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Abstract: In a finite population denoted U=1, 2, 3,....., N of N identifiable units, let X be the survey variable. The survey variables are 
observations from a super population. It is possible to get total information about these survey variables such as their total population, 
mean or their variance. In most cases auxiliary information about X is provided. A simple approach to using this auxiliary information 
is to assume a working model that describes the connection between the study variable of interest and the auxiliary variables. Estimators 
are then derived on the basis of this model. The best estimators are the ones that have good efficiency if the model is true, and are 
consistent if the model is inappropriate. In this study, we derive a nonparametric artificial neural network estimator of finite population 
total. The estimator is design unbiased, design consistent and asymptotic normal. 
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1. Introduction 
 
A finite population is a list or a frame denoted U=1, 2, 3,....., 
N of N identifiable units. In this case N is usually known. 
E.g. we can have a finite population of size N=1000 .The 
need to get certain information about the finite population 
which cannot be cheaply obtained by involving every 
individual calls for a sample (a selection of the population) to 
be taken. Finite populations are of interest to government for 
policy making. 
 
Total information about a population can be obtained from 
census data where every individual is involved in giving 
information. A simple way to incorporate known population 
totals of auxiliary variables is through ratio and regression 
estimation. More general situations are handled by means of 
generalized regression estimation (Sarndal, 1980) and 
calibration estimation (Deville and Sarndal, 1992). 
Estimation procedures have been employed in getting 
information from the census data, administrative registers 
and other surveys. However, in most cases these are 
challenging due to cost, time, literacy levels and other 
geographical factors. In these methods, part of the population 
referred to as the sample is used and the information about 
the population is inferred into the sample. For estimating the 
finite population total we suggest an alternative estimation 
procedure using artificial neural networks. 
 
2. A Neural Network Model Based Estimator 
 
The goal is to estimate the population mean of the survey 
variable so that we can get the population total, that is  

�� =
1
�

� ��

�

���

 

From Deville and S¨arndal (1992) using the notion of a 
calibration estimators, we can define our artificial neural 
network estimator to be a linear combination of the 
observations 

��� = � ����

�

���

 

With weights chosen to minimize an average distance 
measure from the basic design weights 

�� =
1
��

 

Minimization is constrained to satisfy 
�
�

∑ ���� �
��� = �̅, where �̅ is the known vector of population 

means for the auxiliary variables. Although alternative 
distance measures are available in Deville and S¨arndal 
(1992), all resulting estimators are asymptotically equivalent 
to the one obtained from minimizing the chi-squared distance  
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Where the ��
� � are known positive weights unrelated to �� , 

i.e. 
Y���� = ��� + (�̅ − �̅�)���  

 Where Y���� and �̅� are the Horvitz-Thompson estimators of �� 
and �� , respectively, and 
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Consider the following superpopulation model  

�
��(��) = �(��) ��� � = 1,2, ⋯ , �

� ∈ (��) = ���(��)� ��� � = 1,2, ⋯ �
�������� = 0 ��� i ≠ j 

  

Where E� and �� denote expectation and variance, 
respectively, with respect to �; �(��) takes the form of a feed 
forward neural network with skip-layer connections and �(. ) 
is a known function of ��. Hence, 
�(��) = ∑ �� �

��� ��� + ∑ ��
�
� ∅�∑ ���

�
��� ��� + ���� + �� (1) 

Where M is the number of neurons at the hidden layer 
(Ripley, 1996, Chapter 5). Since we consider M as fixed, we 
can denote by the set of all parameters of the network, and 
write�(��) in (1) as �(��, �),  

� = ���, ⋯ , ��, ��, ��, ⋯ , ��, ���, ��, ⋯ , �� � 
Following the approach of Wu and Sitter (2001) to estimate 
�� ,the first step is to obtain a design-based method for 
estimating the model parameters and therefore obtain 
estimates of the regression function at ��, for i=1,...,N , 
through the resulting fitted values. In other words, we first 
seek for an estimate �� of the model parameters � based on 
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the data from the entire finite population. We then obtain �� a 
design-based estimate of �� based on the sampled data only. 
The population parameter �� is defined by weighted least 
squares with a weight decay penalty term, i.e. 

