
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Volume 2 Issue 10, October 2013
www.ijsr.net

Cache Consistency in Mobile Ad-hoc Networks
with SSUM

Mahesh Akuthota1, C.Srinivas2

1M.Tech (Software Engineering), Kakatiya Institute of Technology & Science, Warangal, India

2Associate Professor of CSE Department, Kakatiya Institute of Technology & Science, Warangal, India

Abstract: This paper proposes the Smart Server Update Mechanism for Maintaining Cache Consistency in Mobile Environments, the
server autonomously sends data updates to the Cache Nodes(CN), meaning that it has to keep track of which CNs cache which data
items. This can be done using a simple table in which an entry consists of the id of a data item (or query) and the address of the CN that
caches the data. A node that desires a data item sends its request to its nearest Query Directory (QD). If this QD finds the query i≠n its
cache, it forwards the request to the CN caching the item, which, in turn, sends the item to the requesting node (RN). Otherwise, it
forwards it to its nearest QD, which has not received the request yet. If the request traverses all QDs without being found, a miss occurs
and it gets forwarded to the server which sends the data item to the RN. In the latter case, after the RN receives the confirmation from
the last traversed QD that it has cached the query, it becomes a CN for this data item and associates the address of this QD with the item
and then sends a Server Cache Update Packet (SCUP) to the server, which, in turn, adds the CN’s address to the data item in its
memory. This setup allows the server to send updates to the CNs directly whenever the data items are updated

Keywords: Data caching, cache consistency, invalidation, server-based approach, MANET.

1. Introduction

In a mobile ad hoc network (MANET), data caching is
essential as it reduces contention in the network, increases
the probability of nodes getting desired data, and improves
system performance. The major issue that faces cache
management is the maintenance of data consistency between
the client cache and the server. In a MANET, all messages
sent between the server and the cache are subject to network
delays, thus, impeding consistency by download delays that
are considerably noticeable and more severe in wireless
mobile devices.

All cache consistency algorithms are developed with the
same goal in mind: to increase the probability of serving
data items from the cache that are identical to those on the
server. A large number of such algorithms have been
proposed in the literature, and they fall into three groups:
server invalidation, client polling, and time to live (TTL).
With server invalidation, the server sends a report upon each
update to the client. Two examples are the Piggyback server
invalidation and the Invalidation report mechanisms. In
client polling, like the Piggyback cache validation of a
validation request is initiated according to a schedule. If the
copy is up to date, the server informs the client that the data
have not been modified; else the update is sent to the client.
Finally, with TTL algorithms, a server-assigned TTL value
(e.g., T) is stored alongside each data item d in the cache.
The data d are considered valid until T time units pass since
the cache update. Usually, the first request for d submitted
by a client after the TTL expiration will be treated as a miss
and will cause a trip to the server to fetch a fresh copy of d.
Many algorithms were proposed to determine TTL values,
including the fixed TTL approach, adaptive TTL, and
Squid’s LM-factor. TTL-based consistency algorithms are
popular due to their simplicity, sufficiently good
performance, and flexibility to assign TTL values for
individual data items. However, TTL-based algorithms, like
client polling algorithms, are weakly consistent, in contrast

to server invalidation schemes that are generally strongly
consistent. According to, with strong consistency
algorithms, users are served strictly fresh data items, while
with weak algorithms, there is a possibility that users may
get inconsistent (stale) copies of the data.

Table 1: Packets used in COACS after Integrating SSUM

into it

This work describes a server-based scheme implemented on
top of the COACS caching architecture we proposed in In
COACS, elected query directory (QD) nodes cache
submitted queries and use them as indexes consistency
strategy, the system described in this paper fills that void
and adds several improvements: 1) enabling the server to be
aware of the cache distribution in the MANET, 2) making
the cached data items consistent with their version at the
server, and 3) adapting the cache update process to the data
update rate at the server relative to the request rate by the
clients. With these changes, the overall design provides a
complete caching system in which the server sends to the
client’s selective updates that adapt to their needs and
reduces the average query response time.

