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Abstract: General elections in any country provides an avenue through which citizens exercise their democratic rights in electing 
leaders of their choice to lead them through a predefined constitutional term in office. Leaders are elected through campaigns in which 
they demonstrate their intention to lead the populace and they are selected or elected through various modalities that the electorate 
chooses. The election 2013, for instance provided an avenue through which the electorate chose six levels of leadership starting from the 
president, governor, Senator, Mp, Women Rep and County Reps.  Before the electorate chooses who leads them at whichever level, 
various factors usually take center stage. These factors range from tribal influence, policies as stipulated in the manifestos, past 
development record of the contestants etc. This research determined through statistical methods the factors that affect voting patterns 
and choices that the electorates make. The project adopted random sampling of the JKUAT community via methods of structured 
questionnaires in which then respondents filled in each category the basis for their choosing a candidate. After field based 
questionaring, the research used the respondents' samples so collected and performed analysis on the data frame using factor analysis 
and PCA which is a technique that is used to reduce a large number of variables into fewer numbers of factors. It is also a mathematical 
tool which can be used to examine a wide range of data sets. This technique extracts maximum common variance from all variables and 
puts them into a common score. After analysis, the results are the grouping of major factors that affect voting patterns through 
statistical grouping of study variables. The area of study is JKUAT community located in Juja constituency, of Kiambu County. 
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1. Introduction 
 
1.1 Background to the Study 
 
Overtime there has been lack of properly documented data 
and information on voting patterns and why specifically 
people vote the way they do and select candidates the way 
they have done in the past. This research seeks to find out 
the factors that inform voter decisions on who and who not 
to elect to a given positions as their representative. The 
research also wants to have clear guidelines and documented 
data on election decisions that may be used for future 
inferences on elections and furthermore give campaigners 
informed planning while laying their campaign strategies. 
The research will adopt factor analysis methods and 
principal component analysis methodologies in analyzing 
variables as collected in the field. 
 
1.2 Principal Component Analysis (PCA) 
 
PCA starts extracting the maximum variance and puts them 
into the first factor. After that, it removes that variance 
explained by the first factors and then starts extracting 
maximum variance for the second factor. This process goes 
to the last factor. Eigen values: Eigen values are also called 
characteristic roots. Eigen values shows variance explained 
by that particular factor out of the total variance. From the 
commonality column, we can know how much variance is 
explained by the first factor out of the total variance. For 
example, if our first factor explains 68% variance out of the 
total, this means that 32% variance will be explained by the 
other factor. 

1.3 Factor Analysis 
 
Factor analysis is a technique that is used to reduce a large 
number of variables into fewer numbers of factors. It is also 
a mathematical tool which can be used to examine a wide 
range of data sets. The motivation behind factor analysis is 
the notion that the data that we observe are a function of 
some smaller number of unobserved variables called factors. 
This technique extracts maximum common variance from all 
variables and puts them into a common score.  
 
1.4 Statement of the Problem 
 
Over time, there has been need to keenly study voter 
patterns and voting preferences of voters towards what their 
voting is informed by. To this end, there has been deficiency 
of information and statistical data collected and analyzed to 
make conclusions and inferences on why voters vote the 
way they do and why they choose one individual over the 
other. Since independence Kenya has held several elections 
but data on patterns and main factors that influence the 
voting has not been yet documented. This research aims at 
solving the problem of data availability by use of statistical 
analyses of patterns using PCA and factor analysis and have 
these documented for future inferences.  
 
1.5 Objectives  
 
1.5.1 General objective 
The main objective of this research is to come up with a 
clear picture of factors that determine the choice of political 
leaders in all the positions by use of factor analysis and 
PCA.  
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1.5.2 Specific Objectives 
1. To suggest a methodology that will be used in future to 

get clear reasons of why people vote for the political 
leaders they chose in Kenya. 

2. To establish the factors that affect voting patterns in 
Kenyan elections. 

 
2. Material and Methods 
 
2.1 Data sets 
 
A structured questionnaire was used which was administered 
to registered voters, this will help in establishing the 
parameters to be used in the research. The data collection 
approach and sampling technique is arrived at after assessing 
the distribution of the study population. In this random 
sampling method was used. After data collection, the 
primary data was analyzed through statistical methods and 
packages. The package that was used in this research is 
mainly SPSS. To come up with comprehensive results, the 
study proposed to adopt factor analysis and PCA methods to 
analyze the data. The idea behind PCA and factor analysis is 
to reduce the dimensions of the observation, put the common 
variance together and come up with common factors and 
specific factors. 
 
