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Abstract: The search of a novel non linear optical material is usually done by intelligent assumption and synthesis feasibility. 

Computational chemistry techniques play important role during investigations of such materials and can provide experimentalists with 

precise information regarding the properties and behavior of materials. These techniques can help resolve issues that cannot be 

practically achieved due to instrumentation limits. It also helps the researcher to know about the chemical systems before performing the 

actual experiments. A wide variety of methods such as molecular mechanics methods, semi empirical methods and ab-initio methods are 

generally used in computational chemistry for calculating molecular properties. Out of which the ab-initio quantum chemistry method 

has turned into a fundamental tool in the investigation of atoms and molecules. The purpose of the present paper is to outline approach 

and easiness of the ab-initio theories to the quantum calculations in search of novel nonlinear optical materials. 
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1. Introduction  
 

Now days, methods in computational chemistry have 

become a key to investigate nonlinear optical materials 

which are very far away from our reach. It also helps the 

researcher to know about the chemical systems before 

performing the actual experiments. The quantum mechanics, 

classical mechanics as well as statistical physics and 

thermodynamics are the foundation bricks for most of the 

computational chemistry theory and the software associated 

with it. All important methods which are used in 

computational chemistry for calculating molecular 

properties and processes may broadly be divided in to three 

categories. [1-3]  

 

1) Ab-initio methods-which uses Schrödinger's equation, 

but with approximations,  

2) Semi-empirical methods - using experimental parameters 

and extensive simplifications of Schrödinger's equation 

3) Molecular mechanics methods -is a classical approach 

which deals with bonds between the atoms in a molecule.  

 

Ab-initio methods 

Over the past few decades, the ab-initio quantum chemistry 

has turned into a fundamental tool in the investigation of 

atoms and molecules. The approximations made are 

generally mathematical approximations using a simple 

functional form for a function or wave function. The core 

technology behind this is getting a computational 

approximate solution for Schrodinger equation describing 

the positions of a collection of atomic nuclei and the total 

number of electrons in the system and then to calculate the 

electronic energy, electron density and other properties by 

means of a well defined automated approximation. 

Generally, ab-initio calculations produce very good 

qualitative results and the advantage of this method is that 

they ultimately converge to the near accurate solution, once 

all the approximations are included properly [4]. 

 

A wide variety of methods are implemented in the computer 

programs to approximate wave functions, which are the 

solutions to complex wave equations. These molecular wave 

functions carry the information about all the electrons, 

spatial as well as spin coordinates. The wave function is 

calculated quantum mechanically by solving the non-

relativistic Schrodinger wave equation. Most of these 

methods are developed on the basis of one-electron model in 

which electrons move independently under the influence of 

average potential of other electrons, nuclei, and external 

fields (Hartree Fock method). These one-electron wave 

functions constitute atomic orbitals. Since the molecule of 

any substance is made up of atoms, so a very effective 

method has been developed to expand the molecular orbitals 

in the form of centered atomic orbitals [5-6].  

 

These methods can be further classified into two classes. 

The first one is post-Hartree Fock schemes in the framework 

of configuration interaction or coupled cluster methods 

which are based on wave-function and can be used for 

molecules containing up to a few tens of atoms and are 

likely to provide precise results. The second one is electron 

density based density functional theory (DFT) which may be 

employed over the systems containing a few tens up to a few 

hundreds of atoms [7-9]. DFT provides the wide-range of 

applicability and reasonably accurate results in many cases. 

The classification of different types of ab-initio methods can 

be better understood using Figure 1. 
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Figure 1  

 

In DFT, the total energy is expressed in terms of electron 

density functional, rather than the wave-function. This type 

of calculation leads to an approximate effective or model 

Hamiltonian and to an approximate expression for the total 

electron density. Three types of DFT calculations exist:  

 

 Local density approximation (LDA) – fastest method, 

gives less accurate geometry, but provides good band 

structures.  

 Gradient corrected - gives more accurate geometries. 

 Hybrids (which are a combination of DFT and HF 

methods) - give more accurate geometries. 

 

Electronic Structure Calculations 

The main objective of any theory of molecular structure is to 

provide some insight into chemical constitution of molecules 

in terms of the more fundamental universal physical laws 

governing the motions and interactions of the constituent 

atomic nuclei and electrons. In principle such theories can 

aim at a precise quantitative description of the structure of 

molecules and their chemical properties, since the 

underlying physical laws are now well understood in terms 

of quantum theory based on Schrödinger equation. However, 

in practice mathematical and computational complexities 

make this goal difficult to attain, and one must usually resort 

to approximate methods [10]. 

