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1. Introduction and Preliminaries

Impact of fixed point theory in different branches of
mathematics and its applications is immense. The first
result on fixed points for contractive type mapping was
the much celebrated Banach’s contraction principle by S.
Banach [37] in 1922. In the general setting of complete
metric space, this theorem runs as the follows, Theorem
1.1(Banach’s contraction principle) Let (X, d) be a
complete metric space, c€ (0, 1) and f: X—X be a
mapping such that for each x, y€X, d (fx, fy) < c d(x, y)
Then f has a unique fixed point a€X, such that for each
x€X,lim,,_,, f"x = a. After the classical result, R.Kannan
[31] gave a subsequently new contractive mapping to
prove the fixed point theorem. Since then a number of
mathematicians have been worked on fixed point theory
dealing with mappings satisfying various type of
contractive conditions. In 2002, A. Branciari [1] analyzed
the existence of fixed point for mapping f defined on a
complete metric space (X,d) satisfying a general
contractive condition of integral type.

Theorem 1.2(Branciari) Let (X, d) be a complete metric
space, c€ (0, 1) and let f: X—X be a mapping such that

for each x, y € X, fod(fx'fy) p()dt <c fod(x'y) p(t)dt

Wheregp: [0,+0) —[0,+0) is a Lebesgue integrable
mapping which is summable on each compact subset of
[0,40) , non negative, and such that for each & >o,

) 05 @(t)dt, then f has a unique fixed point a€X such

that for each x€X, lim,_, f"x = a After the paper of
Branciari, a lot of a research works have been carried out
on generalizing contractive condition of integral type for a
different contractive mapping satisfying various known
properties. A fine work has been done by B.E. Rhoades
[2] extending the result of Brianciari by replacing the
condition [1.2] by the following;

d(fx.f
fo et ¢(t)dt =
AXfy)+d(y.fx)

A(y). A0 )4y, ) 2L
jradaenaGraae BT o a1 )

The aim of this paper is to generalize some mixed type of
contractive conditions to the mapping and then a pair of
mappings, satisfying a general contractive mapping such

as R. Kannan type [31], S.K. Chatrterjee type [36],T.
Zamfirescu type [38],Turkoglu[39] etc. In 1965, the
concept of fuzzy sets was introduced by Zadeh [42].After
that many authors have expansively developed the theory
of fuzzy sets and applications. Especially, Deng [10],
Erceg [12], Kaleva and Seikkala [25, 26], Kramosil and
Michalek [27], have introduced the concept of fuzzy
metric spaces in different ways. Recently, many authors
[3-5, 13, 19, 22, 23, 24, 29, 30, 34, and 35] have also
studied the fixed point theory in the fuzzy metric spaces
and [6-9, 21, 28,] have studied for fuzzy mappings which
opened an avenue for further development of analysis in
such spaces and such mappings. Consequently in due
course of time some metric fixed point results were
generalized to fuzzy metric spaces by various authors.
Gihler in a series of papers [15, 16, and 17] investigated
2-metric spaces. Sharma, Sharma and Iseki [33] studied
for the first time contraction type mappings in 2-metic
space. We [40, 41] have also worked on 2-Metric spaces
and 2- Banach spaces for rational expressions.

Definition 1.1: A binary operation *: [0,1] 3— [0, 1] is
called a continuous t-norm if ([0, 1], *) is an abelian
topological monoid with unit 1 such that a; * by * ¢; =

a, * b, * ¢, whenever

a; =ay by =b,, ¢; =c, forall a;,by,cq,0a;,b,,c; are
in [0, 1].

