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1. Introduction and Preliminaries  

Impact of fixed point theory in different branches of 
mathematics and its applications is immense. The first 
result on fixed points for contractive type mapping was 
the much celebrated Banach’s contraction principle by S. 
Banach [37] in 1922. In the general setting of complete 
metric space, this theorem runs as the follows, Theorem 
1.1(Banach’s contraction principle) Let (X, d) be a 
complete metric space, c∈ (0, 1) and f: X→X be a 
mapping such that for each x, y∈X, d (��, ��) ≤ c d(x, y) 
Then f has a unique fixed point a∈X, such that for each 
x∈X,lim�→∞ ��� = �. After the classical result, R.Kannan 
[31] gave a subsequently new contractive mapping to 
prove the fixed point theorem. Since then a number of 
mathematicians have been worked on fixed point theory 
dealing with mappings satisfying various type of 
contractive conditions. In 2002, A. Branciari [1] analyzed 
the existence of fixed point for mapping f defined on a 
complete metric space (X,d) satisfying a general 
contractive condition of integral type. 
 
Theorem 1.2(Branciari) Let (X, d) be a complete metric 
space, c∈ (0, 1) and let f: X→X be a mapping such that 
for each x, y ∈ X, � �(�)�� ≤ � � �(�)���(�,�)

�
�(��,��)

�  
 
Where�: [0,+∞) →[0,+∞) is a Lebesgue integrable 
mapping which is summable on each compact subset of 
[0,+∞) , non negative, and such that for each � >o, 
� �(�)��,�

�  then f has a unique fixed point a∈X such 
that for each x∈X, lim�→∞ ��� = � After the paper of 
Branciari, a lot of a research works have been carried out 
on generalizing contractive condition of integral type for a 
different contractive mapping satisfying various known 
properties. A fine work has been done by B.E. Rhoades 
[2] extending the result of Brianciari by replacing the 
condition [1.2] by the following; 
 
� �(�)�� ≤�(��,��)

�

� �(�)�������(�,�),�(�,��),�(�,��),�(�,��)��(�,��)
� �

� (1.3) 
 
The aim of this paper is to generalize some mixed type of 
contractive conditions to the mapping and then a pair of 
mappings, satisfying a general contractive mapping such  

 
as R. Kannan type [31], S.K. Chatrterjee type [36],T. 
Zamfirescu type [38],Turkoglu[39]  etc. In 1965, the 
concept of fuzzy sets was introduced by Zadeh [42].After 
that many authors have expansively developed the theory 
of fuzzy sets and applications. Especially, Deng [10], 
Erceg [12], Kaleva and Seikkala [25, 26], Kramosil and 
Michalek [27], have introduced the concept of fuzzy 
metric spaces in different ways. Recently, many authors 
[3-5, 13, 19, 22, 23, 24, 29, 30, 34, and 35] have also 
studied the fixed point theory in the fuzzy metric spaces 
and [6-9, 21, 28,] have studied for fuzzy mappings which 
opened an avenue for further development of analysis in 
such spaces and such mappings. Consequently in due 
course of time some metric fixed point results were 
generalized to fuzzy metric spaces by various authors. 
Gähler in a series of papers [15, 16, and 17] investigated 
2-metric spaces. Sharma, Sharma and Iseki [33] studied 
for the first time contraction type mappings in 2-metic 
space. We [40, 41] have also worked on 2-Metric spaces 
and 2- Banach spaces for rational expressions. 
 
Definition 1.1: A binary operation *: [0, 1] �→ [0, 1] is 
called a continuous t-norm if ([0, 1], *) is an abelian 
topological monoid with unit 1 such that �� ∗ �� ∗ �� ≥
�� ∗ �� ∗ �� whenever  
 a� ≥ a�, b� ≥ b�, c� ≥ c�  for all ��, ��, ��, ��,, ��, �� are 
in [0, 1]. 
 
Definition1. 2: the 3-tuple (X, M,*) is called a fuzzy 2-
metric space if X is an arbitrary set, * is a continuous t-
norm and M is a fuzzy set in �� × [0,∞) satisfying the 
following conditions: for all x, y, z, u ∈ X and ��, ��, �� > 
0, 
 
(1) M(x, y, z, 0) = 0, 
(2) M(x, y, z, t) = 1 for all t > 0 (only when the three 
simplex x, y, z degenerate)  
(3) M(x, y, z, t) = M(x, z, y, t) = M (y, z, x, t) 
=…………….. 
(4) M(x, y, z, w,��, ��, ��) ≥*(M(x, y, u, �� )*M(x, u, 
z,��)*M (u, y, z,��)  
(5) M(x, y, z,): [0, 1) × [0, 1] is left continuous.  
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Definition 1.3: Let (X, M,*) be a fuzzy- 2 metric space. 
 