2.2 Method 
 
2.2.1 The Principal Component Analysis (PCA) and 
Factor Analysis 
 
Eigenvalue is the Criteria for determining the number of 
factors, According to the Kaiser Criterion; Eigenvalues is a 
good criterion for determining a factor. If Eigenvalues is 
greater than one, we should consider that a factor and if 
Eigenvalues is less than one, then we should not consider 
that a factor. According to the variance extraction rule, it 
should be more than 0.7. If variance is less than 0.7, then we 
should not consider that a factor. 
 
Definition: 
 
For a square matrix A of order n, the number lambda (λ)is an 
eigenvalue if and only if there exists a non-zero vector x 
such that 
Ax= λx 
X is called an eigenvector corresponding to λ, and the pair 
(λ, x) is called the eigenpair for A. Using the matrix 
multiplication properties, we obtain 
(A- λIn)x =0. 
This is a linear system for which the matrix coefficient is A- 
λIn. also the system has one solution if and only if the matrix 
coefficient is invertible i.e 
Det (A- λIn) ≠ 0 
Here the zero vector is a solution and x is not the zero 
vector, then we must have  
 0= ׀ A- λIn׀
 
Therefore PCA which uses eigenvalue to explain the total 
variance is given by; 
Let X= (X1,X2,…Xj)′ be a random vector with covariance 
matrix ∑ whose eigenvalues are λ1≥ λ2≥ …….≥ λj≥0 

The relationships between the variables are usually driven 
by underlying latent variables. 
 
Therefore suppose we have two variables x1 and x2 and one 
common factor F. suppose our variables x1 and x2 are turned 
into standardized variables z1 and z2. Let F be a common 
underlying factor and a unique factor for each variable y1 
and y2. 
 
Z1i =b1Fi +u1y1i 
Z2i = b2Fi+u2y2i 
 
We assume that both F and y’s are standardized and that 
they are all uncorrelated with one another that is E (F) = 0 
and Var (F) =1. The assumption is that the factors are 
standardized this is because the factors are not observable. 
Variance of Z1 will then be; 
 
E (Z1

2) =E (b1F+u1y1)2 

 =E (b1
2 F2+u1

2y1
2+2b1

2u1
2Fy1) 

 =b1
2 E (F2) +u1

2 E (y1
2) +2b1

2u1
2 E (Fy1) 

Var (Z1) = b1
2 Var (F) +u1

2 Var (y1) +2b1
2u1

2 Covar (Fy1)  
 
Assuming that variance is equal to one and covariance zero; 
Var (Z1) = b1

2 + u1
2 

1 = b1
2 + u1

2 
 
Therefore the variance in variable Z1 is determined by the 
contribution of the common factor and the unique factor. 
 
The covariance between Z1 and the common factor F is; 
Covar (Z1, F) =E (Z1, F) 
 =E ((b1F+ u1y1) F) 
 = b1 E (F2) + u1 E (Fy1) 
 = b1 Var (F) + u1

 Covar (Fy1) 
 = b1 
 
Since both F and Z1 are standardized, the covariance is the 
same as the correlation (r), so the correlation (r) between Z1 
and F is b1. 
 
Covariance between Z1 and Z2 is; 
Covar (Z1, Z2) = E (Z1,Z2) 
 = E ((b1F+ u1y1) ( b2F+ u2y2)) 
 =E (b1b2F2+ b1u1F y1+u1u2y2

 y1) 
 = b1b2 Var (F) + b1u1Covar (Fy1) + u1u2Covar (y1y2) 
 = b1b2 
 
Since both Z1 and Z2 are standardized, the covariance is the 
same as the correlation (r), so the correlation (r) between Z1 
and Z2 is b1b2. 
 
Cor (rz1,z2 )= b1b2 
 
Correlation matrix between a set of variables is completely 
determined by their common factors. From the 
decomposition of the variance in Z1, we can define the 
communality hj

2 of each variable as bj
2, this is the 

proportion of variance explained by the common factor. The 
uniqueness of the variables is given by 1- hj

2. 
 