Paper ID: 02013322 182

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Volume 2 Issue 10, October 2013
www.ijsr.net

2. Smart Server Update Mechanism (SSUM)

SSUM is a server-based approach that avoids many issues
associated with push-based cache consistency approaches.
Specifically, traditional server-based schemes are not
usually aware of what data items are currently cached, as
they might have been replaced or deleted from the network
due to node disconnections. Also, if the server data update
rate is high relative to the nodes request rate, unnecessary
network traffic would be generated, which could increase
packet dropout rate and cause longer delays in answering
node queries. SSUM reduces wireless traffic by tuning the
cache update rate to the request rate for the cached data.

2.1 Basic Operations

Before detailing the operations of SSUM, we list in Table 1
the messages used in the COACS architecture as we refer to
them in the paper. Given that no consistency mechanism
was implemented in COACS, it was necessary to introduce
four additional messages. In SSUM, the server
autonomously sends data updates to the CNs, meaning that it
has to keep track of which CNs cache which data items. This
can be done using a simple table in which an entry consists
of the id of a data item (or query) and the address of the CN
that caches the data. A node that desires a data item sends its
request to its nearest QD. If this QD finds the query in its
cache, it forwards the request to the CN caching the Item,
which, in turn, sends the item to the requesting node (RN).
Otherwise, it forwards it to its nearest QD, which has not
received the request yet. If the request traverses all QDs
without being found, a miss occurs and it gets forwarded to
the server which sends the data item to the RN. In the latter
case, after the RN receives the confirmation from the last
traversed QD that it has cached the query, it becomes a CN
for this data item and associates the address of this QD with
the item and then sends a Server Cache Update Packet
(SCUP) to the server, which, in turn, adds the CN’s address
to the data item in its memory. This setup allows the server
to send updates to the CNs directly whenever the data items
are updated. Fig. 1 illustrates few data request and update
scenarios that are described below. In the figure, the
requesting nodes (RNs) submit queries to their nearest QDs,
as shown in the cases of RN1, RN2, and RN3. The query of
RN1 was found in QD1, and so the latter forwarded the
request to CN1, which returned the data directly to the RN.
However, the query of RN2 was not found in any of the
QDs, which prompted the last searched (QD1) to forward
the request to the server, which, in turn, replied to RN2 that
became a CN for this data afterward. The figure also shows
data updates (key data pairs) sent from the server to some of
the CNs.

Figure 1: Scenarios for requesting and getting data in the

COACS architecture.

2.2 Dealing with Query Replacements and Node
Disconnections

A potential issue concerns the server sending the CN
updates for data that have been deleted (replaced), or
sending the data out to a CN that has gone offline. To avoid
this and reduce network traffic, cache updates can be
stopped by sending the server Remove Update Entry Packets
(RUEPs). This could occur in several scenarios. For
example, if a CN leaves the network, the QD, which first
tries to forward it a request and fails, will set the addresses
of all queries whose items are cached by this unreachable
CN in its cache to 1, and sends an RUEP to the server
containing the IDs of these queries. The server, in turn,
changes the address of that CN in its cache to 1 and stops
sending updates for these items. Later, if another node A
requests and then caches one of these items, the server, upon
receiving an SCUP from A, will associate A with this data
item. Also, if a CN runs out of space when trying to cache a
new item in, it applies a replacement mechanism to replace
id within and instructs the QD that caches the query
associated with id to delete its entry. This causes the QD to
send an RUEP to the server to stop sending updates for id in
the future. If a caching node CNd returns to the MANET
after disconnecting, it sends a Cache Invalidation Check
Packet (CICP) to each QD that caches queries associated
with items held by this CN. A QD that receives a CICP
checks for each item to see if it is cached by another node
and then sends a Cache Invalidation Reply Packet (CIRP) to
CNd containing all items not cached by other nodes. CNd
then deletes from its cache those items who’s IDs are not in
the CIRP but were in the CICP. After receiving a CIRP from
all QDs to which it sent a CICP and deleting nonessential
data items from its cache, CNd sends a CICP containing the
IDs of all queries with data remaining in its cache to the
server along with their versions. In the meanwhile, if CNd
receives a request from a QD for an item in its cache, it adds
the request to a waiting list. The server then creates a CIRP
and includes in it fresh copies of the outdated items and
sends it to CNd, which, in turn, updates its cache and
answers all pending requests. Finally, QD disconnections
and reconnections do not alter the cache of the CNs, and
hence, the pointers that the server holds to the CNs remain
valid.