 

While energy is undoubtedly the fundamental quantity, we 

often characterize molecules and their behavior by other 

properties. We might think of properties such as the dipole 

moment and polarizability that characterize features of the 

molecular charge distribution and those that characterize the 

structure, such as molecular geometry and vibrational 

frequencies, electronic transitions and time dependent 

qualities. The properties of any (non-relativistic) time-

independent quantum system can be determined by solving 

the Schrödinger equation [11], 

 

Η Ф({ri};{RA}) =Ε Ф({ri};{RA})            ….(1) 

 

Where H is the Hamiltonian operator for a system of nuclei 

and electrons described by position vectors RA and ri, 

respectively. If there are N nuclei and n electrons, the many-

particle Hamiltonian operator H is 
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Here MA is the mass of nucleus A; m and e are the electronic 

mass and charge, respectively; ZAe is the charge on nucleus 

A; and rij is the distance between particles i and j. 

Summation involving indices A and B are over atomic 

nuclei and those involving i and j are over electrons. The 

first term in the equation is the operator for the kinetic 

energy of the electrons; the second term is the operator for 

kinetic energy of nuclei; the third term represents the 

coulomb attraction between electrons and nuclei; the fourth 

and fifth terms represent the repulsion between electrons and 

between nuclei, respectively. 

The complete treatment of a quantum-mechanical problem 

involving electronic structure is equivalent to the complete 

solution of the appropriate Schrödinger equation. A direct 

approach in terms of a mathematical treatment of the partial 

differational equation is practicable only for one particle 

systems. If there are N nuclei, there are 3N coordinates that 

define the geometry. Since several parameters are involved 

in large molecular systems, an exact solution of the 

Schrödinger equation for such large systems (many body 

problems) is impossible to achieve. Therefore, calculations 

of large molecules are done using electronic structure 

Paper ID: SR13123083458 DOI: 10.21275/SR13123083458 461 



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Volume 2 Issue 12, December 2013 

www.ijsr.net 

techniques that employ approximations at various levels and 

further the molecular properties are evaluated by the use of 

numerical methods. 

 

Ab-initio (or first principles) is a very useful technique to 

calculate various properties of many-electron systems 

accurately. Such type of calculations uses the correct 

Hamiltonian and does not use experimental data other than 

the values of fundamental physical constants. A Hartree-

Fock Self Consistent Field (SCF) calculation uses the anti-

symmetrized product of one electron functions that 

minimizes   dH
^*

, where 

^

H is the true Hamiltonian. 

The Born-Oppenheimer approximation is the first stage of 

any quantum chemical calculation.   

 

So in practice, rather than attempt to find a wavefunction 

describing both electronic and nuclear motion together, it is 

usually sufficient to break the problem into two parts and the 

motion of electrons in the field of stationary nuclei will be 

considered primarily. There is then a separate, purely 

electronic problem for each set of nuclear positions. This is a 

reasonable procedure because the masses of the nuclei are 

several thousand times larger than the masses of the 

electrons, so that the nuclei move  slowly, and it may 

reasonably suppose the electrons to adjust themselves to new 

nuclear positions. This simplification is referred to as the 

Born-Oppenheimer approximation [12].  

 

In more quantitative terms, the Born-Oppenheimer 

approximation amounts to separating off the nuclear kinetic 

energy and nuclear repulsion terms from H, and considering 

only the part of the Hamiltonian which depends on the 

positions but not the momenta of the nuclei. This is the 

electronic Hamiltonian operator Hel.  
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The solution to a Schrödinger equation involving the 

electronic Hamiltonian, 

Hel Фel = Eel Фel               …..(4) 

is the electronic wave function, 

Фel = Фel ({ri};{RA})         …..(5) 

 Which describes the motion of the electrons and explicitly 

depends on the electronic coordinates but depends 

parametrically on the nuclear coordinates, as does the 

electronic energy, 

Eel = Eel ({RA})                    …..(6) 

By a parametric dependence we mean that, for different 

arrangements of the nuclei, Фel is a different function of the 

electronic coordinates. The nuclear coordinates do not 

appear explicitly in Фel. The total energy for fixed nuclei 

must also include constant nuclear repulsion. 

