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Abstract: An introduction to Laplace Transform is the topic of this paper. It deals with what Laplace Transform is, and what is it 
actually used for. The definition of Laplace Transform and most of its important properties have been mentioned with detailed proofs. 
This paper also includes a brief overview of Inverse Laplace Transform. A number a methods used to find the time domain function 
from its frequency domain equivalent have been explained with detailed explanations. It also includes the formulation of Laplace 
Transform of certain special function like the Heaviside’s Unit Step Function and the Dirac Delta Function. A few practical life 
applications of Laplace Transform have also been stated. 
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1. Introduction 
This paper deals with a brief overview of what Laplace 
Transform is and its application in the industry. The 
Laplace Transform is a specific type of integral transform. 
Considering a function f (t), its corresponding Laplace 
Transform will be denoted as L[f(t)], where L is the 
operator operated on the time domain function f(t). The 
Laplace Transform of a function results in a new function 
of complex frequency s. Like the Fourier Transform, the 
Laplace Transform is also used in solving differential and 
integral equations. It is also predominantly used in the 
analysis of transient events in the electrical circuits where 
frequency domain analysis is used. 

2. Definition of Laplace Transform 
Consider a function of time f(t). If this function satisfies 
certain conditions and the if the integral, 

∅(�) = � �����(�)�� 
�

�
       

Exists, then ∅(�) represents the Laplace Transform of f(t), 
i.e.  

�[�(�)] = � �����(�)�� 
�

�
       … (1) 

3. Properties and Theorems of Laplace 
Transform 

3.1 Linearity Property 

If �� and �� are constants, then, 
�[����(�) + ����(�)]

= �� �[��(�)] + �� �[��(�)]       … (2) 

3.2 Change of Scale Property 

A linear multiplication or division of a constant with the 
variable is known as scaling. Thus, if �[�(�)] = ∅(�), 
then by change of scale property, 

�[�(��)] =
1
�

∅ �
�
�

�       … (3) 

3.3 First Shifting Theorem 

The First Shifting Theorem of Laplace Transform states 
that if �[�(�)] = ∅(�), then 

�[�����(�)] = ∅(� + �)      … (4) 

Proof    By definition,  

�[�����(�)] = � ����� �����(�) ���
�

�
 

                 =  � ��(���)��(�)�� �
�  

∴ �[�����(�)] = ∅(� + �)     

3.4 Second Shifting Theorem 

The Second Shifting Theorem of Laplace Transform states 
that if �[�(�)] = ∅(�), then the Laplace Transform of the 
following function, 

�(�) = �(� − �)   �ℎ�� � > � 

= 0        �ℎ�� � < � 

Is expressed as 
�[�(�)] = ���� ∅(�)      … (5) 

Proof    By definition, �[�(�)] = � �����(�)���
�  

= � ����
�

�
�(�)�� + � �����(�)��

�

�
 

= 0 + � �����(� − �)��                  
�

�
  

Now put     � − � = �,    ∴ �� = �� 

∴ �[�(�)] =  � ���(���)�(�)��
�

�
 

                    = ���� � �����(�)��
�

�
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                  = ���� � �����(�)��
�

�
 

∴ �[�(�)] = ���� ∅(�) 

3.5 Multiplication of powers of the variable 

The variable that has been used so far is‘t’. Thus, if we 
multiply powers of t with the original function f (t), the 
Laplace transform can be expressed as 

�[���(�)] = (−1)� ��

���  ∅(�)      … (6) 

Proof        This result can be proved by the use of 
Mathematical Induction. 
Step 1 To prove that the result is true when n=1. 
Let  �[�(�)] = ∅(�) = � �����(�)���

�  

Differentiating with respect to x and applying the rule of 
differentiation under the integral sign, 

∅�(�) = �
�

��
[

�

�
�����(�)��]         

= − � ���� � �(�)��
�

�
 

= −�[��(�)]                 

∴ �[��(�)] = (−1)
�

��
 ∅(�)  

Which proves the result for n=1. 
 
Step 2 Since the result holds true for n=1, it can be 
assumed that the result is true when n is any natural 
number ‘k’. 