Paper ID: 02013322 183

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Volume 2 Issue 10, October 2013
www.ijsr.net

Figure 2: Detailed operations of the entities of SSUM using

pseudo code.

3. Analysis

We evaluate our scheme in terms of bandwidth and query
response time gains. These are the differences between the
corresponding measures when no cache updating is in place
and when SSUM is employed. Requests for data in the ad
hoc network and data updates at the server are assumed to be
random processes and may be represented by exponential
random variables and we use λR to denote the rate of
requests and λU the rate of updates. The probability density
functions of requests and updates are thus given:

PR(t)=λRe- λRt,PU(t)= λUe- λUt

Both the bandwidth gain Gb and response time gain Gt
are influenced by the number of data requests issued
by requesting nodes relative to the number of data
updates that occur at the server. In the remainder of the
paper, we refer to no cache updating as NCU.

We now consider two cases: λU /λR < 1 (C1) and λU/λR
≥ 1

(C2). C2, in turn, compr i ses two scenarios: after
λU/λR ≥ τ and then while λU /λR ≥γ (C2S2), where
updates are suspended by the server, and the remaining
scenario (C2S1), where updates are sent by the server
(illustrated in Fig. 3).

Figure 3: Illustration of the behavior of SSUM as λU

=λR changes (λR is shown fixed).

4. Performance Evaluation

We used the ns2 software to implement the SSUM
system, and to also simulate the Updated Invalidation
Report (UIR) mechanism [10] in addition to a version
of it that is implemented on top of COACS so t h a t a
presumably fairer comparison with SSUM is done. To
start with, we list the default values of the main
simulation parameters in Table 2

Table 2: Summary of Simulation Parameters’ Values

4.1 Network and Cache Simulation Parameters

A single database server is connected to the wireless
network through a fixed access point, while the mobile
nodes are randomly distributed. The client cache size was
fixed to 200 Kb, meaning that a CN can cache between 20
and 200 items, while the QD cache size was set to 300 Kb,
and therefore, a QD can cache about 600 queries. We used
the least recently used (LRU) cache replacement policy
when the cache is full and a data item needs to be cached.
Each scenario started with electing one QD, but more were
elected when space was needed. Each scenario lasted for
2,000 seconds and repeated 10 times with the seed of the
simulation set to a new value each time, and the final result

Paper ID: 02013322 184

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Volume 2 Issue 10, October 2013
www.ijsr.net

was taken as the average of the 10 runs.

The SSUM system was implemented as a new C++ agent in
ns2 that gets attached to the node class in the tcl code at
simulation runtime. This implementation includes a cache
class that defines and sets the needed data items as well as
the operations of the caching methods that were described.
Also, the routing protocols in ns2 were modified to process
the SSUM packets and to implement the functions of the
MDPF algorithm used for traversing the QD system. Other
changes to the ns2 C++ code included modifying the packet
header information which is used to control the cache update
process. After implementing the changes in the C++ code,
tcl scripts were written to run the various described
scenarios.