                                           Etot =Eel +VNN                 …..(7) 

Where   





M

A

M

AB AB

BA
NN

R

ZZ
V            …..(8) 

Since, the electrons move much faster than nuclei, they keep 

adjusting to any change in the nuclei. Thus, as the nuclei 

move, the electronic energy varies smoothly as function of 

the parameters defining the nuclear configuration. Hence, 

the Schrödinger equation for nuclear motion in the average 

field of the electrons is 

HN ФN = E ФN                                       …..(9) 
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This equation describes the vibration, rotation and 

translation of a molecule, ФN = ФN ({RA})   and E.. This 

approximation indicate that the true molecular wave 

function is  

Ф({ri};{RA}) =  Фel({ri};{RA}). ФN({RA})  …..(11) 

 

In the Born-Oppenheimer picture the nuclei move on a 

potential energy surface (PES) which is a solution to the 

electronic Schrödinger equation.  

 

Self-consistent field theory   

The electronic Schrödinger equation (in atomic units): 
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Eel Фel (r; R)      ..(12) 

 

Or, in a more compact form 

[Te (r) + VeN (r; R) +VNN (R) +Vee] Фel (r; R) = Eel Фel (r; R)     

…..(13) 

with r denoting electronic and R denoting nuclear 

coordinates.  

 

Eel (plus or minus VNN (R)), gives the potential energy 

experienced by the nuclei. Eel (R) gives the PES from which 

the equilibrium geometry and vibrational frequencies may 

be obtained. The electronic wave function Фel (r,R) contains 

lots of useful information about molecular properties such as 

dipole (and multipole) moments, and polarizability etc.  

 

For many electron systems, the electron-electron repulsion 

comes into play, which must be neglected for separable 

solvable Hamiltonian. The total electronic wave functions 

Ψ(r1,r2) describing the motions of the two electrons would 

just be the product of two hydrogen atom wave functions 

H(r1).H(r2). Thus, the general wavefunction may be 

written as  

 

 ΨHP(r1,r2,……,rn) = Φ1(r1) Φ2(r2) ………. ΦN(rN) …..(14) 

 

which is the Hartree product (HP) [13].  

 

Although this form is very convenient, it fails to satisfy the 

antisymmetric principle which states that a wavefunction 

describing fermions should be antisymmetric with respect to 

the interchange of any set of space-spin coordinates.  

 

Hartree-Fock Equation 

For symmetric energy expression, variational theorem may 

be used which states that the energy calculated from an 

approximation to the true wave function, will always greater 

than the true energy. Hence, a better approximate wave 

function may be obtained by varying their parameters until 

we minimize the energy. The Hartree-Fock equations are 

obtained by imposing the condition (at the minimum, the 

first derivative of the energy E is zero.) on the expression for 

the energy, subject to the constraint that the molecular 
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orbitals remain orthonormal. This type of constrained 

minimization problem can be tackled by the Lagrange’s 

method of undetermined multipliers (εij) used.  After 

including the necessary terms like columbic interaction, 

effect of antisymmetry of the total wave function, the 

resultant Hartree-Fock equation becomes,    
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ij ij
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             ….. (15) 

Making use of the fact that     

Ji(x1)-Ki(x1)i(x1) = 0     ….. (16) 

leads to the following form 
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Or, more simply 
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j

jijii xxxf )()()( 111                   ….. (18) 

Where fi is called the Fock operator. 
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For a closed shell system, the Fock operator has the 

following form 
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Density Functional Theory 

The conventional approach to quantum chemistry uses the 

wave function  as the central quantity. The reason is that 

once we know  (or good approximation to it) we have 

access to all information that can be known about this 

particular state of our target system (as in Hartree-Fock 

approximation approach). The wave function is a very 

complicated quantity that cannot be probed experimentally 

and that depends on 4N variables, three spatial and one spin 

variable for each of the N electrons. The electron density 

((r)) that depends only on the three spatial variables and a 

more simple quantity. The fact ‘A knowledge of the ground 

state density of (r) for any electronic system (with or 

without interactions) uniquely determines the system’ was 

proved by Hohenberg and Kohn and it provides the basic 

framework for modern density functional methods [14] 

 

According to Hohenberg and Kohn (H-K) theorem, the total 

ground state energy and other properties of a system were 

uniquely defined by the electron density (the energy is a 

unique function of (r)) and the true ground state electron 

density minimizes the energy functional. The H-K theorem 

gives proof of existence of such functional but there is no 

prescription to construct it. If it is known accurately, 

quantum chemical technique will be able to derive the 

molecular properties exactly. Till now, the exact form of 

energy functional is not known. It is necessary to use 

approximations regarding various parts of the functional 

which deals the kinetic energy, exchange and correlation 

energies of the system of electrons. The simplest 

approximation is the local density approximation (LDA) 

which leads to a Thomas-Fermi term for kinetic energy and 

the Dirac (actually Block proposed first term for the 

exchange energy [15-21]. The corresponding functional is 

called Thomas-Fermi- Dirac energy. The Thomas-Fermi- 

Dirac with improvements is the present density functional 

method, since all components of energy are expressed via 

density alone without using many particle wave functions. 

