,…, n, into a new space in 
the hope that the optimal separating hyperplane in new space 
performs better classifications than the optimal hyperplane in 
the original space. More specifically the mapping that will 
be considered is of the form 
 

 

Where  and  are the eigenvalues and the normalized 
eigen functions of an integral operator 

. In the SVM literature the 

space  is often called a feature space and the 's are 
called feature vectors. Calculating the feature vectors can be 
computationally expensive, or even impossible, if the 
dimension of feature space is high or infinite. It should be 
noted that in the SVM algorithm all the calculations 
involving the s appear as inner products. Instead of 
explicitly mapping the vectors into a high dimensional 
feature space and computing the inner product there it is 
under certain condition possible to use a function K (u, v) 
whose value directly gives the inner product between two 
vectors  and Direct consequence is that using 
K the inner products can be computed roughly the same time 
in the feature space and in the original space. In the literature 
the function K ( , ) is usually called a kernel. 
 
Some well-known kernels 
 
There are also some difficulties associated with the mapping 

 and the kernel K. Usually it is very difficult or even 
impossible to find a mapping that corresponds to a particular 
kernel and, vice versa, it is difficult to find a kernel that 
corresponds to some particular mapping. The selection of a 
kernel function is an important problem in applications 
although there is no theory to tell which kernel to use. 
Moreover, it can be difficult to check that some particular 
kernel satisfies Mercer's conditions, since these conditions 
must hold for every L2(C). In the following some well-
known and widely used kernels are presented. Selection of 
the kernel, perhaps from among the presented kernels, is 
usually based on experience and knowledge about the 
classification problem at hand, and also on theoretical 
considerations. The problem of choosing the kernel on the 
basis of theoretical considerations is discussed in the next 
subsection. 
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1. Polynomial kernel 
 
The polynomial kernel of degree q is of the form 
 
   

 
Where c is some non-negative constant, usually c = 1. Using 
of a generalized inner-product instead of the standard inner-
product. In this case, the kernel is 
 

   

 
Where the vector  is such that the function satisfies the 
Mercer's condition. When c is positive the kernel is called 
inhomogeneous and, correspondingly, homogeneous when c 
= 0. The inhomogeneous kernel avoids problems with the 
Hessians becoming zero in numerical calculations. 
 
2. Sigmoid-function 
 
The sigmoid kernel is of the form 
 
   

 
And it satisfies the Mercer condition only for certain values 
of the parameters  and . Currently there are no theoretical 

results on the parameter values that satisfy the Mercer 
condition and proper values are found by empirical means. 
When the sigmoid kernel is used with the SVM one can 
regard it as a two-layer neural network. In two-layer neural 
network the vector X is mapped by the first layer into the 
vector F = (F1,…., FN), where 

, = 1,…,N, and the 

dimension of this vector is called the number of hidden units. 
In the second layer the sign of weighted sum of elements of F 
is calculated by using weights . 

 
The major difference between the SVM and a two-layer 
neural network is in different optimization criterion: in the 
SVM the goal is to find the optimal hyperplane that 
maximizes the margin (in the feature space), while in a two-
layer neural network the optimization criterion usually is to 
minimize the empirical risk associated with some loss 
function, typically the mean squared error. It should be 
pointed out that quite often in neural networks the optimal 
network architecture is unknown. If one uses the sigmoid-
function with SVM then such problems are avoided, since 
the number of hidden units (the number of support vectors), 
the centers in the hidden layer (weights , that is, support 
vectors) and the vector of weights in the output layer are all 
determined automatically in the linearly separable case. 
 
3. Radial basis function 
 
The Gaussian kernel, known also as the radial basis function, 
is of the form 
 

   

Where σ stands for  window width. It is also possible to 
have different window widths for different vectors, that is, to 
use a vector σ. 
 
Using the Gaussian kernel with the SVM, the number of 
basis functions (the number of support vectors), the centers 
(the xi's corresponding to the nonzero Lagrangian multipliers, 
i.e., support vectors) and the weights in the output layer 

of the RBF-network are all determined 

automatically. Furthermore, in some situations it can be 
useful to use the centers given by the SVM in an RBF-
network if no other information is available for an optimal 
placing of the centers. It should be pointed out again that the 
RBF-SVM and the RBF-network use the different 
optimization criteria. 
Selecting the kernel and the parameters 
 
When a kernel is used it is often unclear what the properties 
of the mapping and the feature space are. It is always 
possible to make a mapping into a potentially very high 
dimensional space and to produce a classifier with no 
classification errors on the training set. However, then the 
performance of the classifier can be poor. On the other hand, 
it is possible that a classifier with an infinite dimensional 
feature space performs well. Thus, the dimension of the 
feature space is not the essential quantity when choosing the 
right kernel. 
 