4.2 The Query Model Parameters

The client query model was chosen such that each node in
the network generates a new request every Tq seconds.
When the simulation starts, each node generates a new
request, and after Tq seconds, it checks if it has not received
a response for the request it generated in which case, it
discards it and generates a new request. We chose a default
value for Tq equal to 20 seconds, but in order to examine the
effect of the request rate on the system performance, we
simulated several scenarios with various request rates. The
process of generating a new request followed a Zipf-like
access pattern, which has been used frequently to model
non-uniform distributions. In Zipf law, an item ranked
where ranges between 0 (uniform distribution) and 1(strict
Zipf distribution). The default value of the zipf parameter
was set to 0.5.Every second; the server updates a number of
randomly chosen data items, equal to a default value of 20.
The default values of and was set to 1.25 and 0.75,
respectively, while the default number of node
disconnections is 1 every two minutes with a period of 10
seconds, after which the node returns to the network.
However, in the experiments that we present below, the
above parameters’ values are varied to study their effects on
performance.

4.3 Data and Overhead Traffic

In this set of experiments, we separated the produced traffic
into data traffic, which includes the requests plus forwarding
and reply packets, and overhead traffic generated by CSP,
CIP, SCUP, CICP, CIRP, and update packets. The graphs in
Fig.4 show that the overhead traffic in SSUM makes up
between 2 and 25 percent of the total traffic when the
request rate is varied, and between 15 and 25 percent when
the data update rate is changed. In all, it is shown that
SSUM does not generally produce substantial overhead
traffic.

Figure 4: Data and overhead traffic of SSUM versus the

request and update rates.

4.4 System Considerations

We discuss in this section some considerations for the
implementation of SSUM that we derive f r o m the
system design and the simulation results. The major
limitation which we point out is that an implementation
of SSUM in a MANET where all nodes have short
battery lifetime will not be efficient since this will result in
frequent disconnections, and could lead to situations
where no more nodes are qualified for becoming QDs.
Hence, the requirement is that at any time, a portion of
the nodes in the network must have sufficient energy to
take on QD roles (in our simulations, the average
number of QD nodes considered was 7 out of 100
nodes). This requirement though should be satisfied in
most current MANETs since major technological
improvements have been made to mobile device
batteries, including those of cell phones. As an
example, a survey of some recent cell phone models,
including Nokia N86, Nokia N97, Sony Ericsson
XPERIA X2, and Samsung I8000 revealed an average
battery capacity of 430 hours in standby mode and 9
hours in talk time. Another issue is the network size.
Similar to most server-based consistency schemes,
SSUM will not be efficient in very large networks with
thousands of nodes, where routing paths from the
server to distant nodes could be lengthy, and more nodes
will disconnect from and reconnect to the network. In
these conditions, maintaining information about data
items at all caching nodes will be expensive for the server.
One of the possible solutions for such networks is the
implementation of clustering in the MANET a n d
adding more Access Points. Clustering can reduce
overhead at the server since cluster heads can be used to
represent the CNs within their clusters and act as single
points of contact with the server. Additional APs will
serve to reduce contention at the connections of the
MANET to the wired network.

5. Conclusion and Future Works

This paper, we presented a novel mechanism for
maintaining cache consistency in a Mobile Ad hoc
Network. Our approach was built on top of the COACS
architecture for caching data items in MANETs and
searching for them. We analyzed the performance of
the system through a gain- loss mathematical model
and then evaluated it while comparing it with the
U p d a t e d Invalidation Report mechanism. The
presented results illustrated the advantage of our
proposed system in most scenarios SSUM did not
implement cache replication: Only one copy of the
version at the server is maintained in the MANET. By
adding replication to the design, the query delay is
expected to go down but the overhead cost will surely
go up. Need a tight security scheme. It is important
that the nodes trust each other. Also, since QDs are the
central component of the system, they could be the
target of malicious attacks. Node is to be considered a
candidate QD must have a high enough trust value

References

[1] S. Acharya, R. Alonso, M. Franklin, and S. Zdonik,

Paper ID: 02013322 185

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Volume 2 Issue 10, October 2013
www.ijsr.net

“Broadcast Disks: Data Management for Asymmetric
Communications Environments,” Proc. ACM SIGMOD,
pp. 199-210, May 1995.

