Synthesis Fabrication and Characterization of ULSI Nano Silver (Ag) Interconnects

1A. Napolean, 2S. Arunprathap

1Assistant Professor, Department of ECE, V. S. B Engineering College, Karur, Tamilnadu, India
2Post Graduate Scholar, Department of ECE, V. S. B Engineering College, Karur, Tamilnadu, India

Abstract: In order to satisfy Moore’s prediction law digital circuit fabrication technology has undergone various stages of evolution from Small Scale Integration (SSI) to Very Large Scale Integration (VLSI). Further for future scaling; industrialists and researchers are very much concentrated in Ultra Large Scale Integration (ULSI) technology; where interconnect issues turn out be serious bottleneck limiting the overall performance of the circuit. In our paper; we have proposed a solution that will hold good for the interconnect issues with future technologies. After going through a serious of pros and cons with copper element as interconnect in ULSI technology we have analyzed the suitability and need for silver metal among various different metal elements as substitute element to replace conventional copper as interconnect. To start up with; initially Silver nano-particles were synthesized from its precursor Silver Nitrate (AgNO₃) by a novel solvothermal and filtration process; SEM images and XRD analysis of prepared silver nano-particles were carried out and the results were checked to conform the formation of silver nano-particles. Thus prepared silver nano-particles were used to draw interconnect patterns and these patterns were characterized to prove its identity to find application as interconnect in ULSI technology.

Keywords: Moore’s Law; Interconnect Issues; Silver Nano-Particles; Solvothermal Process; Filtration Process; ULSI

1. Introduction

Interconnect, as the name describes is a medium to interconnect two or more devices on a chip. The function of an interconnect is to distribute clock and other signals to the various functional blocks of a CMOS integrated circuit, along with providing necessary power and ground connections [1]. In order to understand the need for an interconnect system in proper functioning of a chip we need to study the importance of clock/power/ground signal.

1.1 Importance of Clock Signal

A Clock signal is generally referred to as “the heartbeat” of the any digital circuit chips. A digital clock signal is basically a square wave voltage similar as the one shown below [2]:

![A Typical Clock Cycle](image)

Clock signals are typically loaded with the greatest fan out and operate at the highest speeds of any signal within the synchronous system. Since the data signals are provided with a temporal reference by the clock signals, the clock waveforms must be particularly clean and sharp. Furthermore, these clock signals are particularly affected by technology scaling (Moore's law), in that long global interconnect lines become significantly more resistive as line dimensions are decreased. This increased line resistance is one of the primary reasons for the increasing significance of clock distribution on synchronous performance. Finally, the control of any differences and uncertainty in the arrival times of the clock signals can severely limit the maximum performance of the entire system and create catastrophic race conditions in which an incorrect data signal may latch within a register. The proper design of the clock distribution network helps ensure that critical timing requirements are satisfied and that no race conditions exist. Novel structures are currently under development to ameliorate these issues and provide effective solutions.

1.2 Interconnect Solutions

The fundamental development requirement for interconnect is to meet the high-speed transmission needs of chips despite further scaling of feature sizes. The Interconnect chapter of
the 1994 National Technology Roadmap for Semiconductors (NTRS)[1] described the first needs for new conductor and dielectric materials that would be necessary to meet the projected overall technology requirements. With the publication of the 1997 edition of the NTRS, the introduction of copper-containing chips was imminent. The 1999 International Roadmap highlights a continued change to new materials, now being introduced at an unprecedented pace. In 2001, these materials introductions continue, but a solution must for the problem associated with increases in \(\kappa \) must be found. The slower than projected pace of low-\(\kappa \) dielectric introduction for MPU/s and ASICs is one of the central issues for the 2003 ITRS Interconnect area. The 2005 ITRS shows the calculated electron scattering induced Cu resistivity rise for future technology generations, as well as the resultant effect on resistance and capacitance (RC) performance metrics. A crosstalk metric was also introduced in 2007. Managing the rapid rate of materials introduction and the concomitant complexity represents the overall near-term challenge. For 2011, Interconnect performance is at the forefront as a key challenge to achieve overall chip performance.

In 2012 reports from IRTS its concluded that Cu and low-\(\kappa \) interconnects will probably represent the final “conventional” interconnect technology. There are no metals with significantly lower resistivity than Cu. But it is eminent that Ag has significantly lower resistivity than Cu from Table No.1 which has a comparison of various metals.

Table 1: shows the resistivities of several materials. The values are correct at 20 degrees Celsius [2]

