Certain Subordination Results for a Class of Analytic Functions Defined by the Generalized Derivative Operator

Oyekan, E.A1, Opoola, T.O2

1Department of Mathematics and Statistics, Bowen University, Iwo, Osun State, Nigeria
shalonfa@yahoo.com
2Department of Mathematics, University of Ilorin, Ilorin, Nigeria
opoolato@unilorin.edu.ng

Abstract: In this paper, we discuss several interesting subordination results for a class of analytic functions defined by using a generalized derivative operator which was introduced and studied by Al-Abbadi and Darus[1]. A number of interesting consequences of some of these results are also discussed, 2000 Mathematics Subject Classification. 30C45, 30C80.

Keywords: Subordination, Salagean Differential Operator, Subordinating factor sequence, Hadamard product, Convolution

1. Introduction

Let A be a class of functions f(z) analytic in the unit disk U = {z : |z| < 1} and normalized by

\[f(z) = z + \sum_{k=2}^{\infty} a_k z^k \]

(1.1)

Let A(s) denote the class of functions of the form

\[f(z) = z + \sum_{k=1}^{\infty} a_k s^k z^k \]

(1.2)

and s ∈ N = {1, 2, ...}, which are analytic in the open unit disk U on the complex plane ℂ. We further let c_α(s) be the class consisting of functions g which are convex of order α in U, i.e.

\[c_\alpha(s) = \{ g(z) : \Re \left(1 + \frac{z^2 g''(z)}{g'(z)} \right) > \alpha, \quad z \in U \} \]

for 0 ≤ α < 1

Al-Abbadi and Darus[1], introduce the class \(m \), \(n \), \(\lambda_1 \), \(\lambda_2 \) \(\alpha \) consisting of functions f(z) satisfying

\[\Re \left(\frac{z \mu_{m,n}^{\lambda_1,\lambda_2} f(z)}{\mu_{m,n}^{\lambda_1,\lambda_2} f(z)} \right) > \alpha, \quad z \in U, \]

(1.3)

Where for f ∈ A = A(1), the generalized derivative operator \(\mu_{\lambda_1,\lambda_2}^{m,n} f(z) \) is defined by

\[\mu_{\lambda_1,\lambda_2}^{m,n} f(z) = z + \sum_{k=1}^{\infty} \frac{(1 + \lambda_1 (k-1))^{m-1}}{(1 + \lambda_2 (k-1))^m} C(n,k) a_k z^k, \]

\[o \leq \alpha < 1, \quad \lambda_2 \geq \lambda_1 \geq 0, \quad (n, m) \in \mathbb{N}_0 = \{0, 1, 2, ...\}, \]

\[C(n,m) = \binom{n+k-1}{n} (n+1)_{k-1} / (1)_{k-1}, \]

Note that the series expansion (1.2) is equivalent to (1.1) with omitted coefficient as follows:

s = 1 : no coefficient is omitted
s = 2 : a_2 = 0 omitted
s = 3 : a_2 = a_3 = 0 omitted and so on.

Consequently, A(1) = A and A(s) ⊆ A(1).

2. Definitions and preliminaries

Theorem 2.1. [1] If f(z) ∈ A(s) given by (1.2), satisfies the coefficient inequality:

\[\sum_{k=1}^{\infty} \frac{(k-\alpha)(1+\lambda_1 (k-1))^{m-1}}{(1+\lambda_2 (k-1))^m} C(n,k) a_k \leq 1 - \alpha \]

(2.1)

(s ∈ N = {1, 2, 3, ...}, n ∈ N, m ∈ N \[\cup \{0\} \] and C(n,k) = \(\binom{n+k-1}{n} \)), then f(z) ∈ \(\mu_{\lambda_1,\lambda_2}^{m,n} (s, \alpha) \).

for 0 ≤ α < 1, \(\lambda_1 \geq \lambda_2 \geq 0 \).

Let us denote by \(\mu_{\lambda_1,\lambda_2}^{m,n} (s, \alpha) \) the class of functions f(z) defined by (1.2) whose coefficients satisfies the condition (2.1).