(1) A sequence {��} in fuzzy -2 metric space X is said to 
be convergent to a point x ∈ X (denoted by  
 

lim
�→∞

�� = �   ��   �� → � 
 
if for any  λ ∈ (0,1) and  t > 0, there exists �� ∈ N such 
that for all n ≥ �� and � ∈ X, M (��, �, �, t) > 1 − λ .  
 
That is  

        lim
�→∞

M (��, �, �, t) = 1  for all � ∈ X  and  t > 0. 
 
(2) A sequence {��} in fuzzy- 2 metric space X is called a 
Cauchy sequence, if for any λ ∈ (0,1) and t > 0, there 
exists 
 
 �� ∈ N such that for all m, n ≥ �� and a ∈ X, M 
(��, ��,�, t) > 1 − λ .  
 
(3) A fuzzy- 2 metric space in which every Cauchy 
sequence is convergent is said to be complete. 
 
Definition 1.4: Self A function M is continuous in fuzzy 
2-metric space if �� → � , �� → �, then 
 
lim
�→∞

M (��, ��, �, t) = M(�, �, �, t) ��� ��� � ∈ � ��� �
> 0. 

 

Definition 1.5: Two mappings A and S on fuzzy 2-metric 
space X are weakly commuting if 
 
M (ASu, SAu,�, t) ≥ M (Au, Su, �, t) ��� ��� �, � ∈
� ��� � > 0. 

2. Some Basic Results 
 
Lemma 2.1: [19] for all �, � ∈ �, M(� , �) is non- 
decreasing. 
 
Lemma 2.2: [9] Let {��} be a sequence in a fuzzy metric 
space (X, M,*) with condition (FM-6) If there exists a 
number � ∈ (0,1) such that M (���� , ����, qt) ≥ M 
(���� , ��  , t) for � > 0 and n =1,2,3….then {��} is a 
Cauchy sequence in X. 
 
Lemma 2.3: [30] for all �, � ∈ � and for a number 
� ∈ (0,1) such that M (� , � , qt) ≥ M (�, y, t) for � > 0 
then � = �. 
 
Lemma (2.1, 2.2, and 2.3) are also true for fuzzy2-metric 
spaces. 

3. Main Result 
Theorem 3.1: Let (X, M, *) be a complete fuzzy 2-metric 
space and let S and T be continuous mappings of X in X. 
then S and T have a common fixed point in X if there 
exists continuous mapping A of X into S(X) ∩ T (X) 
which commute weakly with S and T, 
 

 
(3.1a) 
 

   
,  min ,   ,
,  

,   
,  

0 0
( ) ( )

M(Ty, Ay, a,  t), M(Sx, Ax, a, t), 
M(Sx Ty, a, t)M  (Sx Ty, a, t),
M(Ax Ty, a, t)

M(Ax Sx, a, t) , M(Ax, Ty, a, t),M(Ax,Ay, a,qt) M(Ay Sx, a, t)
t dt t dtζ ζ

  
  
    
  
  
  
    ≥∫




∫
 

 
For all x, y, a ∈ X, t > 0 and � ∈ (0 ,1)  
 
(3.1b) 
 
lim
�→∞

M (x, y, �, t) = 1 for all � , �, � ∈ X . 
  
Then F, T and A have a unique common fixed point in X. 
 
Proof: 
 
We define a sequence {��} in X such that   ���� =  ������  ���  ������ = ����  for n = 1, 2. . .  
 
We shall prove that {���} is a Cauchy sequence. For this suppose � = ��� and  � = ����� in (3.1a), we write  
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0

   , 
, , 

 ,
, 

0

( , , , )2 2 1

2 1 2 1 2 2 2 2 1
min 2 2 1 2 2

2 2 1 2

( )

( )                   

M(T , A , a,  t), M(S , A , a, t), M (S T , a, t),
M(S T , a, t) M(A S , a, t)
M(A T , a, t) M(A

M Ax Ax a qtn n

x x x x x xn n n n n n
x x x xn n n n
x x xn n n

t dt

t dt

ζ

ζ

+

+ + +
+

+ +≥

∫

 
, 2 2 1

1 2

               

, M(A , T , a, t),
S , a, t)

x xn nx n

  
  
  
  

  
+

∫
 

0

, , 
,

, 

0

( , , , )2 2 1

  ,2 2 1 2 1 2 2 1 2
min 2 1 2 2 2 1 

2 2 2 1

( )

( )                    
M(A A , a, t) M(A , a, t)
M(A A , a, t) M(A

M Ax Ax a qtn n

M(Ax ,Ax , a,  t), M(Ax , Ax , a, t), M (Ax Ax , a, t),n n n n n n
x x x Axn n n n
x x xn n n

t dt

t dt

ζ

ζ

+

+ + +
+ +

+≥

∫

 
, 

,

0

2 2
2 1

  ,2 2 1 2 1 2 2 1 2min    2 1 2 2 2 1= ( )                     

