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Abstract: The Normalized Geometric and Normalized Hamming distance measures of Intuitionistic Fuzzy Multi sets (IFMS) are 
presented in depth in this paper. Due to the wide applications in various fields, the distance measure plays a vital role in Intuitionistic 
Fuzzy sets (IFS). We extend the distance measure of IFS to IFMS as there are possibilities of multi membership, non membership for 
the same element. To demonstrate the efficiency of the proposed measures, the properties of distance measures are analysed. As the 
proposed method is mathematically valid, it can be applied to any decision making problems, medical diagnosis, engineering problems, 
pattern recognition, etc. The application of medical diagnosis and pattern recognition shows that the proposed distance measures are 
much simpler, well suited one to use with linguistic variables.  
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1. Introduction 
 
Lofti A. Zadeh [1] in 1965 introduced the concept of Fuzzy 
sets (FS), was the generalisation of Crisp sets. The fuzzy set 
allows the object to partially belong to a set with a 
membership degree ( � ) between 0 and 1. Later, the 
generalization of Fuzzy sets, introduced by Krasssimir T. 
Atanassov [2], [ 3] was the Intuitionistic Fuzzy sets (IFS) 
represents the uncertainties with respect to membership 
( � ∈ [0,1] ) and non membership ( � ∈ [0,1] ) such that 
� + � ≤ 1 . The number � = 1 − � − � is called the 
hesitiation degree or intuitionistic index. As they can present 
the degrees of membership and non membership, the IFSs 
are widely applied in the area of logic programming, 
decision making, pattern recognition and medical diagnosis. 
Also IFSs defined on the same universe are compared using 
the Distance Measures. (Dengfeng and Chuntian [4], and 
Szmidt and Kacprzyk [5],[6],[7][8])  
 
R. R. Yager [10] introduced the Fuzzy Multi Sets (FMSs), 
as Multi sets [9] allow the repeated occurrences of any 
element. In the FMSs, the occurrences are more than one 
with the possibility of the same or the different membership 
functions. Later T.K Shinoj and Sunil Jacob John [11] in 
2012, generalised the new concept of Intuitionistic Fuzzy 
Multi Sets (IFMSs) from the Fuzzy Multi Sets (FMSs) 
consisting of the uncertainties membership, non membership 
and hesitation functions. 
 
In this paper, the Normalized Geometric and Normalized 
Hamming distance measures of IFMSs is applied to examine 
the capabilities to cope in pattern recognition and medical 
diagnosis problems. As the Numerical results [12], [13] show 
that the proposed measure is well suited one, we extend this 
measure to real time application also. 
 
The organization of this paper is as follows: In section 2, the 
Fuzzy Multi sets, Intuitionistic Fuzzy Multi sets are 
explained. The distance measures of the Intuitionistic Fuzzy 

Multi Sets (IFMSs) are proposed in Section 3. The section 4, 
analyses the Pattern Recognition and Medical Diagnosis 
Application using the Normalized Geometric and 
Normalized Hamming distance measures of IFMSs.  
 
2. Preliminaries 
 
Some basic concepts and definitions used in next section are 
given here 
 
Definition: 2.1 
An Intuitionistic fuzzy set (IFS), A in X is given by  
A = {〈�,  ��(�), ��(�) 〉/ � ∈ �� -- (2.1)  
where �� : X → [0,1] and �� : X → [0,1] with the condition 
0  ≤  ��(�) +  ��(�)  ≤  1 , ∀ � ∈ �  Here 
��(�) ��� ��(�)  ∈ [0,1] denote the membership and the 
non membership functions of the fuzzy set A; For each 
Intuitionistic fuzzy set in X, ��(�)  = 1 − ��(�) −
 [1 − ��(�)] =  0 for all � ∈ � that is ��(�) = 1  ��(�) −
 ��(�) is the hesitancy degree of � ∈ � in A.  
Always 0 ≤  ��(�)  ≤  1, ∀ � ∈ �.  
The complementary set �� of A is defined as  
�� =  {〈�, ��(�),  ��(�) 〉/ � ∈ �� -- (2.2) 
 
Definition: 2.2 
Let X be a nonempty set. A Fuzzy Multi set (FMS) A in X is 
characterized by the count membership function Mc such 
that Mc : X → Q where Q is the set of all crisp multi sets in 
[0,1]. Hence, for any  � ∈ � , Mc(x) is the crisp multi set 
from [0, 1]. The membership sequence is defined as 
 ( ��

� (�) , ��
�(�), … … … ��

�(�) ) where 
 ��

� (�)  ≥  ��
�(�)  ≥ ⋯  ≥ ��

�(�) .  
Therefore, A FMS A is given by 
 � =  �〈 �, ( ��

� (�) , ��
�(�), … … … ��

�(�) ) 〉/ � ∈ �� 
 -- (2.3) 
 
Definition: 2.3 
Let X be a nonempty set. A Intuitionistic Fuzzy Multi set 
(IFMS) A in X is characterized by two functions namely 
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count membership function Mc and count non membership 
function NMc such that 
 Mc : X → Q and NMc : X → Q where Q is the set of all 
crisp multi sets in [0,1]. Hence, for any  � ∈ � , Mc(x) is the 
crisp multi set from [0, 1] whose membership sequence is 
defined as 
 ( ��

� (�) , ��
�(�), … … … ��

�(�) ) where  
 ��

� (�)  ≥  ��
�(�)  ≥ ⋯  ≥ ��

�(�) and the corresponding non 
membership sequence NMc (x) is defined as 
 ( ��

�(�) , ��
�(�), … … … ��

�(�) ) where the non membership 
can be either decreasing or increasing function. such that 
0 ≤  ��

� (�) +  ��
� (�)  ≤  1 , ∀ � ∈ � ��� � = 1,2, … �. 

 Therefore, An IFMS A is given by  
� =
�〈 �, � ��

� (�) , ��
�(�), … ��

�(�) �, � ��
�(�) , ��

�(�), … ��
�(�) � 〉/

� ∈ ��  
 -- (2.4) 
where ��

� (�)  ≥  ��
�(�)  ≥ ⋯  ≥ ��

�(�) 
The complementary set �� of A is defined as 
��

=  �〈�, ( ��
�(�) , ��

�(�), … ��
�(�) ), � ��

� (�) , ��
�(�), … ��

�(�) �〉
/ � ∈ ��  
 -- (2.5) 

 �ℎ��� ��
�(�)  ≥  ��

�(�)  ≥ ⋯  ≥ ��
�(�)  

 
Definition: 2.4 
The Cardinality of the membership function Mc(x) and the 
non membership function NMc (x) is the length of an 
element x in an IFMS A denoted as �, defined as η = | Mc(x)| 
= |NMc(x)| 
If A, B, C are the IFMS defined on X , then their cardinality 
η = Max { η(A), η(B), η(C) }. 
 
3.a Geometric Distance Measure 
 
The Geometric distance of the Intuitionistic Multi Fuzzy set 
is defined as 

��(� , � )

=  
1
�  �  

�

���

� 
1
�  � �(��

� (��) − ��
� (��))� +  (��

�(��) − ��
�(��))�

�

���

�  

 -- (3.1.1) 
Where the Normalized Geometric distance is ��(� , � )  =
 �
√�

 ��(� , � ) -- (3.1.2)  
 
Proposition: 3.2  
The defined distance ��(� , � ) between IFMS A and B 
satisfies the following properties 
D1. 0 ≤  ��(� , � ) ≤  1  
D2. A = B if and only if  ��(� , � ) = 0 
D3. ��(� , � )  =  ��(�, � )  
D4. If � ⊆ � ⊆ �, for A, B, C are IFMS then, ��(� , � )  ≤
 ��(� , � ) and ��(� , � ) ≤  ��(� , � )  
 
Proof  
D1. � ≤   ��(� , � )  ≤  �  
As the membership and the non membership functions of the 
IFMSs lies between 0 and 1, the distance measure based on 
these function also lies between 0 and 1. 
D2. A = B if and only if   ��(� , � ) = 0 

(i) Let the two IFMS A, B be equal (i.e.) A = B. This implies 
for any ��

� (��) = ��
� (��) and 

 ��
�(��) =  ��

�(��)  states that (��
� (��) − ��

� (��))� and 
(��

�(��) − ��
�(��))� = 0. Hence  ��(� , � ) = 0 

(ii) Let the  ��(� , � ) = 0 
The zero distance measure is possible only if (��

� (��) −
��

� (��))� = 0 and (��
�(��) − ��

�(��))� = 0, as the Geometric 
distance measure concerns with addition of both membership 
and non membership difference. This refers that ��

� (��) =
��

� (��) and ��
�(��) =  ��

�(��) for all i, j values. Hence A = B. 
D3. ��(� , � )  =  ��(�, � ) 
It is obvious that 
  ��

� (��) − ��
� (��)    ��

� (��) − ��
� (��)  and � �

� (��) −
��

�(��)  ≠  ��
�(��) − ��

�(��) 
 But (��

� (��) − ��
� (��))�  = (��

� (��) − ��
� (��))�  and 

(��
�(��) − ��

�(��))� = (��
�(��) − ��

�(��))� ,  
 Hence 
��(� , � )  =

 �
�

 ∑ � �
�

 ∑ ����
� (��) − ��

� (��)�
�

+  ���
�(��) − ��

�(��)�
�

�
���  �

=

�
���   

 
1
�

 � �
1
�

 � �(��
� (��) − ��

� (��))� +  (��
�(��) − ��

�(��))�

�

���

 �
�

���

  

= ��( �, � )  
 
D4. If � ⊆ � ⊆ �, for A, B, C are IFMS then, ��(� , �) ≤
��(� , � ) and ��( �, �) ≤  ��(� , �)  
Let � ⊆ � ⊆ �, then the assumption is  
 ��

� (��)  ≤  ��
� (��)  ≤ ��

� (��) and 
  ��

�(��)  ≥  ��
�(��)  ≥  ��

�(��) for every �� ∈ � 
 
Case (i)  
 
 Let (��

� (��) − ��
� (��))�  ≥  (��

� (��) − ��
� (��))� Then from 

the assumption of non membership function, we have 
 (��

�(��) − ��
�(��))�  ≤  (��

�(��) − ��
�(��))�  

 ≤  (��
� (��) − ��

� (��))� -- (3.2.1) 
 Also (��

�(��) − ��
�(��))�  ≤  (��

�(��) − ��
�(��))�  

 ≤  (��
� (��) − ��

� (��))� -- (3.2.2) 
Now from the assumption of the membership, we have  
 (��

� (��) − ��
� (��))� ≤  (��

� (��) − ��
� (��))�  and (��

� (��) −
��

� (��))�  ≤  (��
� (��) − ��

� (��))� -- (3.2.3) 
From (3.2.1, 3.2.2, 3.2.3) ��(� , � )  ≤ ��(� , � ) and 
��( �, � )  ≤  ��(� , � )  
 
Case (ii) 

Let ���
� (��) − ��

� (��)�
�

 ≤  ���
� (��) − ��

� (��)�
�
 Then from 

the assumption of membership function, we have  
 (��

� (��) − ��
� (��))� ≤  (��

� (��) − ��
� (��))�  

 ≤  (��
�(��) − ��

�(��))� -- (3.2.4) 
 Also (��

� (��) − ��
� (��))�  ≤  (��

� (��) − ��
� (��))�  

 ≤  (��
�(��) − ��

�(��))� -- (3.2.5) 
Now from the assumption of the non membership, we have  
(��

�(��) − ��
�(��))�  ≤  (��

�(��) − ��
�(��))�  and (��

�(��) −
��

�(��))�  ≤  (��
�(��) − ��

�(��))� -- (3.2.6) 
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From (3.2.4, 3.2.5, 3.2.6) ��(� , � )  ≤ ��(� , � ) 
and ��( �, � )  ≤  ��(� , � )  
 
3. b Normalized Hamming Distance Measure 
 
In the IFMS, the Normalized Hamming distance is  
 ��

∗(� , � ) = 

 
1
�

 �  � 
1

2�
 �����

� (��) − ��
� (��)� +  ���

�(��) − ��
�(��)��

�

���

�
�

���

  

 -- (3.3) 
 
Proposition: 3.4  
The defined distance  ��

∗(� , � ) between IFMS A and B 
satisfies the following properties 
D1. 0 ≤   ��

∗(� , � )  ≤  1  
D2. A = B if and only if   ��

∗(� , � ) = 0 
D3.  ��

∗(� , � )  =  ��
∗( �, � )  

D4. If � ⊆ � ⊆ �, for A, B, C are IFMS then,  ��
∗(� , � )  ≤

 ��
∗(�, �) and ��

∗( �, � )  ≤  ��
∗(�, �)  

 
Proof  
D1. � ≤   ��

∗ (� , � )  ≤  �  
As the membership and the non membership functions of the 
IFMSs lies between 0 and 1, the distance measure based on 
these function also lies between 0 and 1. 
D2. A = B if and only if   ��

∗ (� , � ) = 0 
(i) Let the two IFMS A , B be equal (i.e.) A = B.  
This implies for any ��

� (��) = ��
� (��) and ��

�(��) =  ��
�(��) 

which states that ���
� (��) − ��

� (��)� ��� ���
�(��) − ��

�(��)� = 
0. Hence  ��

∗ (� , � ) = 0 
(ii) Let the  ��

∗ (� , � ) = 0 
The zero distance measure is possible only if both ���

� (��) −
��

� (��)� ��� ���
�(��) − ��

�(��)�  = 0, as the Hamming 
distance measure concerns with addition of membership and 
non membership difference. This refers that ��

� (��) = ��
� (��) 

and ��
�(��) =  ��

�(��) for all i, j values. Hence A = B. 
D3.  ��

∗ (� , � )  =  ��
∗ ( �, � )  

 
It is obvious that  
 ��

� (��) − ��
� (��)    ��

� (��) − ��
� (��)  and � �

� (��) −
��

�(��)  ≠  ��
�(��) − ��

�(��) 
 But � ��

� (��) − ��
� (��) � = � ��

� (��) − ��
� (��) � and ���

�(��) −
��

�(��)� = ���
�(��) − ��

�(��)�  
Hence  

 ��
∗(� , � ) =  

1
�

 �  � 
1

2�
 �����

� (��) − ��
� (��)�

�

���

�

���

+  ���
�(��) − ��

�(��)��� 

 =  
1
�

 � � 
1

2�
 �����

� (��) − ��
� (��)�

�

���

�

���

+  ���
�(��) − ��

�(��)�� � 

 
  =  ��

∗( �, � ) 
 

D4. If � ⊆ � ⊆ �, for A, B, C are IFMS then, 
 ��

∗ (� , � )  ≤  ��
∗ (�, �) and 
  ��

∗ ( �, � )  ≤  ��
∗ (�, �)  

 
Let � ⊆ � ⊆ �, then the assumption is 
 ��

� (��)  ≤  ��
� (��)  ≤ ��

� (��) and  
 ��

�(��)  ≥  ��
�(��)  ≥  ��

�(��) for every �� ∈ � 
 
Case (i) 
Let ���

� (��) − ��
� (��)�  ≥  ���

� (��) − ��
� (��)� Then from the 

assumption of non membership function, we have ���
�(��) −

��
�(��)�  ≤  ���

�(��) − ��
�(��)�  ≤  ���

� (��) − ��
� (��)� -- 

(3.4.1) 
 Also ���

�(��) − ��
�(��)�  ≤  ���

�(��) − ��
�(��)�  

 ≤  ���
� (��) − ��

� (��)� -- (3.4.2) 
 
Now from the assumption of the membership, we have 
���

� (��) − ��
� (��)�  ≤  ���

� (��) − ��
� (��)�  and ���

� (��) −
��

� (��)�  ≤  ���
� (��) − ��

� (��)� --- (3.4.3) 
From (3.4.1, 3.4.2, 3.4.3 
 ��

∗ (� , � )  ≤  ��
∗ (�, �) and ��

∗ ( �, � )  ≤  ��
∗ (�, �) 

 Case (ii)  
 
 Let ���

� (��) − ��
� (��)�  ≤  ���

� (��) − ��
� (��)�  Then from 

the assumption of membership function, we have ���
� (��) −

��
� (��)�  ≤  ���

� (��) − ��
� (��)�  

 ≤  ���
�(��) − ��

�(��)� -- (3.4.4) 
 Also ���

� (��) − ��
� (��)�  ≤  ���

� (��) − ��
� (��)�  

 ≤  ���
�(��) − ��

�(��)� -- (3.4.5) 
 
Now from the assumption of the non membership, we have  
���

�(��) − ��
�(��)�  ≤  ���

�(��) − ��
�(��)�  and ���

�(��) −
��

�(��)�  ≤  ���
�(��) − ��

�(��)� - (3.4.6) 
 
From (3.4.4, 3.4.5, 3.4.6) 
 ��

∗ (� , � )  ≤  ��
∗ (�, �) and ��

∗ ( �, � )  ≤  ��
∗ (�, �) 