Definition 1. (Hadamard product or convolution)

If f, g ∈ A(s), where f(z) is as defined in (1.2) and g(z) is given by

\[g(z) = z + \sum_{k=1}^{\infty} b_k z^k \]

the Hadamard product (or convolution) \(f \ast g \) of f(z) and g(z) is defined by

\[(f \ast g)(z) = z + \sum_{k=1}^{\infty} a_k b_k z^k = (g \ast f)(z) \]

(2.2)
Definition 2. (Subordination Principle.)

Let \(f(z) \) and \(g(z) \) be analytic in the unit disk \(U \). Then \(f(z) \) is said to be subordinate to \(g(z) \) in \(U \) and we write
\[
\text{if there exist a Schwarz function } w(z), \text{ analytic in } U \text{ with } w(0) = 0, \ |w(z)| < 1 \text{ such that}
\]
\[
f(z) = g(w(z)), \ z \in U,
\]
In particular, if the function \(g(z) \) is univalent in \(U \), then \(f(z) \) is subordinate to \(g(z) \) if
\[
f(0) = g(0), \ f(u) \subset g(u)
\]
Definition 3. (Subordinating factor sequence)

A sequence \(\{C_k\}_{k=1}^{\infty} \) of complex number is said to be a subordinating factor sequence if whenever \(f(z) \) of the form
\[
f(z) = \sum_{k=1}^{\infty} a_k z^k \in A(s)
\]
we have the following theorem:

Theorem A: (Wilf[2])

The sequence \(\{C_k\}_{k=1}^{\infty} \) is a subordinating factor sequence if
\[
\sum_{k=1}^{\infty} a_k C_k z^k < f(z), \ z \in U, \ a_1 = 1.
\]

We have the following theorem:

Main Result

Subordination result for the class

\[
\text{Main Result}
\]

Subordination result for the class

Theorem 3.1. Let \(f(z) \in \varphi_{\beta, \gamma}^{n, m}(s, \alpha) \subset \varphi_{\beta, \gamma}^{n, m}(s, \alpha) \)

Where
\[
\varphi_{\beta, \gamma}^{n, m}(s, \alpha) = \{ f \in A(s): \sum_{k=1}^{\infty} \frac{(k-\alpha)(1+\lambda)(k-1)^{m-1}}{(1+\lambda)(k-1)^n} C(n,k) |a_k| \leq 1 - \alpha \}
\]
Then
\[
(\text{a})
\]
\[
(\text{b})
\]
\[
\text{Re}(f(z)) > \frac{[(1-\alpha)(1+\lambda)]^m + 2(1-\alpha)(n+1)(1+\lambda)^{m-1}}{(1-\alpha)(n+1)(1+\lambda)^{m-1}}, \ (z \in U).
\]

PROOF OF THEOREM 3.1

Let \(f(z) \) defined by (2.1) be any member of the class
\[
\varphi_{\beta, \gamma}^{n, m}(s, \alpha)
\]
and suppose that
\[
g(z) = z + \sum_{k=1}^{\infty} b_k z^k \in C_\alpha(s).
\]

Then
\[
(\text{a})
\]
\[
(\text{b})
\]
\[
(\text{c})
\]
\[
(\text{d})
\]
\[
(\text{e})
\]
\[
(\text{f})
\]
\[
(\text{g})
\]
\[
(\text{h})
\]
\[
(\text{i})
\]
\[
(\text{j})
\]
\[
(\text{k})
\]
\[
(\text{l})
\]
\[
(\text{m})
\]
\[
(\text{n})
\]
\[
(\text{o})
\]
\[
(\text{p})
\]
\[
(\text{q})
\]
\[
(\text{r})
\]
\[
(\text{s})
\]
\[
(\text{t})
\]
\[
(\text{u})
\]
\[
(\text{v})
\]
\[
(\text{w})
\]
\[
(\text{x})
\]
\[
(\text{y})
\]
\[
(\text{z})
\]
we have that

\[
1 - 1 - r > 0; \ (|z| = r > 1).
\]

Thus, (3.5) holds true in \(U \) and consequently proves (3.1).