Definition1. 2: the 3-tuple (X, M,*) is called a fuzzy 2-
metric space if X is an arbitrary set, * is a continuous t-
norm and M is a fuzzy set in X3 X [0, ) satisfying the
following conditions: for all x, y, z, u € X and t;, t,, t3 >
0,

(HM®E,y,z 0)=0,

2)M(x,y, z, t) =1 for all t > 0 (only when the three
simplex X, y, z degenerate)
BME,y,z,t)=M(x,2,y,t) =M (y, z, X, t)

4) M(X, y, Z, W,tq, t3, t3) 2*(M(X, y, u, t; )*M(x, u,
Z,tz)*M (u: y7 Z5t3)
5 M, y, z,): [0, 1) X [0, 1] is left continuous.
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Definition 1.3: Let (X, M,*) be a fuzzy- 2 metric space.

(1) A sequence {x,} in fuzzy -2 metric space X is said to
be convergent to a point x € X (denoted by

limx, =x or x, > x

n—-oo
if for any 1€ (0,1) and t > 0, there exists ny € N such
thatforalln = npanda € X, M (x,,, x,a,t) > 1— 4

That is
lim M (x,,x,a,t) =1 foralla € X and t > 0.
n—oo

(2) A sequence {x,} in fuzzy- 2 metric space X is called a
Cauchy sequence, if for any A € (0,1) and t > 0, there
exists

ny € N such that forallm,n > nyanda € X, M
(Xn, Xm,a, ) >1— 4

(3) A fuzzy- 2 metric space in which every Cauchy
sequence is convergent is said to be complete.

Definition 1.4: Self A function M is continuous in fuzzy
2-metric space if x,, = x,y, = y, then

lim M (x,,, y,,a,t) = M(x,y,a,t) foralla € Xand t
n—-oo

M(Ty, Ay, a, t), M(Sx, Ax, a,t),
mins M (Sx, Ty,a,t)
M(Ax, Sx,a,t)

Definition 1.5: Two mappings A and S on fuzzy 2-metric
space X are weakly commuting if

M (ASu, SAu,a, t)>M (Au, Su, a, t) for all a,u €
Xandt > 0.

2. Some Basic Results

Lemma 2.1: [19] for all x,y € X, M(x,y) is non-
decreasing.

Lemma 2.2: [9] Let {y,,} be a sequence in a fuzzy metric
space (X, M,*) with condition (FM-6) If there exists a
number q € (0,1) such that M (V42 > Y41, qt) =M
(Vns1>Vn > t) fort > 0andn=1,2,3....then {y,} is a
Cauchy sequence in X.

Lemma 2.3: [30] for all x, y € X and for a number
q € (0,1) suchthat M (x,y,qt)>M (x, y, t) fort >0
then x = y.

Lemma (2.1, 2.2, and 2.3) are also true for fuzzy2-metric
spaces.

3. Main Result

Theorem 3.1: Let (X, M, *) be a complete fuzzy 2-metric
space and let S and T be continuous mappings of X in X.
then S and T have a common fixed point in X if there
exists continuous mapping A of X into S(X) N T (X)
which commute weakly with S and T,

M(Sx, Ty,a,t)
" M(Ax, Ty,a,t)’

> 0.
(3.1a)
M(Ax,Ay, a,qt)
j £ (t)dt > J-
0 0

Forallx,y,a€ X,t>0and g € (0,1)

(3.1b)

xlli_rgM x,v,z,t)=1forallx,y,z € X.

Then F, T and A have a unique common fixed point in X.

Proof:

M(Ay, Sx,a,t)’

M(Ax, Ty, a,t),

¢ (¢)dt

We define a sequence {x,,} in X such that Ax,, = Sx,, 1 and Ax,, 4 = Txy, forn=1,2...

We shall prove that {Ax,,} is a Cauchy sequence. For this suppose x = X, and ¥y = X5, in (3.1a), we write
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C(0)dt

. {M(sznn’ Ay, @ 0. M(Sx, A%y, 000, M (S, TXMH’M)’H
min

J‘M (A > AN 415 @5 G1)
0

M(Sx~,,, Tx ,a,t) MAxH, , Sxy. a4t
(%> Bopp )’ (Ax)0> $%9,, 4 1) Mty Ty, 1.0,
MAxy Ty @) MYy g5 S5p.0,0)

