
International Journal of Science and Research (IJSR), India Online ISSN: 2319‐7064

Volume 2 Issue 1, January 2013
www.ijsr.net

High Level Synthesis Scheduling with Evolutionary
Programming

Shilpa Gundagi1, Sangamesh2

1Asst Professor, Department of Electronics & Communication, SMSMPITR
Akluj-413118, Maharashtra, India

ssgundagi@gmail.com

2Department of Electronics & Communication, Dr Ambedkar Institute of Technology
Bangalore, Karnataka, India
sangameshvs88@gmail.com

Abstract: Time as a constraint finding the optimal solution of scheduling in High level synthesis using Evolutionary Programming.
Because of pressure of designing high performance chip may be in terms of the cost or speed scheduling plays very important role,
without proper scheduling it is nearly impossible to meet the desired objective with the current challenge and the complexity of the
circuit there is a very important requirement of automated tool which could deliver the optimal solution. In this regard rather than
applying the conventional method it is always better to apply the algorithms which are nature inspired. Hence genetic algorithms opted
for this purpose.

Keywords: ASAP, ALAP, Time constraints, ILP, Evolutionary Algorithms.

1. Introduction

Scheduling is an inherent part of high-level synthesis and it
is very necessary to satisfy the various objectives associated
with chip designing. So whenever there is a chip design
process, scheduling is one of the integral part of the design
and optimal scheduling for that required design has to be
carried out.

Time-constrained scheduling is important for designs
targeted towards applications in a real-time system. For
example, in many digital signal processing (DSP) systems,
the sampling rate of the input data stream dictates the
maximum time allowed for carrying out a DSP algorithm on
the present data sample before the next sample arrives.
Since the sampling rate is fixed, the main objective is to
minimize the cost of the hard-ware. Given the control step
length, the sampling rate can be expressed in terms of the
number of control steps that are required for executing a
DSP algorithm.

Given a data flow graph, the scheduling problem is to assign
each operation in the DFG to a control step under certain
constraints. Any assignment that is feasible under these
constraints is a valid schedule. Out of possible valid
schedules the goal is to find one that optimizes a given
objective function. An immediate objective function for any
scheduling algorithm is the length of the schedule or the
latency. In addition, depending on the specific context in
which the scheduler is used, other components are
incorporated into the objective function. Objectives such as
power and register usage have been incorporated into
scheduling algorithms.

The control and data flow graphs depict the inherent
parallelism in a design, based on which, each node could be
assigned a range of control steps. Most of the scheduling
algorithms require the earliest and the latest bounds that
define the range of control steps for each node in the CDFG.

Two simple schemes that are widely used to determine
these bounds are called the As Soon As Possible (ASAP)
and the As Late as Possible (ALAP) algorithms. The ASAP
algorithm begins with scheduling the initial nodes, i.e.
nodes without any predecessors, in the first time step, and
assigns the time steps in increasing order as it proceeds
downwards. The ALAP algorithm is analogous to the ASAP
scheme, except that the operations here are intentionally
postponed to the latest possible control step. The algorithm
begins at the bottom of the CDFG, i.e., with nodes that have
no successors, and proceeds upwards to nodes that have no
predecessors. ASAP is to schedule an operation in a clock
cycle as soon as all its predecessor operations are scheduled.
ALAP is to schedule an operation in a clock cycle, if all its
successor operations are scheduled.

A DFG Example

355

International Journal of Science and Research (IJSR), India Online ISSN: 2319‐7064

Volume 2 Issue 1, January 2013
www.ijsr.net

ASAP Scheduled DFG

Related Work

Early in behavioral synthesis focused on constructive
approaches as in force directed scheduling [4], [5]. These
approaches being greedy are vulnerable to local minima.
Transformational approaches on the other hand, start with an
initial schedule and apply transformations to improve the
initial solution. However, the quality of the solutions largely
depends on the transformations used and the heuristics used
to select between applicable transformations [3].

Mathematical approaches formulate the synthesis problem
using Integer Linear Programming approach or some other
mathematical optimization tool such as game theory. A
technique for simultaneously scheduling and binding a DFG
using Integer Linear Programming (ILP) is described in [7].
The precedence and time constraints are built into the ILP
formulation. The cost function is evaluated based on signal
statistics of the inputs obtained through a onetime
simulation. The technique suffers from the drawback that
ILP methods do not scale well for large circuits and may
have to be combined with some heuristics. A game-theoretic
approach for power optimization of a scheduled DFG is
described in [8]. The functional units are modeled as bidders
for the operations in the DFG with Power Consumption as
the cost. The algorithm does not scale well for larger number
of functional units since the complexity increases
exponentially as the number of players (bidders).