To show that the constant \(\frac{1}{2} \), we need to show that

\[
\left| \frac{z(2-\alpha)(n+1)(1+\lambda_1)^{m-1} - (1-\alpha)(1+\lambda_2)^m z^2}{2(1-\alpha)(1+\lambda_2)^m + (2-\alpha)(n+1)(1+\lambda_1)^{m-1}} \right| \leq \frac{1}{2}, \quad (|z| = 1).
\]

This implies that,

\[
\frac{1}{2} \leq \left| \frac{z(2-\alpha)(n+1)(1+\lambda_1)^{m-1} - (1-\alpha)(1+\lambda_2)^m z^2}{2(1-\alpha)(1+\lambda_2)^m + (2-\alpha)(n+1)(1+\lambda_1)^{m-1}} \right| \leq 1.
\]

Hence,

\[
\min \left\{ \frac{z(2-\alpha)(n+1)(1+\lambda_1)^{m-1} - (1-\alpha)(1+\lambda_2)^m z^2}{2(1-\alpha)(1+\lambda_2)^m + (2-\alpha)(n+1)(1+\lambda_1)^{m-1}}, \ f_0(z) \right\} \leq 1, \quad (z \in U).
\]

Next we show that

\[
\text{Re}(f(z)) > \frac{[(1-\alpha)(1+\lambda_2)^m + (2-\alpha)(n+1)(1+\lambda_1)^{m-1}]}{2(1-\alpha)(1+\lambda_2)^m + (2-\alpha)(n+1)(1+\lambda_1)^{m-1}} \cdot z.
\]

Now taking

\[
g(z) = \frac{z}{1-z} \in C\sigma(s)
\]

in (3.1) we have the following:

\[
(2-\alpha)(n+1)(1+\lambda_1)^{m-1} \cdot \text{Re}(f(z)) < \frac{z}{1-z}
\]

Therefore,

\[
\text{Re}(f(z)) > \frac{[(1-\alpha)(1+\lambda_2)^m + (2-\alpha)(n+1)(1+\lambda_1)^{m-1}]}{2(1-\alpha)(1+\lambda_2)^m + (2-\alpha)(n+1)(1+\lambda_1)^{m-1}} \cdot z.
\]

which implies that

\[
(2-\alpha)(n+1)(1+\lambda_1)^{m-1} \cdot \text{Re}(f(z)) < \frac{1}{2}, \quad (z \in U).
\]

Hence, we have

\[
\text{Re}(f(z)) > \frac{[(1-\alpha)(1+\lambda_2)^m + (2-\alpha)(n+1)(1+\lambda_1)^{m-1}]}{2(1-\alpha)(1+\lambda_2)^m + (2-\alpha)(n+1)(1+\lambda_1)^{m-1}} \cdot z.
\]

which is (3.2) require to complete the proof of theorem 3.1.

SOME APPLICATION OF THE THEOREM 3.1

Taking \(n = 1 \) in theorem 3.1, we obtain the following:

Corollary 1. If the function \(f(z) \) defined by (1.2) satisfies
\begin{align}
\tag{4.1} \sum_{k+r+1}^\infty \frac{(2k-2\alpha)(1+\lambda_1(k-1))^{m-1}}{(1+\lambda_1)(k-1)^m} |a_k| \leq \rho
\end{align}

\((s \in \mathbb{N} = \{1, 2, 3, \ldots\}; m \in \mathbb{N} \cup \{0\}; 0 \leq \alpha < 1; \lambda_2 \geq \lambda_1 \geq 0; \rho > 0; \text{ then for every } g \in C_\alpha(s), \text{ one has}
\begin{align}
\tag{4.2} \frac{(4-2\alpha)(1+\lambda_1)^{m-1}}{2[(4-2\alpha)(1+\lambda_1)^{m-1} + \rho(1+\lambda_2)^m]} (f*g)(z) < g(z)
\end{align}

\((z \in U; 0 \leq \alpha < 1; g \in C_\alpha(s); \lambda_2 \geq \lambda_1 \geq 0; m \in \mathbb{N} \cup \{0\}; \rho \geq 0)\)

and,
\begin{align}
\tag{4.3} \text{Re}(f(z)) > \frac{[(4-2\alpha)(1+\lambda_1)^{m-1} + \rho(1+\lambda_2)^m]}{(4-2\alpha)(1+\lambda_1)^{m-1}},
\end{align}

\((z \in U)\).