∴ �[���(�)] = (−1)� ��

���  ∅(�) 

Step 3 To prove that the result holds true when n=k+1. 
From Step 2,  

(−1)� ��

���  ∅(�) = �[���(�)] = � ���� �� �(�)��
�

�
 

Differentiating with respect to x and applying the rule of 
differentiation under the integral sign, 

(−1)� ����

�����  ∅(�)

= �
�

��
[

�

�
���� �� �(�)��]                                   

= − � ���� ���� �(�)��
�

�
 

= −�[���� �(�)]                 

∴ �[���� �(�)] = (−1)���  
����

�����  ∅(�) 

Which proves the result for n=k+1. 
 

Thus, by the rule of Mathematical Induction, it can be said 
that the result is true for any value of n. 
 
3.6 Division of variable 

If �[�(�)] = ∅(�), then the Laplace Transform when the 
function is divided by the variable can be expressed as, 

� �
1
�

 �(�)� = � ∅(�)��
�

�
       … (7) 

Proof        By definition, ∅(�) = � �����(�)���
�  

Integrating both sides with respect to s between the limits 
s to ∞ and then changing the order of integration on the 
RHS, 

� ∅(�)��
�

�
= � �� �����(�)��

�

�
�  ��

�

�
      

= � [
����

−�
�(�)]�

�
�

�
�� 

= � ���� �(�)
�

��
�

�
 

= � �
1
�

 �(�)�            

∴ � �
1
�

 �(�)� = � ∅(�)��
�

�
 

4. Laplace Transform of Derivatives 
Let f (t) be the time domain function. The Laplace 
Transform of its derivative can be expressed as  
 

�[��(�)] = ��[�(�)] − �(0)      … (8) 

Proof        By definition, �[��(�)] = � ���� ��(�)���
�  

Integrating by parts, 

�[��(�)] = [�����(�)]�
� − � (−�)�����(�)��

�

�
 

= �(0) + � � �����(�)��
�

�
 

∴ �[��(�)] = ��[�(�)] − �(0)                                    

Differentiating equation (8) again with respect to variable 
t, 
 

�[���(�)] = ���[�(�)] − � �(0) − ��(0) 

Thus, in general, the ��� derivative can be expressed as, 
 
�[��(�)] = ���[�(�)]−……………. − ������(0) − �����(0)

− ����(0)      … (9) 

The above mentioned results are put to incredible use in 
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solving Differential Equations. 

5. Laplace Transform of Integrals 
When the time domain function is integrated, its Laplace 
Transform can be expressed as, 
 

� �� �(�)��
�

�
� =

1
�

 ∅(�)      … (10) 

Proof        By definition, 

 � �� �(�)���
� � = � ����  �� �(�)���

� �  ���
� . Integrating by 

parts, 

= [� �(�)��
�

�
 �−

����

�
�]�

�

− � ��−
����

�
�

�
��

� �(�)��
�

�
� 

�

�
 

���  
�
��

� �(�)��
�

�
= �(�) 

∴ � �� �(�)��
�

�
� = �

1
�

 �����(�)�� 
�

�
                 

=
1
�

 �[�(�)] 

∴ � �� �(�)��
�

�
� =

1
�

 ∅(�)                                      

The above mentioned result can be generalized as, 
 

� �� � … … … …
�

�
� �(�) (��)�

�

�

�

�
�

=
1

�� �[�(�)]       … (11) 

6. Inverse Laplace Transform 
6.1 Definition 

If �[�(�)] = ∅(�) = � �����(�)���
� , then f (t) is called the 

Inverse Laplace Transform of ∅(�). It can be denoted as, 

��� ∅(�) = �(�)      … (12) 

Thus, the frequency domain function ∅(�) can be 
converted to its corresponding time domain equivalent f 
(t) using the Laplace Inverse operator (���). 

7. Different methods of obtaining Inverse 
Laplace Transform 

There are numerous ways to obtain the Inverse Laplace 
Transform of a given frequency domain function. The 
choice of the method employed in solving a problem on 
Inverse Laplace Transform depends on the nature and 
structure of the problem itself. Often it would be noted 

that a single problem can be solved by multiple methods. 
A few methods have been explained below. 
 
7.1 Using Standard Results 

A few standard results which can be used to find the 
inverse Laplace Transform have been tabulated below. 
These results can be easily proven using the standard 
definitions as mentioned in equations (1) and (12). 
 