2. Integer Linear Programming (Ilp)
Formulation of Scheduling as a Constraint
Optimization

In integer linear programming ILP is used to formulate the
feasible scheduling problem. To illustrate the ILP
formulations for scheduling, the data flow graph in Fig. is
used in the following. The start time of every operation is
bound by the result of ASAP and ALAP scheduling. Let
Nm, Na, Ns and Nc be the number of multipliers, adders,
subtractions and comparators, respectively.

The problem of the scheduling transforms as problem of
constraint optimization where there is an objective function
which will take care of the number of required resources
along with the types of the resources, so that the cost of the
solution could be minimum. Along with that depends upon
three different types of constraints.
 Given by the ASAP & ALAP.
 Given by the required resources in a cycle.
 To satisfy successor and predecessor constraint.

 Figure. DFG for ILP Algorithm

Minimize:
Cm*Nm+Ca*Na+Cs*Ns+Cc*Nc
Subject to: All operations must start only once i.e.
constraints from ASAP & ALAP.

X1, 1=1,
X2, 1=1,

X3, 1+X3, 2=1,
X4, 1+X4, 2+X4, 3=1,

X5, 2=1,
X6, 2+X6, 3=1,

X7, 3=1,
X8, 4=1,

X9, 2+X9, 3+X9, 4=1,
X10, 1+X10, 2+X10, 3=1,
X11, 2+X11, 3+X11, 4=1.

Then by resource constraints i.e. constraints with respect to
requirement of the resources in any cycle must be less than
or equal to the resource number in the cost function,

X1, 1+X2, 1+X3, 1+X4,1≤Nm,
X3, 2+X4, 2+X5, 2+X6, 2≤Nm,

X4, 3+X6, 3≤Nm,
X7, 3≤Ns,
X8, 4≤Ns,
X10, 1≤Na,

X9, 2+X10, 2≤Na,
X9, 3+X10, 3≤Na,

X9, 4≤Na,
X11, 2≤Nc,
X11, 3≤Nc,
X11, 4≤Nc.

Finally, data dependence relations i.e. this will have
predecessors and successors constraints in any case there
must be the minimum difference of one cycle between the
execution of the successor and predecessor modules,
represented by data flow graph, are,

X3, 1+2X3, 2-2X6, 2-3X6, 3≤-1,
X4, 1+2X4, 2+3X4, 3-2X9, 2-3X9, 3-4X9, 4≤-1,

X10, 1+2X10, 2+3X10, 3-2X11, 2-3X11, 3-4X11, 4≤-1,

Any solution which doesn’t satisfy the constraints is called
unfeasible solution; any solution which satisfies the
constraints is called feasible solution.

All possible feasible solution create one space i.e. called
feasible space, any solution from the feasible space which
satisfy the objective in optimal manner that is going to
consider as final solution.

3. Evolutionary Programming

Evolutionary Programming is one of the most important
research areas which uses ideas and gets inspiration from
natural evolution and adaptation. The main stream of
algorithm for evolutionary Programming is Genetic
Algorithms (GA’s). In nature, evolution is mostly
determined by natural selection or different individuals
competing for resources in the environment. Those
individuals that are better are more likely to survive and
propagate their genetic material. The encoding for genetic
information (genome) is done in a way that admits asexual
reproduction which results in offspring that are genetically
identical to the parent. Sexual reproduction allows some
exchange and re-ordering of chromosomes, producing

356

International Journal of Science and Research (IJSR), India Online ISSN: 2319‐7064

Volume 2 Issue 1, January 2013
www.ijsr.net

offspring that contain a combination of information from
each parent. This is the recombination operation, which is
often referred to as crossover because of the way strands of
chromosomes cross over during the exchange. The diversity
in the population is achieved by mutation. Evolutionary
algorithms are ubiquitous nowadays, having been success-
fully applied to numerous problems from different domains,
including optimization, automatic programming, machine
learning, operations research, bioinformatics, and social
systems. In many cases the mathematical function, which
describes the problem is not known and the values at certain
parameters are obtained from simulations.