The contact factor
\begin{align}
\frac{(4-2\alpha)(1+\lambda_1)^{m-1}}{2[(4-2\alpha)(1+\lambda_1)^{m-1} + \rho(1+\lambda_2)^m]}
\end{align}

cannot be replaced by any larger one.

Remark 1: When \(\alpha = 0; \lambda_1 = \lambda_2 = 0; \rho = 1; m = 0\) in corollary 1, we have the result obtained by Selvaraj and Karthikeyan[3].

Taking \(\lambda_1 = \lambda_2 = 0\); and \(m = 0\) in Theorem 3.1; we obtain the following:

Corollary 2. If the function \(f(z)\) defined by (1.2) satisfies
\begin{align}
\sum_{k+r+1}^\infty (k+\alpha)C(n,k)|a_k| \leq \rho,
\end{align}

\((\rho > 0, n \in \mathbb{N}; 0 \leq \alpha < 1); \text{ then for every function } g \in C_\alpha(s), \text{ one has}
\begin{align}
\tag{4.4} \frac{4-2\alpha}{2(4-2\alpha+\rho)} (f*g)(z) < g(z)
\end{align}

\((z \in U; 0 \leq \alpha < 1; \rho > 0)\)

and,
\begin{align}
\tag{4.5} \text{Re}(f(z)) > \frac{4-2\alpha + \rho}{4-2\alpha},
\end{align}

\((z \in U)\).

The constant factor
\begin{align}
\frac{4-2\alpha + \rho}{4-2\alpha}
\end{align}

cannot be replaced by any larger one.

Remark 2: When \(\alpha = \rho = \frac{1}{2}\) in corollary 2, we have the result obtained by Aouf et al [4].

Taking \(\lambda_1 = \lambda_2 = 1, \alpha = 0, m = 2, \text{ in Theorem 3.1}; \text{ we obtain the following}

Corollary 3. If the function \(f(z)\) defined by (1.2) satisfies
\begin{align}
\sum_{k+r+1}^\infty C(n,k)|a_k| \leq \rho,
\end{align}

\((\rho > 0, n \in \mathbb{N}); \text{ then for every function } g \in C_\alpha(s), \text{ one has}
\begin{align}
\tag{4.6} \frac{n+1}{2(n+1+\rho)} (f*g)(z) < g(z)
\end{align}

\((z \in U; 0 \leq \alpha < 1; \rho > 0)\)

and,
\begin{align}
\tag{4.7} \text{Re}(f(z)) > \frac{n+1}{1+(n+1)(4-2\alpha)}
\end{align}

\((z \in U)\).

The constant factor
\begin{align}
\frac{n+1}{1+(n+1)(4-2\alpha)}
\end{align}

cannot be replaced by any larger one.

Remark 3: When \(\rho = m(m > 0)\), in the corollary 3, we have the result obtained by Atiya et al [5].

Taking \(\alpha = 0\) in Theorem 3.1, we obtain the following:

Corollary 4. If the function \(f(z)\) defined by (1.2) satisfies
\begin{align}
\sum_{k+r+1}^\infty \frac{k(1+\lambda_1(k-1))^{m-1}}{(1+\lambda_2(k-1))^m} C(n,k)|a_k| \leq 1,
\end{align}

\((s, n \in \mathbb{N}; m \in \mathbb{N} \cup \{0\}; \lambda_2 \geq \lambda_1 \geq 0)\)

and,
\begin{align}
\tag{4.8} \text{Re}(f(z)) > \frac{[(1+\lambda_1)^m+2(n+1)(1+\lambda_2)^m]}{(n+1)(1+\lambda_1)^m},
\end{align}

\((z \in U)\).

The constant factor
\begin{align}
\frac{(n+1)(1+\lambda_1)^m}{(1+\lambda_2)^m+2(n+1)(1+\lambda_1)^m}
\end{align}

cannot be replaced by any larger one.

Remark 4: When \(m = n = 1, \lambda_1 = 0, \lambda_2 = 1\) in the corollary 4, we have the result obtained by Sukhjit[6] and Selvara et al [3].

References