Generally for a set of j variables and m factors; 
Zji =bj1F1i + bj2F2i+ bj3F3i+…+ bjmFmi+ ujyji  
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Where b’s are the factor loadings which tell us the 
correlation coefficient between each factor and the observed 
variables. Factor loading also shows the variance explained 
by the variable on that particular factor. In the structure 
equation modeling (SEM) approach, as a rule of thumb, 0.7 
or higher factor loading represents that the factor extracts 
sufficient variance from that variable. F is the common 
underlying factor, u is the mean of the standardized variables 
y’s. 
 
In factor analysis model: 
Consider a p-dimensional random vector X with mean µ and 
covariance matrix Var (X) =∑. Then a simple factor analysis 
model of X in matrix notation is given by 
X=QF+µ…………….. 1 
 
Where F is the k-dimensional vector of the k-factors. It is 
often assumed that the factors F are centered, uncorrelated 
and standardized i.e. E (F) =0 and Var (F) =Ik  
 
We then split the influence of the factors into common 
factors and specific ones. This leads to the generalized factor 
model which together with the assumptions constitute the 
orthogonal factor model given by 
 
X(p×1) =Q(p×k)F(k×1) +U(p×1)+µ(p×1) 
Where  
Uj=mean of j-th specific factor 
µj=mean of variable j 
Fl=l-the common factor 
Qjl=loading of the j-th variable on the l-th factor 

 
The random vectors F and U are unobservable and 
uncorrelated. Using factor analysis I will come up with the 
set of correlated continuous variables. Factor analysis 
attempts to identify a small set of factors that represent the 
underlying relationship among a group of variables. There 
are three main steps in conducting factor analysis and 
principal component analysis; assessment of the suitability 
of the data for factor analysis, factor extraction and factor 
rotation. 
 
Step 1: Assessment of the suitability of the data for factor 
analysis 
There are two main issues to consider in determining 
whether a particular data set is suitable for factor analysis: 
sample size, and the strength of the relationship among 
the variables (or items).While there is little agreement 
among authors concerning how large a sample should be, the 
recommendation generally is: the larger, the better. In small 
samples the correlation coefficients among the variables are 
less reliable, tending to vary from sample to sample. There 
should also be a ratio of at least five cases for each of the 
variables. The correlation matrix should also show a 
correlation of r=0.3 or greater. The Bartlett’s test of 
sphericity should be statistically significant at p<0.05, 
Bartlett’s test of sphericity (Bartlett, 1954) and Kaiser-
Meyer Olkin value should be 0.6 or above, Kaiser-Meyer-
Olkin (KMO) measure of sampling adequacy (Kaiser, 1970, 
1974) .The KMO index ranges from 0 to 1, with .6 
suggested as the minimum value for a good factor analysis 
(Tabachnick & Fidell, 2001). 
 
 

Kaiser-Meyer-Olkin measure of sampling adequacy 
KMO determines if the sampling is adequate for analysis 
(Kaiser 1974a). The KMO compares the observed 
correlation coefficients to the partial correlation coefficients. 
Small values for the KMO indicate problems with sampling. 
A KMO value of 0.9 is best, below 0.50 is unacceptable. 
 
Ant-image correlation matrix shows if there is a low 
degree of correlation between the variables when the other 
variables are held constant. Ant- image means low 
correlation values will produce large numbers. A KMO 
value less than 0.50 means we should look at the individual 
measures that are located on the diagonal in the Ant-image 
matrix. Variables with small values should be considered for 
elimination. 
 
Sphericity test: is a statistical test for the overall 
significance of all correlations within a correlation matrix. 
 
Step 2: Factor extraction and Interpretation 
Factor extraction involves determining the smallest number 
of factors that can be used to best represent the interrelations 
among the set of variables. There are a variety of approaches 
that can be used to identify (extract) the number of 
underlying factors or dimensions. Some of the most 
commonly available extraction techniques are: Principal 
components, Principal factors, Image factoring, maximum 
likelihood factoring, Alpha factoring, unweighted least 
squares, and generalized least squares. 
 
The method I will use is the principal components analysis. 
It determines how well the factors explain the variation. The 
goal is to identify the linear combination of variables that 
account for the greatest amount of common variance. The 
first factor accounts for the greatest amount of common 
variance. The factors in the PCA shows individual 
relationship, much like the beta values in regression. In 
principal components analysis there are a number of 
techniques that can be used to assist in the decision 
concerning the number of factors to retain: 
 
• Kaiser’s criterion 
• Scree test and 
• Parallel analysis. 
 