 
4.Medical Diagnosis Using Ifms-Normalized 

Geometric Distance and Normalized 
Hamming Distance Measures  

 
Uncertainty is an important aspect of medical diagnosis 
problems. A symptom is an uncertain indication of a disease 
and hence the uncertainty characterizes a relation between 
symptoms and diseases. In most of the medical diagnosis 
problems, there exist some patterns, and the experts make 
decision based on the similarity between unknown sample 
and the base patterns. Situations where terms of membership 
function alone is not adequate, the Intuitionistic fuzzy set 
theory consisting of both the terms like membership and non 
membership function is considered to be the better one. Due 
to the increased volume of information available to 
physicians from new medical technologies, the process of 
classifying different set of symptoms under a single name of 
disease becomes difficult. The proposed distance measures 
among the Patients Vs Symptoms and Symptoms Vs diseases 
give the proper medical diagnosis. 
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The unique feature of these proposed methods are that they 
consider multi membership and non membership functions. 
Instead of one time inspection, this multi time inspection 
taking the samples of the same patient at different times 
gives best diagnosis 
 
Let P = { P1, P2, P3, P4 } be a set of Patients,  
 D = { Fever, Tuberculosis, Typhoid, Throat disease } be the 
set of diseases and 
 S = { Temperature, Cough, Throat pain, Headache, Body 
pain } be the set of symptoms. 
Our solution is to examine the patient at different time 
intervals (three times a day), which in turn give arise to 
different membership and non membership function for each 
patient. 
 

Table 4.1: IFMs Q: The Relation between Patient and 
Symptoms 

 
Q Temperature Cough Throat Pain Head Ache Body Pain 
 
P1 

(0.6, 0.2) 
(0.7, 0.1) 
(0.5, 0.4) 

(0.4, 0.3) 
(0.3, 0.6) 
(0.4, 0.4) 

(0.1, 0.7) 
(0.2, 0.7) 
(0, 0.8) 

(0.5, 0.4) 
(0.6, 0.3) 
(0.7, 0.2) 

(0.2, 0.6) 
(0.3, 0.4) 
(0.4, 0.4) 

 
P2 

(0.4, 0.5) 
(0.3, 0.4) 
(0.5, 0.4) 

(0.7, 0.2) 
(0.6, 0.2) 
(0.8, 0.1) 

(0.6, 0.3) 
(0.5, 0.3) 
(0.4, 0.4) 

(0.3, 0.7) 
(0.6, 0.3) 
(0.2, 0.7) 

(0.8, 0.1) 
(0.7, 0.2) 
(0.5, 0.3) 

 
P3 

(0.1, 0.7) 
(0.2, 0.6) 
(0.1, 0.9) 

(0.3, 0.6) 
(0.2, 0 ) 
(0.1, 0.7) 

(0.8, 0) 
(0.7, 0.1 ) 
(0.8, 0.1) 

(0.3, 0.6) 
(0.2, 0.7) 
(0.2, 0.6) 

(0.4, 0.4) 
(0.3, 0.7) 
(0.2, 0.7) 

 
P4 

(0.5, 0.4) 
(0.4, 0.4) 
(0.5, 0.3) 

(0.4, 0.5) 
(0.3, 0.3) 
(0.1, 0.7) 

(0.2, 0.7) 
(0.1, 0.6) 
(0, 0.7) 

(0.5, 0.4) 
(0.6, 0.3) 
(0.3, 0.6) 

(0.4, 0.6) 
(0.5, 0.4) 
(0.4, 0.3) 

 
Let the samples be taken at three different timings in a day 
(morning, noon and night) 
 

Table 4.2: IFMs R: The Relation among Symptoms and 
Diseases 

 
R Viral Fever Tuberculosis Typhoid Throat disease 
Temperature (0.8,0.1) (0.2, 0.7) (0.5,0.3) (0.1,0.7) 
Cough (0.2,0,7) (0.9, 0) (0.3,0,5) (0.3,0,6) 
Throat Pain (0.3,0.5) (0.7, 0.2) (0.2,0.7) (0.8,0.1) 
Head ache (0.5,0.3) (0.6, 0.3) (0.2,0.6) (0.1, .8) 
Body ache (0.5,0.4) (0.7, 0.2) (0.4, 0.4) (0.1,0.8) 