[2] H. Artail, H. Safa, K. Mershad, Z. Abou-Atme, and
N. Sulieman, “COACS: A Cooperative and Adaptive
caching System for MANETS,” IEEE Trans. Mobile
Computing, vol. 7, no. 8, pp. 961- 977, Aug. 2008.

[3] H. Artail and K. Mershad, “MDPF: Minimum Distance
Packet Forwarding for Search Applications in Mobile
AdHoc Networks,” IEEE Trans. Mobile Computing,
vol. 8, no. 10, pp. 1412- 1426, Oct. 2009.

[4] O. Bahat and A. Makowski, “Measuring Consistency
in TTL based Caches,” Performance Evaluation, vol.
62, pp. 439-455, 2005.

[5] D. Barbara and T. Imielinski, “Sleepers and
Workaholics: Caching Strategies for Mobile
Environments,” Proc. ACM SIGMOD, pp. 1- 12, May
1994.

[6] C. Bettstetter and J. Eberspacher, “Hop Distances in
Homogeneous Ad Hoc Networks,” IEEE Proc. 57th
IEEE Semiann. Vehicular Technology Conf., vol. 4, pp.
2286-2290, Apr. 2003.

[7] N.A. Boudriga and M.S. Obaidat, “Fault and Intrusion
Tolerance in Wireless Ad Hoc Networks,” Proc. IEEE
Wireless Comm. And Networking Conf. (WCNC), vol.
4, pp. 2281-2286, 2005.

[8] Elmagarmid, J. Jing, A. Helal, and C. Lee,
“Scalable Cache Invalidation Algorithms for Mobile
DataAccess,” IEEE Trans. Knowledge and Data Eng.,
vol. 15, no. 6, pp. 1498-1511, Nov. 2003.

[9] H. Jin, J. Cao, and S. Feng, “A Selective Push
Algorithm for Cooperative Cache Consistency
Maintenance overMANETs,” Proc. Third IFIP Int’l
Conf. Embedded and Ubiquitous Computing, Dec.
2007.

[10] IEEE Standard 802.11, Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY)
Specification, IEEE, 1999.

[11] J. Jing, A. Elmagarmid, A. Helal, and R. Alonso, “Bit-
Sequences: An Adaptive Cache Invalidation Method
inMobile Client/Server Environments,” Mobile
Networks and Applications, vol. 15, no. 2, pp. 115-127,
1997.

[12] J. Jung, A.W. Berger, and H. Balakrishnan, “Modeling
TTL-Based Internet Caches,” Proc. IEEE INFOCOM,
Mar. 2003.

[13] X. Kai and Y. Lu, “Maintain Cache Consistency in
Mobile Database Using Dynamical Periodical
BroadcastingStrategy,” Proc. Second Int’l Conf.
Machine Learning and Cybernetics, pp. 2389- 2393,
2003.

[14] B. Krishnamurthy and C.E. Wills, “Piggyback Server
Invalidation for Proxy Cache Coherency,” Proc.
Seventh World Wide Web (WWW) Conf., Apr. 1998.

[15] B. Krishnamurthy and C.E. Wills, “Study of Piggyback
Cache Validation for Proxy Caches in the World Wide
Web,” Proc. USENIX Symp. Internet Technologies and
Systems, Dec. 1997.

[16] D. Li, P. Cao, and M. Dahlin, “WCIP: Web Cache
Invalidation Protocol,” IETF Internet Draft,
http://tools.ietf.org/html/draftdanli- wrec-wcip-01, Mar.
2001.

[17] W. Li, E. Chan, Y. Wang, and D. Chen, “Cache
Invalidation Strategies for Mobile Ad Hoc Networks,”

Proc. Int’l Conf. Parallel Processing, Sept. 2007.
[18] M.N. Lima, A.L. dos Santos, and G. Pujolle, “A

Survey of Survivability in Mobile Ad Hoc Networks,”
IEEE Comm. Surveys and Tutorials, vol. 11, no. 1, pp.
66-77, First Quarter 2009.

Paper ID: 02013322 186