This is opposite to the usual curse of dimensionality problem. 
One could try to select the kernel on the basis of some 
functional analytic criteria, say using covering numbers that 
were shown to be important in the upper bounds of the error  
 
On the other hand, Vapnik argued that on the basis of 
experiments the choice between the kernels presented in the 
previous subsection does not make a big difference in 
empirical performance. The more important, and usually the 
more difficult problem is the selection of the parameters of 
kernel function. This problem could be solved using a (leave-
one-out) cross-validation procedure but quite often with real-
world sized training sets this is computationally very costly 
or even impossible since the quadratic optimization problem 
of the SVM algorithm is computationally rather demanding. 
 
One approach would be to use the linear approximation in 
the cross-validation to make the parameter selection faster. 
Recently, some more advanced approaches have been 
proposed. Various kernel dependent upper bounds are given 
on the leave-one-out error of the SVM. These upper bounds 
are then differentiated with respect to kernel parameters and 
then, by using some optimization algorithm (for example 
Newton- Rhapson -method), the best values for a kernel are 
found. 
 
13. Conclusion 

Support Vector Machines (SVM) is a method of calculating 
the optimal separating hyperplane in the feature space. 
Optimal separating hyperplane is defined as the maximum-
margin hyperplane in the higher dimensional feature space. 
 
The use of the maximum-margin hyperplane is motivated by 
statistical learning theory, which provides a probabilistic test 
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error bound which is minimized when the margin is 
maximized. The parameters of the maximum-margin 
hyperplane are derived by solving a quadratic programming 
(QP) optimization problem. There exist several specialized 
algorithms for quickly solving the QP problem that arises 
from SVMs. 
 
The original SVM was a linear classifier. However, Vapnik 
suggested using the kernel trick (originally proposed by 
Aizerman et al., 1964). In the kernel trick, each dot product 
used in a linear algorithm is replaced with a non-linear kernel 
function. This causes the linear algorithm to operate in a 
different space. For SVMs, using the kernel trick makes the 
maximum margin hyperplane be fit in a feature space. The 
feature space is a non-linear map from the original input 
space, usually of much higher dimensionality than the 
original input space. In this way, non-linear SVMs can be 
created. If the kernel used is a radial basis function, the 
corresponding feature space is a Hilbert space of infinite 
dimension. 
 
Least Squares SVM (LS-SVM) simplifies the formulation by 
replacing the inequality constraint in SVM with an equality 
constraint. This approach significantly reduces the 
complexity and the computation times, solving a set of linear 
equations instead of solving the QP problem.  
 
Maturity of Artificial Intelligence In Medicine 
 
The earliest work in medical artificial intelligence (AI) dates 
to the early 1970s, when the field of AI was about 15 years 
old (the phrase ‘‘artificial intelligence’’ had been first coined 
at a famous Dartmouth College conference in 1956 
(Hoopgood, 2002). Early AI in medicine (AIM) researchers 
had discovered the applicability of AI methods to life 
sciences, most visibly in the Dendral experiments (Lindsay et 
Al, 1980) of the late 1960s and early 1970s, which brought 
together computer scientists (e.g., Edward Feigenbaum), 
chemists (e.g., Carl Djerassi), geneticists (e.g., Joshua 
Lederberg), and philosophers of science (e.g., Bruce 
Buchanan) in collaborative work that demonstrated the 
ability to represent and utilize expert knowledge in symbolic 
form. 
 
There was an explosive interest in biomedical applications of 
AI during the 1970s, catalyzed in part by the creation of the 
SUMEX-AIM Computing Resource (Freiherr, 1980) at 
Stanford University, and a sister facility at Rutgers 
University, which took advantage of the nascent ARPANET 
to make computing cycles available to a national (and 
eventually international) community of researchers applying 
AI methods to problems in biology and medicine. Several 
early AIM systems including Internist-1 (Miller et. Al., 
1982), CASNET (Weiss et. Al, 1978), and MYCIN 
(Shortliffe, 1976), were developed using these shared 
national resources, supported by the Division of Research 
Resources at the National Institutes of Health. 
 