 
Table 4.3: The Geometric distance between IFMs Q and R 

 
��(� , � ) Viral Fever Tuberculosis Typhoid Throat disease 
P1 0.2475 0.5372 0.2131 0.5710 
P2 0.4227 0.2460 0.3521 0.5126 
P3 0.5194 0.4465 0.4021 0.1924 
P4 0.2536 0.5037 0.1684 0.5286 

 
Table 4.4: The Normalized geometric distance between 

IFMs Q and R 
 

��(� , � ) Viral Fever Tuberculosis Typhoid Throat disease 
P1 0.1750 0.3799 0.1507 0.4038 
P2 0.2989 0.1739 0.2490 0.3625 
P3 0.3673 0.3157 0.2843 0.1360 
P4 0.1793 0.3562 0.1191 0.3738 

 
The lowest distance from the table 4.3 gives the proper 
medical diagnosis. Patient P1 suffers from Typhoid, Patient 
P2 suffers from Tuberculosis, Patient P3 suffers from 
Throat disease and Patient P4 suffers from Typhoid. 

Table 4.5: The Normalized Hamming distance between 
IFMs Q and R 

 
P1 0.1633 0.3067 0.1430 0.4067 
P2 0.2607 0.1833 0.2533 0.3600 
P3 0.3533 0.3000 0.2600 0.1200 
P4 0.1767 0.3333 0.1033 0.3667 

 
The lowest distance from the table 4.3 gives the proper 
medical diagnosis. Patient P1 suffers from Typhoid, Patient 
P2 suffers from Tuberculosis, Patient P3 suffers from 
Throat disease and Patient P4 suffers from Typhoid. 
 
Pattern Recognition of the Two Proposed 
Distance Measures 
 
Example: 4.1 
 
Let X = {A1, A2, A3, A4........ An } with A = { A1, A2, A3, A4, 
A5} and B ={ A2, A5, A7, A8, A9} are the IFMS defined as  
  
Pattern I = {〈�� ∶ (0.6,0.4 ), (0.5, 0.5 ) 〉 ,  
〈�� ∶ (0.5,0.3 ), (0.4, 0.5 )〉 , 〈�� ∶ ( 0.5, 0.2 ), (0.4, 0.4)〉 , 
〈�� ∶ (0.3,0.2), (0.3, 0.2)〉 , 〈�� ∶ (0.2,0.1), (0.2, 0.2)〉 } 

 
Then the testing IFMS Pattern III be { A6, A7, A8, A9, A10} 
such that {〈 �� ∶ (0.8, 0.1), (0.4, 0.6) 〉 , 
〈��: (0.7,0.3), (0.4, 0.2)〉, 〈 �� , ( 0.4, 0.5 ), ( 0.3, 0.3)〉 , 〈 �� ∶
(0.2,0.7), (0.1, 0.8 )〉,〈��� ∶ (0.2,0.6), (0, 0.6 )〉 }  
 
Here, the cardinality η = 5 as | Mc(A)| = |NMc(A )| = 5 
and | Mc(B)|  = |NMc(B)|  = 5 then the Normalized 
Geometric distance between  Pattern (I, III) is 0.2411, 
Pattern (II, III) is 0.2012 and the Normalized Hamming 
distance between Pattern (I, III) is 0.215, Pattern (II, III) is = 
0.185  
 
The testing Pattern belongs to Pattern II type (As the 
distance is lesser in both the methods) 
 
Example: 4.2 
 
Let X = {A1, A2, A3, A4........ An } with A = { A1, A2 }; 
B ={ A4, A6}; C = { A1, A10} ; D = { A4, A6} ;  
E = { A4, A6} are the IFMS defined as  
A = { 〈 �� ∶ (0.1,0.2 )〉, 〈�� ∶ (0.3, 0.3 ) 〉 � ;  
B =  {〈 �� ∶ (0.2,0.2 )〉, 〈�� ∶ (0.3, 0.2 ) 〉 � ;  � =
{ 〈 �� ∶ (0.1,0.2 )〉, 〈��� ∶ (0.2, 0.3 ) 〉 � ;  
D = { 〈 �� ∶ (0.1,0.1 )〉, 〈�� ∶ (0.2, 0.2 ) 〉 � ;  
E = { 〈 �� ∶ (0.1,0.2 )〉, 〈�� ∶ (0.2, 0.2 ) 〉 �  
 
