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Abstract: In this paper, we present the stability analysis of the mathematical model of Tuberculosis transmission dynamics based on 
SEI model. The analysis is derived from the principles of compartmental modeling showing the rates at which susceptible � move to 
latent class � and to the infectious class �. We used assumption and schematic presentation to get a system of three non-linear ordinary 
equations that govern the transmission of the disease guided by the work in [3] The steady state solution was computed and the basic 
reproduction number �� was obtained as �(���(���)�)

(���)(���) . A stability analysis was done and the disease free equilibrium is shown to be 

stable if �(���(���)�)
(���)(���) < 1 and unstable if�(���(���)�)

(���)(���) > 1. 
 
Keywords: Latent infection, Stability Analysis, Disease –free equilibrium, Reproduction number and non-linear ordinary equation. 
 

1. Introduction 
Tuberculosis (TB) remains a leading cause of infections 
mortality in the world despite many decade of study, the 
widespread availability of vaccine, an arsenal of anti-
microbial drugs and more recently, a highly visible world 
health organization (WHO) effort to promote unified global 
control strategy. It is responsible for approximately two 
million deaths each year. Recent data released by the health 
protection agency in 2000 shows that the overall global 
incidence of the disease in Africa and part of Eastern Europe 
and Asia�4�. 
 
Mathematical modeling has played a vital role in the 
formulation of TB control strategies and the establishment of 
interim goals for intervention programs. Most of these 
models are of the SIR class in which the host population is 
categorized by infection status as Susceptible, Infectious and 
Recovered. The principle attributes of this model is the rate 
at which the Susceptible leave the susceptible class and 
move into an infected category is a function of the number of 
infectious hosts in the population at any time � and is thus a 
non-linear term. Other transition such as the recovery of 
infectious individuals and the deaths are modeled as linear 
terms with constant coefficient. 
 
Tuberculosis is caused by infection with bacterium 
Mycobacterium tuberculosis�3�. The disease is airborne and 
so it is primarily transmitted through the respiratory route. 
Individuals with active disease many infect others if the 
airborne particles they produce when they talk, cough or 
sneeze or spit are inhaled by others [3]. Once infected, an 
individual enters a period of latency during which he exhibits 
no symptoms of the disease and is not infections to others. 
This latent period can be of extremely variable length of time 

and the great majority of those infected ie approximately 
90% will never have clinical tuberculosis. However, a small 
proportion of individual progress to disease relatively rapidly 
falling ill within months or several years after infection [3]. 
Others may be asymptomatically infected for decade before 
they become sick. Once ill and infection, individual may 
recover without treatment, may be cured with antibiotics or 
may die from the disease. Recovered individuals may relapse 
to disease or be re-infected.  
 
When the disease become active, 75% of the case involve 
infection in the lungs (pulmonary tuberculosis) and the 
symptoms at this level includes chest pain, coughing up of 
blood and prolonged cough for more than three weeks, 
systemic symptoms includes: fever, chills, night sweats, 
appetite loss, weight loss, pallor and fatigue [11]. In other 
25% of active cases, the infection moves from the lungs 
causing other kinds of TB, collectively denoted extra-
pulmonary tuberculosis. This occurs more commonly in 
immunosuppressed persons and young children.  
 
The main cause of tuberculosis, mycobacterium tuberculosis, 
is a small aerobic non-motile bacillus. High lipid content of 
this pathogen accounts for many its clinical characteristic. 
People with silicosis have an approximately 3-fold greater 
risk developing TB.  People with chronic renal failure and 
also hemodialysis have a risk for developing TB than 
persons without diabetes mellitus. Low body weight is 
associated with the risk of TB. 
Transmission can only occur from people with active-not-
latent TB. The probability of transmission from one person 
to another depends upon the number of infections droplets 
expelled by a carrier, the effectiveness of ventilation, the 
duration of exposure and the virulence of the mycobacterium 
tuberculosis strain. The chains of transmission can be broken 
by isolating people with active disease and starting effective 
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anti tuberculosis therapy. 
 
Tuberculosis prevention and control takes two parallel 
approaches. People with TB and their contacts are identified 
and then treated. Identification of infections often involves 
testing high-risk group for TB children are vaccinated to 
protect them from TB. No vaccine is available that provides 
reliable protection for adults [7]. 

2. Methodology 
Mathematical model have played a vital role in the 
formulation of TB control strategies and the establishment of 
interim goal for intervention programme. 
 