> jo S(t)de

C(t)dt

J‘M (A3 AXp 415 @ 41)

A;‘[/([’Z%n )szz;rl’ @ z %nﬂ ’A/jcxz"’a’ f);)M (A p1-42p @0,
i b ’al 2 ’a?

min 2n+l> " 2n ’ 2n° T 2ntl M(dxy,), Ay, a1)
. J’ M(Ayps A @) MiApy g A1 40

C(t)dt

.{ml M(szn 24l & O My, 1, Ay, 0,0, M (A, 41,45 .0,
MA 41> A2 & D, My, Ay 41, @, ), 1

}} C(t)dt

J0

t
min M(A’CZn—l Ay a )M(szn Ay g0

} } C(t)de

v

J0

Therefore

M( Ay, A9 415 @ 1) {nﬂn{M(szn Ay, a )}}
L ;@sz C()dt

By induction

t
M(AX k’sz 1> a, qt) {rmn{M(A)Q AX k a, )}}
L 2 gmmzL N

for every k and min N, further if 2m+1>2k, then

JL M Ax, k"{r”m’ a— _Jl

‘1f(‘{t2k=‘{t”'???-l-l= a, gt)
- J ltals s
} ‘o

;@dzj

0

J S()dk......(310)

If Z=2mr+], then
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C(t)dt

J‘M (A% s AX) 415 @5 1)

t
M(A.X k— ,A.X'2 , a, )}
0 O R j { A Ty

0

t
M{Ax Axy, @, ——)
zj(){ 2h(2mel) 07 % }g“(t)dt ....... (3.1d)

By simple induction with (3.1¢) and (3.1d) we have

M(Axn,Axn+p, a, qt) {M(Axo, Axp, a, tn)}
jo £(t)de > jo ¢ £ (t)dt

For n=2k, p=2m+1 or n =2k+1, p=2m-+1

M (Ax, A,y a, qt) {M(Axo, Ax,, a, tﬂ)}*{M(Axl, Ax,, a, tﬂ)} é’(t)dt
I C(t)dt > J. 2q q

0 o (3.1e)
Ifn=2k, p=2m or n =2k+1, p=2m,

For every positive integer p and n in N, by nothing that

’ t |

JLmeD A, @ — )
J.U g J:’;’(f)df—}]asn—:rac

Thus {Ax,} is a Cauchy sequence. Since the space X is complete there exists z € X, such that

lim Ax, = lim Sx,,_, = lim Tx,, =z.
n—oo n—-oo

n—-co

It follows that Az = Sz = Tz and Therefore

M(TAz, AAz, a, t), M(Sz, Az, a,t),

min< M (Sz, TAz, a,t), M(5z, T4z, a, t),
M(Az, TAz, a,t)
M(Az, Sz,a,t)

,M(Az, TAz, a,t),
M(AAz, Sz, a,t)

C(t)dt > jo £ (t)dt

j'M(Az,AAz, a,qt)
0
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C(t)dt >

J< M(Az, A%z, aqt)
0 JO

v

J0

v

J0

v

0

Since,

t
lim M (AZ,AAZZ,a,—n) =1- Az = A%z
q

n—-ow

Thus z is common fixed point of A, S and T.

j{M(Az,Azz, a, )

e {M (Sz, TAz, a,1)}

¢ (t)dt

¢ {M (Sz, ATz, a,1)}

£ (t)dt

. {M(Az,Azz, a, z)}

£ (t)dt

9 }Cf(t)dt.

For uniqueness, let v (v # z) be another common fixed point of S, T and A, By (3.1a) we write

M(Tv, Av, a, t),M(Sz, Az, a,t),
mins M (Sz, Tv,a,t)
M(Az, Sz,a,t)

M(Sz, Tv,a,t)
" M(Az, Tv,a,t)’

J- M(Az, Av, a,qt)

C(t)dt > j
0 0

M(Az,Av, a,qt)
J. C(t)dt >

0

This implies that
J- M(z,v,a,qt)

c(t)dt >
0
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