The IFMS 
Pattern Y = { 〈 �� ∶ (0.1, 0.2)〉, 〈��� ∶ (0.2, 0.3 ) 〉 �  
Here, the cardinality η = 2 as | Mc(A)| = |NMc(A )| = 2 
and | Mc(B)| = |NMc(B)| = 2, 
 
 then the Normalized Geometric distance between the Patten 
(A, Y) = 0.05, Patten (B, Y) = 0.085, Patten (C, Y) = 0 
Patten (D, Y) = 0.19, Patten (E, Y) = 0.035 and the 
Normalized Hamming distance between the Patten (A, Y) = 
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0.025, Patten (B, Y) = 0.075, Patten (C, Y) = 0 Patten (D, 
Y) = 0.1, Patten (E, Y) = 0.025 
 
Thus, the testing Pattern Y belongs to Pattern C type (As 
the distance is lesser in both the methods) 
 
Example: 4.3 
 
Let X = {A1, A2, A3, A4........ An } with X1 = { A1, A2 }; X2 
={ A3, A4 }; X3 = { A1, A4 } are the IFMS defined as  
A = {〈�� ∶ (0.4,0.2,0.1), (0.3, 0.1, 0.2 ), ( 0.2, 0.1, 0.2 ), ( 0.1, 0.4, 0.3 )〉, 
 〈�� ∶ (0.6,0.3, 0 ), (0.4, 0.5, 0.1 ), ( 0.4, 0.3, 0.2 ), ( 0.2, 0.6, 0.2 )〉} 
B =  {〈�� ∶ (0. 5,0.2,0.3), (0.4, 0.2, 0.3 ), ( 0.4, 0.1, 0.2 ), ( 0.1, 0.1, 0.6 )〉  
 〈�� ∶ (0.4,0.6,0.2), (0.4, 0.5, 0 ), ( 0.3, 0.4, 0.2 ), ( 0.2, 0.4, 0.1 )〉} 
C = {〈�� ∶ (0.4,0.2,0.1), (0.3, 0.1, 0.2 ), ( 0.2, 0.1, 0.2 ), ( 0.1, 0.4, 0.3 )〉, 
 〈�� ∶ (0.4,0.6,0.2), (0.4, 0.5, 0 ), ( 0.3, 0.4, 0.2 ), ( 0.2, 0.4, 0.1 )〉}  
then the Pattern D of IFMS referred as  
{〈�� ∶ (0.4,0.6,0.2), (0.4, 0.5, 0 ), (0.3, 0.4, 0.2 ), (0.2, 0.4, 0.1 )〉 ,  
 〈�� ∶ (0.4,0.2,0.2), (0.5, 0.5, 0 ), ( 0.2, 0.4, 0.2 ), (0.2, 0.5, 0.1 )〉}  
The cardinality η = 2 
as | Mc(A)| = |NMc(A )| = | Hc(A)| = 2 and | Mc(B)| = 
|NMc(B)| =  | Hc(B)| = 2, then the Normalized Geometric 
distance between the Pattern (A, D) is 0.1959 ; the Pattern 
(B, D) is 0.2171; the Pattern (C, D) is 0.1846. Also the 
Normalized Hamming distance of the Pattern (A, D) is 
0.1938; the Pattern (B, D) is 0.2; and the Pattern (C, D) is 
0.1563 
 Hence, the testing Pattern D belongs to Pattern C type 
(As the distance is lesser in both the methods) 
 
5. Conclusion 
 
This paper deals the methods to measure the distance 
between IFMSs on the basis of Normalized Geometric 
distance and Normalized Hamming distance. Both the new 
proposed – Normalized Geometric and Normalized 
Hamming measures prove the properties of the distance 
measure. The specific characteristic of these methods is that 
they consider the multi membership, multi non membership 
functions for any element. The application of the two 
distance measures in medical diagnosis and pattern 
recognition reveals that the resulting distance values refer the 
same identification. The example 4.1 and 4.2 of pattern 
recognition shows that the two new distance measures 
perform well in the case of two representatives of IFMS – 
multi membership and non membership function. Whereas 
the example 4.3 of pattern recognition depicts that the 
proposed measures are effective with three representatives of 
IFMS – multi membership, non membership and hesitation 
functions. It is also clear that the Normalized Geometric 
distance values are comparatively larger than the Normalized 
Hamming distance in all cases. (Medical diagnosis result, 
Pattern recognition examples 4.1, 4.2, 4.3). Thus the 
proposed distance measures are much simpler and well 
suited to use with linguistic variables.  
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