Table 1 

Frequency Domain Function Inverse Laplace Transform 

1
�

 ��� �
1
�

� = 1 

1
� + �

 ��� �
1

� + �
� = ���� 

1
� − �

 ��� �
1

� − �
� = ���  

1
�� ��� �

1
��� =

����

Γn
 

1
�� + �� ��� �

1
�� + ��� =

1
�

sin ��  

�
�� + �� ��� �

�
�� + ��� = cos �� 

1
�� − �� ��� �

1
�� − ��� =

1
�

sinh �� 

�
�� − �� ��� �

�
�� − ��� = cosh �� 

 
7.2 Using First Shifting Theorem 
As seen in equation (4), the First Shifting Theorem can be 
expressed as, 
 

�[�����(�)] = ∅(� + �)     

This means that if �(�) = ���[ ∅(�) ], then, 
���[ ∅(� + �) ] = �����(�) 

���[ ∅(� + �) ] = �������[∅(�)]       … (13) 

7.3 Use of Partial Fractions 

Whenever possible, it is always easier to solve a problem 
on Inverse Laplace Transform by expressing the given 
function ∅(�) into a sum of linear or quadratic partial 
fraction as, 
 
∅(�) = �

(���)� + ����
(�����)� , and then use standard results 

given in table 1 to find corresponding Inverse Laplace 
Transform. 
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7.4 Using Change of Scale Property 

From equation 3, the change of scale property can be 
expressed as, 
 

�[�(��)] =
1
�

∅ �
�
�

� 

Thus if �(�) = ���[ ∅(�) ], taking Inverse Laplace 
Transform, 

��� �
1
�

∅ �
�
�

�� = �(��)      … (14) 

7.5 Convolution Theorem 

7.5.1 Definition 

If ��(�) and ��(�) are two functions, then the following 
integral 
 

� ��(�)��(� − �)��
�

�
 

Is called the convolution of ��(�) and ��(�) and is denoted 
as ��(�) * ��(�) 

∴ ��(�) ∗ ��(�) = � ��(�)��(� − �)��
�

�
       … (15) 

7.5.2 Theorem 

Let �[��(�)] = ∅�(�) and �[��(�)] = ∅�(�), then, 

���[∅�(�) ∅�(�)] = � ��(�)��(� − �)��
�

�
       … (16) 

Where ��(�) = ���[∅�(�)] and  ��(�) = ���[∅�(�)] 

7.6 Using Differentiation of ∅(�) 

If �[�(�)] = ∅(�), then using n=1 in equation 6, 
 

�[� �(�)] = −∅�(�)                               

∴ � �(�) = − ���[∅�(�)]                  

∴ � ���[∅(�)] = − ���[∅�(�)]                            

∴ ���[∅(�)] = −
1
�

���[∅�(�)]       … (17) 

This method is particularly used to find the Inverse 
Laplace Transform of functions having tan�� �, cot�� � 
and log � terms. 
 
7.7 Using Integration of f (t) 

Equation (10) gives us the result of the Laplace Transform 
when the function f (t) is integrated as shown, 
 

� �� �(�)��
�

�
� =

1
�

 ∅(�) 

∴ � �(�)��
�

�
= ��� �

1
�

 ∅(�)� 

But by definition, �(�) = ���[∅(�)] 

∴ ��� �
1
�

 ∅(�)� = � ���[∅(�)]��
�

�
       … (18) 

8. Laplace Transform of Periodic Functions 
Considering f (t) to be a periodic function with period a, 
it’s Laplace Transform can be expressed as, 
 

�[�(�)] =
1

1 − ����  � �����(�)��
�

�
       … (19) 

Proof        Since f (t) is periodic with period a, �(�) =
�(� + �) = �(� + 2�) = ⋯ and so on. 

�[�(�)] = � �����(�)��
�

�

= � �����(�)��
�

�
+ � �����(�)��

��

�
+ ⋯ ∞ 

Now � �����(�)����
� =  � ���(���)�(� + �)���

�  
where� = � + � 

= ���� � �����(� + �)��
�

�
                                         

= ���� � �����(� + �)��
�

�
                                           

= ���� � �����(�)��
�

�
       ����� �(� + �) = �(�) 

Similarly, the next integral can be proved as  

����� � �����(�)���
�  and so on with all further integrals. 