�� = ������� �Ø � �
�(��)� (�� − �(��, �))� + �

�
∑ ��

��
��� � (2) 

where � is a tuning parameter and p is the dimension of the 
parameters vector �. The estimate �� is defined as the 
solution of the design-based sample version of (2), that is 
�� = ������� �Ø � �

��
� �

�(��)� (�� − �(��, �))2 + �
�

∑ ��
��

��� ��(3) 

Once the estimates �� are obtained, the available auxiliary 
information is included in the estimator through the fitted 
values �� = �(��, ��),��� � = 1,2, ⋯ �.Then, we can define 
the neural network estimator as Y���� = �

�
∑ ���� �

��� where the 
calibrated weights �� are sought to minimize the distance 
measure ∅� subject to �

�
∑ �� = �

��� 1 and 
�
�

∑ ��f�� �
��� = �(��, ��) 

Using the technique of Deville and S¨arndal (1992) to derive 
the optimal weights, We can propose that  

Y���� = Y���� + �
� 

�∑ f�� − ∑ ��f��
�
���

�
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We wish to combine the kernel technique to our neural 
network estimation. Therefore we briefly describe kernel 
smoothing. 
A continuous kernel is denoted as k (.) and the bandwidth as 
h. The conditional regression estimator �(�)is the solution to 
a natural weighted least squares problem being the minimizer 
��� of 

�(�0) = ∑ (�� − ��)�� �����
�

��
���  (5) 
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Where 
�� =  � �

� − ��

ℎ
� 

By differentiating equation (6) with respect to �� and 
equating to zero we get  
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= 0 
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For a target 
��, � = 1,2, ⋯ , � we have 
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i.e �̂���� is an approximation of �(��)with a constant weighting 
value of Y corresponding to �� 's closest to �� more heavily. 
Alternatively, let ��=[��]� ∈ � be the n vector of �� 's obtained in 
the sample. Define the � × 1 matrix ��� = [1]�×�and define the 
� × � matrix 

��� =
1
ℎ

���� �� �
� − ��

ℎ
��
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Then a sample based estimator of �(��) is given by 
 �̂���� = �X′��W��X���

��X′��W��X�� = W� ���� 
 as long as X′��W��X�� is invertible. 
It follows that �X′
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We note that we can use the neural network package (nnet) 
method to obtain the mean function of the fitted values. From 
the kernel technique,  

�̂���� = �X′��W��X���
��X′��W��X�� 

The weights W�� are subjected to the network and learnt. Then 
the network adjusts the weights until they are optimal. Now the 
mean function of the fitted values will be 
�. ℎ�� =nnmodel$fitted.values*maximum(��). 
 
Therefore ��� = �̂���� = �X′���. ℎ��X���

��X′���. ℎ����y� 
In other words �. ℎ�� = � ������

�
� 

 
3. Asymptotic P roperties of  Ar tificial Neu ral 

Network Estimator 
 
3.1 Unbiasness 
 
For a design expectation ��and model expectation ᶓ� then, 
lim�→����(���)� = � 
Next, 
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But, �(��)�� 
Hence 
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3.2 Consistency 
 
By Chebchev technique  

�[|X� − �| > �] ≤
��|Y��– �|�

��  
Then 

�[|Y�� − �| > �] ≤
��|Y��– �|�

��  
We know Y�� is unbiased, therefore has a bias =0. 
From, MSE(Y��) = Var(Y��) + (����(���))� = Var(Y��)  
Next 
 �[|Y�� − �| > �] ≤ ���(���)

��  

= lim�→� �[|Y�� − �|] > �] ≤ lim
�→�

���(���)
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but 

lim
�→�

Var(Y��)
�� = 0 

Due to convergence in probability then, 
lim�→� �[|Y�� − �|] > � → 0  
Hence Y��is consistent. 
 
3.3 Asymptotic Normality 
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4. Some Results Displayed 
 
Using R statistical package we simulate two populations of x 
as independent and identically distributed uniform (0,1) and 
gamma (1,1) random variables. The populations are of size 
N=300.Samples of size n=30 are generated by simple 
random sampling. The population size is considered large 
enough for several samples and the sample size is 10 percent 
of population size. For each population of x ,mean function , 
and bandwidth ,100 replicate samples are generated and the 
estimates calculated .The population is kept fixed during 
these 100 replicates in order to be able to evaluate the design 
averaged performance of the estimators. We consider four 
mean functions: 
 
1. Linear 2 + 5�  
2. Quadratic (2 + 5�)� 
3. Exponential ���(−8�)  
4. �����1 2 + ���(2��)  
 
We report on some performance of several estimators. 

The Horvitz Thompson estimator is a design based estimator 
while the others are nonparametric estimators which are 
model based. The Epanechnikov kernel 

�(�) =
3
4

(1 − ��), � ≤ 1 
is used for all four nonparametric estimators. Several 
bandwidths are considered (h=0.1, h=0.25, h=0.5, h=0.75, 
h=1 and h=2) to help see how efficiency of the estimators 
vary with bandwidth. The second bandwidth is based on the 
ad hoc rule of �

�
�ℎ the data range. The bandwidths h=1 and 

h=2 are large bandwidths relative to the data range,[0,1]. For 
the linear mean function, ��� and ��� the results show equal 
performance evident from equal mean squared errors for 
both uniform and gamma distributions. We therefore 
examine how much efficiency is lost if we used the other 
estimators. The other mean functions represent departures 
from the linear model. For quadratic function ��� performs 
better followed by ��� (linear), except for a small portion for 
the range of x i.e for (h=0.1, h=0.5, and h=0.75 ��� (linear) 
performs better under the gamma distribution. The biases at 
these turning points for ��� (linear) are seen to be less 
compared to those of ��� .For the exponential mean function 
under uniform distribution, ��� performs better followed by 
���(linear).It is interesting to see the cycle and exponential 
mean functions yield similar MSE values under gamma 
distribution. The performance of any estimator,��  in 
����, ���, ���, ���� is evaluated using its relative bias �� and 
MSEs.The relative bias is defined as 