<table>
<thead>
<tr>
<th>Elements</th>
<th>Resistivity at 20 °C (Ω.m)</th>
<th>Elements</th>
<th>Resistivity at 20 °C (Ω.m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>2.83 x 10⁻⁷</td>
<td>Lead</td>
<td>2.2 x 10⁻⁴</td>
</tr>
<tr>
<td>Carbon (Graphite)</td>
<td>3.5 x 10⁻⁴</td>
<td>Manganese</td>
<td>4.9 x 10⁻⁴</td>
</tr>
<tr>
<td>Constantan</td>
<td>4.9 x 10⁻⁴</td>
<td>Mercury</td>
<td>9.8 x 10⁻⁴</td>
</tr>
<tr>
<td>Copper</td>
<td>1.7 x 10⁻⁴</td>
<td>Platinum</td>
<td>1.1 x 10⁻⁴</td>
</tr>
<tr>
<td>Germanium</td>
<td>4.6 x 10⁻⁴</td>
<td>Quartz (fused)</td>
<td>7.5 x 10⁻⁴</td>
</tr>
<tr>
<td>Glass</td>
<td>10⁻⁷ to 10⁻⁸</td>
<td>Silicon</td>
<td>6.0 x 10⁻⁴</td>
</tr>
<tr>
<td>Gold</td>
<td>2.44 x 10⁻⁶</td>
<td>Silver</td>
<td>1.59 x 10⁻⁴</td>
</tr>
<tr>
<td>Iron</td>
<td>1.0 x 10⁻⁸</td>
<td>Tungsten</td>
<td>5.6 x 10⁻⁴</td>
</tr>
</tbody>
</table>

Even though a suitable replacement is found in our paper the most Critical Challenges faced by nm scaling and their respective issues is given in Table No.2.

Table 2: Critical challenges and issues with interconnect design for future [3]

<table>
<thead>
<tr>
<th>Material</th>
<th>Summary of Issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction of new materials to meet conductivity requirements</td>
<td>The rapid introductions of new materials/processes that are necessary to meet conductivity requirements create integration and material characterization challenges.</td>
</tr>
<tr>
<td>Manufacturable Integration Engineering manufacturable interconnect structures, processes and new materials</td>
<td>Integration complexities, CMP damage, resist poisoning, dielectric constant degradation. Lack of interconnect/packaging architecture design optimization tool.</td>
</tr>
</tbody>
</table>

2. Materials and Methods

2.1. Chemicals Used

Silver nano-particles were synthesized by a novel method known as solvothermal process followed by filtering process.

STEP1: Preparation of 0.1M Silver Nitrate (AgNO₃) solution. Take 1.6987g AgNO₃ and add 100ml distilled water in SMF, now cover the beaker in black color carbon ribbon paper (or) black cloth. To find the weight of Silver Nitrate (AgNO₃) the following formula is used,

\[W = (M \times \text{molarity} \times 100)/100 \quad \ldots \ldots (1) \]

STEP2: Preparation of 0.1M of Sodium Borohydride (NaBH₄) solution.

By using the same formula 0.3783g weight of NaBH₄ is measured and 100ml of distilled water is added. In solvothermal process freshly prepared 0.1M Silver nitrate (AgNO₃) salt solution is stirred by using magnetic stirrer at a rotating speed of 1200 rpm. Similarly prepared 0.1M of Sodium borohydride (NaBH₄) solution is added to Silver Nitrate (AgNO₃) solution drop by drop for 10minutes, now the solution slowly turns into brown color. Insert the RB (Round Bottom) flask on top of the SMF. The RB flask is designed with water inlet one side and water outlet on the other. Magnetic rod is inserted into the beaker and continuous stirring is carried out for 24hrs. Overall chemical reaction carried out is written as,

\[\text{AgNO₃ + NaBH₄} \rightarrow \text{Ag}^{0} + 0.5 \text{H}_₂ + 0.5 \text{B}_₂\text{H}_₆ + \text{NaNO} \]

Finally we get the clear solution in bottom of the silver formed after that to remove the solution by using the filtration process to take the filter paper and distilled water to remove the solution after getting silver and filter paper to heat at 80°C in heat oven at 1hr after to be formed pure silver nano particles of range 90 nm to few microns.
3. Results and Discussions

3.1 SEM & XRD Analysis

The SEM images of prepared silver nano-particles are shown below:

Silver nano-particles prepared has been investigated by x-ray diffraction analysis. The XRD indicates the formation of silver nano-particles (Ag) and helps to identify contamination in the prepared Silver nano-particles.

![Figure 2: SEM image of Nano Silver](image)

![XRD of Nano Silver](image)

3.2 Characterization of Nano Silver Interconnects

The structure of Interconnect patterns is shown below:

![Proposed Structure of Silver Interconnect Patterns on Flexible Substrate](image)

The VI characteristics of the interconnect lines are drawn with the help of NI Lab view discrete components measurements.

![VI Characteristics](image)

4. Conclusions

The resistivity of the Nano silver Interconnects, whose length is 1cm and width is 10µm, is found to be 0.0785µΩ.m at room temperature (30°C), which is proved to be much more conducting compared to an ordinary silver at 20°C. Hence, nano silver based interconnects can be used in IC chip replacing conventional Copper interconnects.
References

[7] Nano-scale VLSI Clock Routing Module based on Useful-Skew Tree Algorithm Chew Eik Wee, Ching Heng Sun, Nasir Sheikh-Husin, Mohamed Khalil Hani

Authors Profile

Napoleon A., received his B. Sc (Physics) from the Manonmaniam Sundaranar University, Tirunelveli. M. Sc (Physics) from the Bharathiar University Coimbatore and M. Tech (Sensor System Technology) from Vellore Institute of Technology Vellore. He is now Assistant Professor in Electronics and Communication Engineering Department, VSB Engineering College, Karur, Tamilnadu. His area of research interest includes Nano Sensors, Microelectronics, and Optical Fiber Communication.