Genetic algorithms are inspired by Darwin's theory about
evolution. Solution to a problem solved by genetic
algorithms is evolved. Genetic algorithm is the part of
evolutionary computation Genetic algorithms provides an
alternative to traditional optimization techniques by using
directed random searches to locate optimal solutions in
complex landscapes.

3.1 Working Process

1) Initially one random population defined (population
contains number of solutions).

2) Depends upon the objective the fitness function defined,
it means A mathematical function which define the
quality of solution on quantity manner. This will help to
make a comparative decision among the solution who
are good and who are bad.

3) From the population the two parents (solutions)
randomly selected, genetic operator called Crossover
applied; in cross over process we fuse the genetic
characteristics of parents, so objective of the cross over
is to produce offspring solution from the parent solution.

4) To maintain the Diversity another operator called
Mutation applied, as in the nature each and every entity
having some kind of the individuality or uniqueness, this
uniqueness come in random manner same way, in the
GA’s mutation provide some kind of arbitrary changing
in the offspring solution to maintain diversity.

5) The process will continue until the size of the solution is
not equal to the parent population size.

6) Fitness of parents and off springs can be defined using
the fitness function.

7) To create the next generation selection operator applied,
selection means that will be the part of next generation
among the parent and offspring population.

8) The best way to define selection is tournament selection,
in this for each solution number of opponents pick up
randomly, comparison made with respect to fitness
value higher fitness score 1, lower fitness score 0, in the
result each solution has one score value sort these score
value from minimum to maximum, right half score value
is taken and the corresponding solution will be the part
of next generation.

9) The whole process will continue until terminating
criteria will not satisfy.

10) Termination criteria: It can define in terms of iteration or
generation number.

11) Self termination: In this case solution itself determine
the time of termination this facility can achieve, if there
is no continuous improvement in the fitness value of the
best solution for N continuous generation.

12) Algorithm is started with a set of solutions (represented
by chromosomes) called population. Solutions from one
population are taken and used to form a new population.
This is motivated by a hope, that the new population will
be better than the old one. Solutions which are selected
to form new solutions (offspring) are selected according
to their fitness; the more suitable they are the more
chances they have to reproduce.

This is repeated until some condition (for example number
of populations or improvement of the best solution) is
satisfied.

4. Result

5. Implementation Details

ASAP is to schedule an operation in a clock cycle as soon as
all its predecessor operations are scheduled. The ALAP
assignment is performed as the latest possible control step
ALAP is to schedule an operation in a clock cycle, if all its
successor operations are scheduled.

357

International Journal of Science and Research (IJSR), India Online ISSN: 2319‐7064

Volume 2 Issue 1, January 2013
www.ijsr.net

6. Conclusion

Scheduling is very important step in high level synthesis, in
order to get very good performance as with given time we
use ASAP and ALAP algorithms these gives the start time
and end time for scheduling the given DFG. By using this
we define a programming method called Integer Linear
Programming (ILP) with respect to three types of
constraints.

1. Given by the ASAP & ALAP,
2. Given by the required resources in a cycle.
3. To satisfy successor and predecessor constraint.

To handle this, nature inspired algorithms namely GA has
been applied. Fundamental advantage with this approach is,
it generates the global solution even with major complexities
of the problem with the scheduling.

References

[1] http://www.obitko.com/tutorials/genetic-
algorithms/index.php

[2] Abraham, A., Evolutionary Computation, In: Handbook
for Measurement, Systems Design, Peter Sydenham and
Richard Thorn (Eds.), John Wiley and Sons Ltd.,
London, ISBN 0-470-02143-8, pp. 920–931, 2005.

[3] Vyas Krishnan and Srinivas Katkoori, “A Genetic
Algorithm for the Design Space Exploration of
Datapaths during High-Level Synthesis”, IEEE
Transactions on Evolutionary Computation, vol. 10, no.
3, June 2006.

[4] Sabih. H. Gerez, Algorithms for VLSI Design
Automation, John Wileyand Sons, June 2000

[5] K.Oyarna. And I<.Clhinori, “An LSI fiinct,ion syiit,
hesis system with a decision supporting system for its
specification ,” DA Syniposiunz ’94, pp.31- 36, 1994. (in
Japanese)

[6] X. Tang, T. Jiang, A. Jones and P. Banerjee,
"Behavioral Synthesis of Data Dominated Circuits for
Minimal Energy Implementation" in Proceedings of
VLSI 2005

[7] Ashok. K. Murugavel and Nagarajan Ranganathan, “A
Game Theoretic Approach For Power Optimization

358