�� =
∑ ��� − ���

���

� × �
 

where R is the replicate number of samples. We evaluate the 
actual design variance and estimated the mean squared error 
as ������� = �������+(��)�  
 
We also consider an estimate of the mean square error  

������� =
∑ ���� − ����

���

�
 

Where ���  is calculated from the ��� simulated sample. 
  
5. Table of Results 
 

Table 1: Comparative MSEs for the nonparametric 
estimators for a quadratic mean function under uniform 

distribution 
 

uniform MSE of nn MSE of local 
polynomial 

MSE of 
Local linear 

MSE of ht 

h= 0.1 44.0644 50.36182 168.5472 36196.61 
h= 0.25 44.0644 50.36182 51.19504 36196.61 
h= 0.5 44.0644 79.97721 145.6657 36196.61 

h= 0.75 44.0644 127.6176 162.6657 36196.61 
h= 1.0 44.0644 146.0463 168.5472 36196.61 
h= 2.0 44.0644 164.5679 174.183 36196.61 
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Table 2: Comparative biases for the nonparametric 
estimators for a quadratic mean function under uniform 

distribution 
 

uniform Bias. nn Bias. local 
polynomial 

Bias. 
Local linear 

Bias.ht 
 

h= 0.1 0.004388394 0.1610076 0.08051538 0.1257754 
h=0.25 0.004388394 0.004691507 0.004730158 0.1257754 
h= 0.5 0.004388394 0.005912141 0.00797885 0.1257754 
h=0.75 0.004388394 0.007468217 0.00858267 0.1257754 
h= 1.0 0.004388394 0.007989266 0.00858267 0.1257754 
h= 2.0 0.004388394 0.008480749 0.008724983 0.1257754 

 
Table 3: Comparative MSEs for the nonparametric 

estimators for a quadratic mean function under gamma 
distribution 

 
gamma MSE of nn MSE of local 

polynomial 
MSE of local 

linear 
MSE of ht 

h=0.1 22431.97 1171973 7735.465 231856.3 
h= 0.25 22431.97 2318298 628123.9 231856.3 
h= 0.5 22431.97 9334244 6453.919 231856.3 

h= 0.75 22431.97 230634 5626.875 231856.3 
h= 1.0 22431.97 43149.25 756015.2 231856.3 
h= 2.0 22431.97 596.9408 836.358 231856.3 

 
Table 4: Comparative Absolute biases for the 

nonparametric estimators for a quadratic mean function 
under gamma distribution 

 
gamma Bias nn 

 
Bias. Local 
polynomial 

Bias. Local 
linear 

Bias.ht 

h= 0.1 0.05004112 0.361703 0.02938574 0.1501117 
h= 0.25 0.05004112 0.5087191 0.2647988 0.1501117 
h= 0.5 0.05004112 1.020782 0.0268414 0.1501117 

h= 0.75 0.05004112 0.1604557 0.02506265 0.1501117 
h= 1.0 0.05004112 0.06940328 0.2905084 0.1501117 
h= 2.0 0.05004112 0.008163174 0.0096625 0.1501117 

 
6. About Efficiency 
 
Considering the MSEs of the various estimators, we make 
several observations.��� Performs exceptionally well under 
linear and quadratic functions. ��� also performs well since 
its itself linear, and hence is almost a true model for the 
linear function. For most of the other mean functions, 
��� retained consistent efficiencies. Therefore from our 
results we are able to meet our objective that the artificial 
neural network outperforms the kernel and local polynomial 
estimators. 
 
7. Conclusions 
 
We have derived an artificial neural network estimator for 
finite population total. The properties of this estimator 
outclass the existing nonparametric estimators such the 
kernel and local polynomial estimators. We also note that 
this estimator remains invariant (i.e. gives same result) under 
different bandwidths. The only closest competitor of this 
estimator is the linear local polynomial estimator. However 
our estimator is more applicable since we do not have to 
determine the degrees to use. We have also found that if the 
mean �(�)of a sample is known, then we can use this 
information to find the mean of the non-sampled elements 
which leads to overall population estimation. Our objectives 

have been achieved that the artificial neural network 
estimator outperforms kernel estimators and also local 
polynomial estimators. We have also successfully derived 
the asymptotic properties of the estimator. These are 
asymptotic unbiasness, design consistency and asymptotic 
normality.  The overall remark is that an artificial neural 
network estimator is an improvement of existing 
nonparametric and parametric estimators. 
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