However wave functions cannot be completely neglected in 

molecular calculations and for accurate calculations they 

have to be used as a mapping step between the energy and 

density. 

 

Local Density Approximation (LDA) 

Several different schemes have developed for obtaining 

approximate forms for the functional for the exchange-

correlation energy. In the local density approximation, it is  

EXC =  drrr XC )()(            …..(21) 

Where EXC[ρ(r)] is the exchange-correlation energy per 

electron in a homogeneous electron gas of constant density 

.To account for the inhomogeneity in the electron density 

distribution in a real system, a non local correction involving 

the gradient of ρ is often added to the equation (21). This is 

known as the generalized gradient approximation (GGA). 

 

Hybrid functionals  

In the modern DFT schemes, a portion of the Hartree-Fock 

(HF) exchange energy (Ex) is mixed to the DFT exchange-

correlational (Exc) term by using the adiabatic connection 

method proposed by Becke [22-23], so as to eliminate self-

interaction effect. These schemes, also known as hybrid HF-

DFT methods, have remarkable accuracy in predicting 

various molecular properties. Thus in the present DFT 

scheme,  

DFT

XCDFT
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XC CC                   

….. (22)  

where C’s are constants. For example, the Becke-style three 

parameter functional theory may be defined by the 

expression  
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Here parameter C0 allows HF and DFT exchange. CX allows 

inclusion of Becke’s gradient correction to LSDA.   

 

Moller-Plesset Theory 

Perturbation theory (PT) provides another approach for the 

treatment of correlation energy. The basic idea of this 

method is to divide the total Hamiltonian of the system in 

two parts: a zeroth-order part, Ho, which has known Eigen 

functions and Eigen values, and a so-called perturbation V. 

The general formulation of the perturbation theory is known 

as Rayleigh-Schrodinger Perturbation. When the Fock 

operator is chosen as the unperturbed Hamiltonian, the 

method is called Moller­Plesset perturbation theory (MPn, 

where n indicates the order of correction). The MP2 method 

is the most commonly used methods in quantum chemistry 

treating electron correlation. Alternatively, the name Many-
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Body Perturbation Theory (MBPT) can be used to 

emphasize the more general nature of the theory. The 

Coupled-Cluster method may also be considered as an 

MBPT method involving summation to infinite order.   

 

 

Advantages of DFT 

 Computational demands are much less severe than for ab 

initio methods of similar quality, hence the method is 

applicable to much larger molecules. Time needed for 

DFT calculations scales as N
3
 while ab initio calculations 

as e
N
, where N is the number of atoms (Figure 2). 

 

 
Figure 2: Comparison of time taken for ab-initio (in blue) and DFT (in red) calculations 

 

 Ab initio methods have severe problems with transition 

metals. In fact, it can be proved that Hartree-Fock 

equation cannot be solved for true metallic state. It is 

related to the fact that there is a difficulty to converge H-

F when highest occupied orbitals are very close in energy 

(the situation typical for transition metals). 

 The DFT, similar to ab-initio methods, is nonparametric, 

i.e., applicable to any molecule. Basis sets may not be 

assumed as parameters for ab-initio and DFT 

calculations as they are easily derived from atomic 

calculations. 

 DFT method   is applicable for the ground state only. 

This is not a problem unless complex studies such as 

interaction of radiation with biological molecules are 

being done using DFT calculations.  

 

2. Conclusion 
 

ab-initio calculations produce very good qualitative results 

and the advantage of this method is that they ultimately 

converge to the near accurate solution, once all the 

approximations are included properly. Such type of 

calculations uses the correct Hamiltonian and does not use 

experimental data other than the values of fundamental 

physical constants. The wave function is calculated quantum 

mechanically by solving the non-relativistic Schrodinger 

wave equation. Ab-initio methods can be further classified 

into two classes. The first one is post-Hartree Fock schemes 

in the framework of configuration interaction or coupled 

cluster methods which are based on wave-function and can 

be used for molecules containing up to a few tens of atoms 

and are likely to provide precise results. The second one is 

electron density based density functional theory (DFT) 

which may be employed over the systems containing a few 

tens up to a few hundreds of atoms.  DFT provides the wide-

range of applicability and reasonably accurate results in 

many cases.  
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