The general AI research community was fascinated by the 
applications being developed in the medical world, noting 
that significant new AI methods were emerging as AIM 
researchers struggled with challenging biomedical problems. 
In fact, by 1978, the leading journal in the field (Artificial 

Intelligence, Elsevier, Amsterdam) had devoted a special 
issue (Sridharan, 1978) solely to AIM research papers. Over 
the next decade, the community continued to grow, and with 
the formation of the American Association for Artificial 
Intelligence in 1980, a special subgroup on medical 
applications (AAAI-M) was created. It was against this 
background that Ted Shortliffe was asked to address the June 
1991 conference of the organization that had become known 
as Artificial Intelligence in Medicine Europe (AIME), held in 
Maastricht, The Netherlands. By that time the field was in 
the midst of ‘‘AI winter’’ (Wikipedia, 2008), although the 
introduction of personal computers and high-performance 
workstations was enabling new types of AIM research and 
new models for technology dissemination. In that talk, he 
attempted to look back on the progress of AI in medicine to 
date, and to anticipate the major challenges for the decade 
ahead. A paper based on that talk was later published in 
Artificial Intelligence in Medicine (Shortliffe, 1993).  
 
Medical Data Mining 
 
Human medical data are at once the most rewarding and 
difficult of all biological data to mine and analyze. Humans 
are the most closely watched species on earth. Human 
subjects can provide observations that cannot easily be 
gained from animal studies, such as visual and auditory 
sensations, the perception of pain, discomfort, hallucinations, 
and recollection of possibly relevant prior traumas and 
exposures. Most animal studies are short-term, and therefore 
cannot track long-term disease processes of medical interest, 
such as preneoplasia or atherosclerosis. With human data, 
there is no issue of having to extrapolate animal observations 
to the human species. 
 
Some three-quarter billions of persons living in North 
America, Europe, and Asia have at least some of their 
medical information collected in electronic form, at least 
transiently. These subjects generate volumes of data that an 
animal experimentalist can only dream of. On the other hand, 
there are ethical, legal, and social constraints on data 
collection and distribution, that do not apply to non-human 
species, and that limit the scientific conclusions that may be 
drawn. The major points of uniqueness of medical data may 
be organized under four general headings: 
 
 Heterogeneity of medical data 
o Volume and complexity of medical data 
o Physician’s interpretation 
o Sensitivity and specificity analysis 
o Poor mathematical characterization 
o Canonical form 
 Ethical, legal, and social issues 
o Data ownership 
o Fear of lawsuits 
o Privacy and security of human data 
o Expected benefits 
o Administrative issues 
 Statistical philosophy 
o Ambush in statistics 
o Data mining as a superset of statistics 
o Data mining and knowledge discovery process 
 Special status of medicine: Finally, medicine has a special 
status in science, philosophy, and daily life. The outcomes of 
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medical care are life-or-death, and they apply to everybody. 
Medicine is a necessity, not merely an optional luxury, 
pleasure, or convenience.  
 
In summary, data mining in medicine is distinct from that in 
other fields, because the data are heterogeneous; special 
ethical, legal, and social constraints apply to private medical 
information; statistical methods must address these 
heterogeneity and social issues; and because medicine itself 
has a special status in life. 
 
Data from medical sources are voluminous, but they come 
from many different sources, not all commensurate structure 
or quality. The physician’s interpretations are an essential 
component of these data. The accompanying mathematical 
models are poorly characterized compared to the physical 
sciences. Medicine is far, far from the intellectual gold 
standard of a canonical form for its basic concepts.  
 
The ethical, legal, and social limitations on medical data 
mining relate to privacy and security considerations, fear of 
lawsuits, and the need to balance the expected benefits of 
research against any inconvenience or possible injury to the 
patient. Methods of medical data mining must address the 
heterogeneity of data sources, data structures, and the 
pervasiveness of missing values for both technical and social 
reasons. 
 
The natural history of disease affects statistical hypotheses in 
an unknown way. Statistical hypothesis tests often take the 
form of an ambush or a contest with a winner and a loser. 
The relevance of this model to the natural processes of 
medicine is questionable. For all its perils, medical data 
mining can also be the most rewarding. For an appropriately 
formulated scientific question, thousands of data-elements 
can be brought to bear on finding a solution. For an 
appropriately formulated medical question, finding an 
answer could mean extending a life, or giving comfort to an 
ill person. These potential rewards more than compensate for 
the many extraordinary difficulties along the pathway to 
success. For more info, see Cios and Moore (2002) 
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