Kaiser’s Criterion/ Eigenvalues Rule 
This is one of the most commonly used techniques. Using 
this rule, only factors with an eigenvalues of 1.0 or more are 
retained for further investigation. The eigenvalues of a factor 
represents the amount of the total variance explained by that 
factor. Kaiser’s criterion has been criticized, however, as 
resulting in the retention of too many factors in some 
situations.  
 
Eigen value above one (1) represents the number of factors 
needed to describe the underlying dimensions of the data. 
 
All the factors below eigen value one (1) does not contribute 
an adequate amount to the model to be included. Each of the 
factors at this point are not correlated with each other (they 
are orthogonal as described below). 
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The Scree test 
This is another approach that can be used. It is also Catell’s 
scree test (Catell, 1966) Catell, 1966 since it was first 
proposed by Catell. This involves plotting each of the 
eigenvalues of the factors and inspecting the plot to find a 
point at which the shape of the curve changes direction and 
becomes horizontal. Catell recommends retaining all factors 
above the elbow, or break in the plot, as these factors 
contribute the most to the explanation of the variance in the 
data set. 
 
Step 3: Factor rotation and interpretation 
Once the numbers of factors have been determined, the next 
step is to interpret them. To assist in this process the factors 
are ‘rotated’. This does not change the underlying solution 
rather; it presents the pattern of loadings in a manner that is 
easier to interpret. SPSS does not label or interpret each of 
the factors but it just shows which variables ‘clump 
together’. From the understanding of the content of the 
variables (and underlying theory and past research), it is up 
to the researcher to propose possible interpretations.  There 
are two main approaches to rotation, resulting in either 
orthogonal (uncorrelated that is covariance is zero) or 
oblique (correlated) factor solutions. According to 
Tabachnick and Fidell (2001), orthogonal rotation results in 
solutions that are easier to interpret and to report; however, 
they do require the researcher to assume that the underlying 
constructs are independent (not correlated). Oblique 
approaches allow for the factors to be correlated, but they 
are more difficult to interpret, describe and report 
(Tabachnick & Fidell, 2001, p. 618). In practice, the two 
approaches (orthogonal and oblique) often result in very 
similar solutions, particularly when the pattern of 
correlations among the items is clear (Tabachnick & Fidell, 
2001). Many researchers conduct both orthogonal and 
oblique rotations and then report the clearest and easiest to 
interpret. Within the two broad categories of rotational 
approaches there are a number of different rotational 
techniques provided by SPSS (orthogonal: Varimax, 
Quartimax, Equamax; oblique: Direct Oblimin, Promax). 
The most commonly used orthogonal approach is the 
Varimax method, which attempts to minimize the number of 
variables that have high loadings on each factor. The most 
commonly used oblique technique is Direct Oblimin. For a 
comparison of the characteristics of each of these 
approaches, see Tabachnick and Fidell (2001, p. 615). 
Rotation method makes it more reliable to understand the 
output. Eigen values do not affect the rotation method, but 
the rotation method affects the Eigenvalues or percentage of 
variance extracted. From the different rotational techniques I 
am going to use Varimax in the orthogonal category and 
Direct Oblimin in the Oblique categories. Each of these can 
be easily selected in SPSS, and we can compare our variance 
explained by those particular methods. 
 
Varimax method: is the most common of the rotation 
methods that are available. This first involves scaling the 
loadings which maximizes the sum of variances of the 
squared loadings (squared correlations between variables 
and factors). This is achieved if any given variable has a 
high loading on a single factor but near zero loading on the 
remaining factors also if any given factor is constituted by 
only a few variables with very high loading on this factor, 
while the remaining variables have near zero loadings on 

this factor. If this condition holds, the Varimax rotation 
brings the loading matrix closer to a simple structure. 
Scaling the loading, we divide the loading by the 
corresponding communality as shown; 
 
bjm = bjm/hj ,  
 
Here the loading of the jth variable on the mth factor rotation, 
where h is the communality for the variable j. To find the 
rotation which maximizes this quantity; the Varimax 
procedure, as defined below selects the rotation to find this 
maximum quantity.  
V= �

�
∑ �∑ �����^4 −

�
�
(�����

�
��� ^2)^2��

���  which is the 
sample variance of the standardized loadings for each factor, 
summed over the i factors. Here we find a factor rotation 
that maximizes this function. 
 
