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Abstract: In this paper a modification of the classical Newton Method for solving nonlinear, univariate and unconstrained 
optimization problems based on the development of the new variants is presented. Moreover it focuses on the applications of the method 
for various means such as harmonic mean, Arithmetic mean, Geometric mean etc. Furthermore, numerical examples are discussed and 
the graphs of the results provided using MATLAB. 
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1. Introduction 

The celebrate Newton’s method is 

                                                             (1.1)                                                            

used to approximate the optimum of a function is one of the 
most fundamental tools in computational mathematics, 
Operation Research, Optimization and Control Theory. 
Here, the equation (1.1) can be extended for two variables 
and is given by 

                                 (1.2) 

                                                      
 The idea behind the Newton’s method is to 

approximate the objective function locally by a quadratic 
function which agrees with the function at a point. The 
process can be repeated at the point that optimizes the 
approximate function. 
 In this paper, an attempt is made to extend the results 
discussed for one variable as in [4] to two variables. The 
paper is organized as follows: Section 2 deals with variants 
of Newton’s method for nonlinear equations with two 
variables. The extension of this method for unconstrained 
optimization problems with two variables is provided in 
section 3. In section 4, some numerical examples are 
discussed to verify the feasibility of the proposed method. 
Finally, some concluding remarks are given at the last. 
 
2. Variants of Newton’s Method for Nonlinear 
Equations with two variables 
 

The modified Newton’s method provided for single 
variable [4] is extended for two variables and is given by 
 

                         (2.1) 

Where 

                                         (2.2) 

is the Newton’s iterate for two variables. 
 
3. Extension of the above Method for 
Unconstrained Optimization Problems with two 
variables 

 
The above method obtained for two variables shall 

be extended for the case of Unconstrained Optimization 
Problems with two variables. The procedure is provided 
below as in [4]: 

 Suppose that the function f(x,y) is a sufficiently 
differentiable function. Let  is an extremum 
point of f(x,y) then  is a root of 

 
 =0 & =0                                                   (3.1) 
 
Extending Newton’s theorem, we have 
 

                          (3.2)  

   
By the rectangular rule according to which 
 

                   (3.3)  

 
and using   we get 

                                     (3.4) 
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This is a well-known quadratically convergent 

Newton’s method for unconstrained optimization problems. 
By the trapezoidal approximation 
                  

            (3.5)                    

in combination with the approximation 

         (3.6) 

and ,  
we get the following arithmetic mean Newton’s method 
given by 

                               (3.7) 

for unconstrained optimization problems. This formula is 
also derived independently. 
 
If we use the midpoint rule of integration then we obtain a 
new formula given by 

       (3.8) 

This family may be called the -power mean iterative 
family of Newton’s method for unconstrained optimization 
problems. 
 
Various Cases: 
 

It is interesting to note that for different specific 
values of , various new methods can be deduced from 
Formula (3.8) as follows: 

 
i) For =1(arithmetric mean), Formula (3.8) corresponds to a 
cubically convergent arithmetic mean Newton’s method 

                                 (3.9) 

 
ii) For = -1 (harmonic mean), Formula (3.8) corresponds to 
a cubically convergent harmonic mean Newton’s method 

           (3.10) 

iii) For   (geometric mean), Formula (3.8) corresponds 
to a new cubically convergent geometric mean Newton’s 
method 

  (3.11) 

iv) For  =2, (root mean square) Formula (3.8) corresponds 
to a new cubically convergent root mean square Newton’s 
method 

        (3.12) 

Some other new third-order iterative methods based on 
centrodial mean, logarithmic mean etc, can also be obtained 
from Formula (3.6) respectively. 
 
v) New cubically convergent iteration method based on 
centroidal mean is 

      (3.13) 

vi) New cubically convergent iteration method based on 
logarithmic mean is 

   (3.14) 

As given by [2], this method can also be modified and is 
given by 

                                   (3.15) 

This overcomes the two main practical deficiencies 
of Newton’s method, namely, the need for analytic 
derivatives and the possible failure to converge to the 
solutions from poor starting points.  

 
4. Numerical Examples 
 
We shall present here the following numerical examples 

Table 1: Test Problems 
 

No. 
 

Examples 
 

Initial 
Guess 

 
Optimum 

points 
1 2 2x-y+2x +2xy+y  (0,0) (-1,1.5) 

2 3 3x -3xy+y  (1,2) (1,1) 

 
1. Output using the Formula (3.9) to (3.15) 
Enter the Initial Values for the x and y 
0 0 
Optimum values are: 
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x= -1.000000 
y= 1.500000 
 No of Iterations = 14 

 
2. Output using the Formula (3.9) to (3.15) 
Enter the Initial Values for the x and y 
1 2 
Optimum values are: 
x= 1.000000 
y= 1.000000 
 No of Iterations = 8 
 
The graphs of the result are obtained using MATLAB and 
are given below:  
 

 

  Figure 1. Testing data-optimum point 

  

  Figure 2. Testing data-optimum point 

5. Conclusion 
 
A nonlinear Newton’s method which takes into account 
information about the objective functions for solving 
unconstrained optimization problems is presented here. 
Numerical examples showed that all the methods studied in 
various cases are efficient. In future, we will consider ways 
to accelerate these methods and perform new convergence 
analyses on them. 
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