, M(A , A , a, t)
, a, t)

x xn nAx n

M(Ax ,Ax , a,  t), M(Ax , Ax , a, t), M (Ax Ax , a, t),n n n n n n
M(Ax , Ax , a, t) M(Ax ,Ax , a,n n n n t dtζ

  
  
  
  

  +

+ + +
+ +

∫
 1

0

min   2 1 2 2 2 1

Therefore

( )                   

 

,

t t
q q

 t)

M(Ax ,Ax , a, ), M(Ax , Ax , a, )n n n n
t dtζ

  
  

  

   
  
   

− −
≥

∫

∫
 

 

0 0

( , , , ) min   2 2 1 2 1 2

 induction

( ) ( )  
t
q

M Ax Ax a qt M(Ax ,Ax , a, )n n n n

By

t dt t dtζ ζ
   
  
   

+ −
≥∫ ∫

 

0 0

( , , , ) min   2 1 22 2 1

for every k and m in N, further if 2m+1>2k, then

( ) ( )  
t
q

M Ax Ax a qt M(Ax ,Ax , a, )m mk k
t dt t dtζ ζ

   
  
   

+ −
≥∫ ∫
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0 0

0

( , , , )   2 1 22 2 1

2 (
(3.1 )                                                        

( ) ( )

( ) .......

 

                                      ..........

t
q

M Ax Ax a qt M(Ax ,Ax , a, )m mk k

M(Ax k
d

t dt t dt

t dt

ζ ζ

ζ

 
 
 + −

−

≥

≥

∫ ∫

0 2 1  2 1)

 simple induction with (3.1c) and (3.1d) we have

m
t

q
,Ax , a, )m

By

+

  
 
  

+∫
 

0

0 1 1

0 0

2
0 0

( , , , )    

 n = 2k, p = 2m+1 or n = 2k+1, p = 2m+1

( , , , )     

(3.1 )

( ) ( )

( )
( )

........

 n n p p n

n n p pn

t
q

t
q

M Ax Ax a qt M(Ax , Ax , a, )

For

M Ax Ax a qt M(Ax , Ax , a, ) M(Ax , Ax

e

t dt t dt

t dt
t dt

ζ ζ

ζ
ζ

+

+

  
 
  

  ∗ 
  

≥

≥

∫ ∫

∫
  

If n = 2k, p =2m or n =2k+1, p = 2m ,

For every positive integer p and n in N, by nothing that

n
t

q
, a, )

  
 
  ∫

 

 
Thus {���} is a Cauchy sequence. Since the space X is complete there exists � ∈ �, such that 
 
lim

�→�
��� = lim

�→�
������ = lim

�→�
���� = �. 

 
It follows that �� = �� = ��  and Therefore 
 

   
,  min ,   ,
,  

,   
,  

0 0
( ) ( )

M(TAz, AAz, a,  t), M(Sz, Az, a, t), 
M(Sz TAz, a, t)M  (Sz TAz, a, t),
M(Az TAz, a, t)

M(Az Sz, a, t) , M(Az, TAz, a, t),M(Az,AAz, a,qt) M(AAz Sz, a, t)
t dt t dtζ ζ

  
  
    
  
  
  

  ≥∫









 ∫
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{ }

{ }

{ }

2

2

2

,  

0 0

,  

0

 

0

 

0

( ) ( )

( )

( )

( ) .

                        

                        

                        n

M (A z,A z, a ,q t) M  (Sz TAz, a , t)

M  (Sz A Tz, a , t)

M (A z,A z, a , t)

tM (A z,A z, a , )
q

t d t t d t

t d t

t d t

t d t

ζ ζ

ζ

ζ

ζ




≥

≥

≥

≥

∫ ∫
∫

∫

    



  ∫
 

 
Since,  

lim
�→∞

M (��, ���z , a ,
t

q�) = 1 → �� = ��� 

 
Thus z is common fixed point of A, S and T. 
 
For uniqueness, let � (� ≠ �) be another common fixed point of S, T and A, By (3.1a) we write 
 

   
,  min ,   ,
,  

,   
,  

0 0
( ) ( )

M(Tv, Av, a,  t), M(Sz, Az, a, t), 
M(Sz Tv, a, t)M  (Sz Tv, a, t),
M(Az Tv, a, t)

M(Az Sz, a, t) , M(Az, Tv, a, t),M(Az,Av, a,qt) M(Av Sz, a, t)
t dt t dtζ ζ

  
  
    
  
  
  
    ≥∫




∫
 

 

{ } 

0 0
( ) ( )

M (A z,A v, a ,q t) M (z,v, a , t)
t d t t d tζ ζ≥∫ ∫

 
 
This implies that 

{ } 

0 0
( ) ( )

M (z ,v , a ,q t) M (z ,v , a , t)
t d t t d tζ ζ≥∫ ∫
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