Factor Score 
 
The factor score is also called the component score. Factor 
score is a composite measure created for each observation 
on each factor extracted in the factor analysis. The factor 
weights are used in conjunction with the original variables 
values to calculate each observation’s score. The factor 
score are standardized according to a z-score. This score is 
of all row and columns, which can be used as an index of all 
variables and can be used for further analysis. We can 
standardize this score by multiplying a common term. With 
this factor score, whatever analysis we will do, we will 
assume that all variables will behave as factor scores and 
will move. 
 
3. Data Analysis 
 
Data was analyzed using Statistical Package for Social 
Sciences (SPSS) which has inbuilt PCA and factor analysis 
properties. In factor analysis and PCA, the variable will be 
analyzed in SPSS to generate factors. Factors with eigen 
value one and above were considered for more analysis. 
Using the questionnaire, data analysis will be in three parts; 
the first part is to check whether the previous Government 
performed well in intangible services like infrastructures and 
if the incoming Government will improve the services. The 
second part is to check the factors that influenced the voters. 
In step one; we first check whether the data is fit for factor 
analysis and PCA. Here we check the correlation matrix and 
most of the values are greater than 0.3. Therefore we 
proceed to check the KMO and Bartlett’s test. 
 

Table 3.1: KMO and Bartlett’s test 
 

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. 0.84 

Bartlett's Test of  Sphericity 
Approx. Chi-Square 390.402 

df 45 
Sig. 0 

 
From the table above KMO is 0.840 and Bartlett’s test of 
sphericity is statistically significant with the value p=0.000. 
We then concluded that the data is appropriate for PCA and 
Factor analysis. 
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Table 3.2:  Total variance explained by the components 
 

Comp-
-onent 

Initial Eigenvalues Rotation Sums of Squared 
Loadings 

Total % of 
Variance 

Cumulative 
% Total % of 

Variance 
Cumulative 

% 
1 3.971 39.714 39.714 3.321 33.213 33.213 
2 1.28 12.8 52.514 1.93 19.301 52.514 
3 0.925 9.252 61.766    4 0.806 8.064 69.83    5 0.749 7.491 77.322    6 0.599 5.992 83.314    7 0.56 5.598 88.912    8 0.466 4.659 93.571    9 0.368 3.678 97.249    10 0.275 2.751 100    Extraction Method: Principal Component Analysis. 

 
In factor analysis we only use the components that have an 
Eigen value of one or more. From the total variance 
explained table, only the first two components recorded 
Eigen values above one, which is 3.971 and 1.280. The 
components explain a total of 52.514 per cent of the 
variance from the cumulative variance column.  
 

Figure 3.1: Scree Plot 
 

 
 
From the scree plot, we look for a change (elbow) in the 
shape of the plot. The only components above this point are 
retained. Component one and two explain much more of the 
variance than the remaining components; we therefore 
extract two components only. 
 

Table 3.3: Rotated Component Matrix using Varimax 
Rotation with Kaiser Normalization 

 
Rotated Component Matrixa 

 
 Component 

 1 2 
G1 0.779  G2 0.637 
G3 0.719  G4  0.509 
G5 0.783  G6 0.783  G7 0.708 
G8  0.602 
G9 -0.459 0.521 

G10 0.688  Extraction Method: Principal Component Analysis.  
Rotation Method: Varimax with Kaiser Normalization. 
a. Rotation converged in 3 iterations. 
 

From the rotation of the data using Varimax rotation, the 
main loadings on component one are variables G1, G3, G5, 
G6 and G10. From the questionnaire this items are; the 
Government will improve the national economy, will 
improve the country’s security, better health services, and 
better education and will develop a global partnership for 
development in the country. All these items are positive 
showing that these are the variables which influenced voters 
towards choosing leaders. The main loadings of component 
two are G2, G4, G7, G8 and G9. From the questionnaire 
these variables are negative in nature, that is; will not 
improve food security, will be unable to solve negative 
ethnicity, will not promote gender equality and will not 
improve infrastructure.  
 
4. Conclusions 
 
From factor analysis and principal component analysis, we 
first came up with two main components from Kaiser 
Criterion and scree plot. Using Varimax rotation we have 
seen that voters usually choose leaders because of the 
positive intangible services which will improve every human 
beings life. This method can also bring out the tangible 
factors that voters usually consider when voting. Such 
approaches as adopted in this research are of great 
significance as can be applied across county and national 
governments in Kenya and Africa as a whole. The scope of 
this research can be expanded to cover other factors and 
parameters that determine voter patterns and further be 
expanded to cover monitoring for voter expectations and 
whether or not they are fulfilled after the elections. 
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