�[�(�)] = [1 + ���� + ����� + ⋯ ∞] � �����(�)��
�

�
 

∴ �[�(�)] =
1

1 − ����  � �����(�)��
�

�
 

9. Heaviside’s Unit Step Function 
Heaviside’s Unit Step Function can have only two 
possible values either 0 or 1. It can be defined as, 
 

�(�) = �0, � < 0
1, � ≥ 0

  

The function takes a jump of unit magnitude at x=0. 
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Taking the Laplace transform of the above function,  
 

�[�(�)] = � �����(�)��
�

�
 

∴ �[�(�)] = � ������
�

�
             

= �[1]   

∴ �[�(�)] =
1
�

       … (20) 

9.1 Displaced Unit Step Function 

If the origin is shifted to t=a, i.e. if the function is zero 
before t=a, and takes a jump of unit magnitude at t=a, then 
the function is called the Displaced Unit Step Function. 
 

�(� − �) = �0, � < �
1, � ≥ �

  

Thus, instead of taking a jump at t=0, the function now 
takes a jump of unit magnitude at t=a, and its Laplace 
Transform can be expressed as, 
 

�[�(� − �)] = � �����(� − �)��                     
�

�
     

= � 0 ��
�

�
+ � ������

�

�
 

= [−
����

�
]�

�                    

∴ �[�(� − �)] =
����

�
                                          … (21) 

9.2 Effect of Multiplication of �(� − �) 

Often in practical applications it is required to find the 
Laplace Transform when the time domain function itself is 
multiplied with the Unit Step Function, i.e. the function 
will be defined as, 
 

�(�)�(� − �) = �0,              � < �
�(�), � ≥ �

  

Taking the Laplace Transform of the above function, 
 

�[�(�)�(� − �)] = � �����(�)�(�
�

�
− �)                                       

= � 0 ��
�

�
+ � �����(�)��

�

�
 

Now, let � − � = �.          ∴ �� = ��. 
When t=a, u=0.    When t=∞, u=∞. 

∴ �[�(�)�(� − �)]

= � ���(���)�(�
�

�
+ �)��                                 

= ���� � �����(� + �)��
�

�
 

= ���� � �����(� + �)��
�

�
    

∴ �[�(�)�(� − �)]
= ���� �[�(�
+ �)]                                       … (22) 

In a specific case where a=0, 
 

∴ �[�(�)�(�)] = �[�(�)] 

10. Dirac Delta Function (Unit Impulse 
Function) 

                           F(t) 

 

 

 

                                                  1/� 

 

                               0                                        

                                                       �           � + �      �        

The function represented by the figure can be defined as, 
 

�(�) = �

0,                           � < �
1
�

, � ≤ � ≤ � + �

0,                   � > � + �

  

As � → 0, the function F(t) tends to infinity at a, and is 
zero everywhere else. But the integral of F(t) is unity. 
Thus, the integral lim�→� � �(�)�� �

�  (= 1), represents a 
unit impulse at � = �. Hence the limiting form of F(t) as 
� → 0, is called as the Unit Impulse Function or the Dirac 
Delta Function and is denoted by �(� − �). 
 

�(� − �) = lim
�→�

�(�) 

10.1 Laplace Transform of Dirac Delta Function 

Taking the Laplace Transform of F (t) defined earlier, 

�[�(�)] = � �����(�)
�

�
��              
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=
1
�

� ������
���

�
 

=
1
�

[
����

−�
]�

���      

=
1
�

���� �
1 − ����

�
� 

∴ �[�(� − �)] = lim
�→�

�[�(�)]                                              

=
1
�

���� lim
�→�

�
1 − ����

�
� 

∴ �[�(� − �)] = ����                                             … (23) 

If a=0, then �[�(�)] = 1. 

11. Applications 
Laplace Transforms are put to incredible amount of use in 
solving differential equations and in circuit analysis which 
involves the components like resistors, inductors and 
capacitors. Most often, during circuit analysis, the time 
domain equations are first written and then Laplace 
Transform of the time domain equation is taken to convert 
it to its frequency domain equivalent. However, it is also 
possible to convert the circuit impedance into its 
frequency domain equivalent and then proceed, both of 
which produce the same result. 

12. Conclusion 
This paper thus, consisted of a brief overview of what 
Laplace Transform is, and what is it used for. The primary 
use of Laplace Transform of converting a time domain 
function into its frequency domain equivalent was also 
discussed. Major properties of Laplace Transform and a 
few special functions like the Heaviside’s Unit Step 
Function and Dirac Delta Functions were also discussed in 
detail. It also included a detailed explanation of Inverse 
Laplace Transform and the various methods that can be 
employed in finding the Inverse Laplace Transform. It 
goes without saying that Laplace Transform is put to 
tremendous use in many branches of Applied Sciences. 
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