Our model is deterministic or compartmental SEI type model 
where the population is partitioned into classes based on the 
epidemiological state of individual and it is assumed that the 
population size in a compartment is differentiable with 
respect to time and that the epidemic process is deterministic. 
Hence, the TB transmissions dynamics between the 
compartments shall be described by a system of differential 
equation which shall be solved to obtain the disease free 
equilibrium state and the endemic equilibrium state. The 
stability analysis of the endemic equilibrium state shall be 
done using the reproduction number Ro while the disease 
free equilibrium state shall be earned out using the Routh-
Hurwitz theorem.  
 
2.1 Formulation of the Model 
 
First, we define our variable, parameters and then state the 
assumption before we present the model. 
 

Table 2.1: Description of Variables of the model 

Variables Interpretation 
�(�) The  number of susceptible individual at time �. 
�(�) The number of infections individual at time t.  
�(�) The number of latently infected individual at time �. 

 
Table 2.2: Description of Parameters of the model 

Parameters Interpretation 
� Contact rate (per person) 
� Removal or infection rate (per People) 
� Death rate=birth rate (per person) 

�� Birth rate 
�� Death rate (within susceptible population) 
�� Death rate (for the infective population) 
��  Disease rate 

� �⁄  Susceptible fraction 
� �⁄  Infective fraction 

�
1
� � Incidence rate 

� �⁄  Average contact period 
� ��  Average infection period 
� ��  Average death period 
�� Death rate (for the latent population) 

 
The following assumptions are considered for the 
formulation or construction of the model 

 
a. That all variable and rates are deterministic. That is, the 

value of any variable occurring in the model can be 
determined from its nature. 
 

b. That the population size in a class is differentiable with 
respect to time. In other words, there is no up 
predictable change for any variable in the model. 
 

c. That the population mixes homogeneously. That is, all 
susceptible individuals are equally likely to be infected 
by infections individuals in case of contact. 
 

d. That people in each class have equal natural death rate 
of �.  

 
2.2 Model Description 
Based on the SEI model, the population is partitioned into 
three classes namely: susceptible �(�), Latent �(�) and 
infection �(�) classes. The susceptible class of the population 
increases due to fact that people are born into the population 
at the rate of �� and become infected at the rate of � �

�
�. 

This component decreases due to the latent infection of 
individual at the rate �� �

�
� and due to death from natural 

causes at the rate of ��. The population of the latent class 
increases as a result of infection of individuals in the 
susceptible class at the rate of �� �

�
�. This class reduces as a 

result of death from natural causes at the rate of ��. The 
infections class increase from the proportion of those who 
are latent carrier at the rate of �� �

�
� and �� due to delay in 

developing disease by some people in the latent class. This 
class reduces due to death from natural causes at the rate of 
�� and the disease at the rate of ��. The model can 
schematically be presented as shown below. 
 

 
 

Figure 1: Schematic presentation of the model. 
 
2.3 The Model Equations 
 
Apply the assumption and the inter-relations between the 
variables, parameters and their meanings as described above, 
the mathematical model of Tuberculosis transmission 
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dynamics can be describe by the following differential 
equation. 
 
  ��

��
= �� − ��� + � �

�
��  

= �� − �� − � �
�

�  (2.1)  
��
��

= �
1
�

� − �(� + �)� + ��
1
�

�� 

 
                          = (1 − �)� �

�
� − (� + �)�   (2.2)  

 
��
��

= �
1
�

�(1 + �) + �� − ��� + ��� 

 
           = � �

�
�(1 + �) + �� − (� + �)�   (2.3) 

   
   
           �(�) = �(�) + �(�) + �(�).    (2.4) 
     

3. Stability Analysis of the model 
In this section, the model is analyzed to investigate the state 
of the disease free equilibrium. 
 
3.1 Analysis of the model equations 
 
To make population non dimensional, we divide each side of 
each equation by � and set    �(�) �(�)

�
, �(�) = �(�)

�
, �(�) =

�(�)
�

. Therefore in terms of the frequencies �, � ��� �, the 
system becomes 
 
            ��

��
= � − �� − ���    (3.1) 

   
             ��

��
= (1 − �)��� − (� + �)�   (3.2) 

    
              ��

��
= ���(1 + �) + �� − (� + �)�.    (3.3) 

   
 
3.2 Steady State Solution 
 
The steady state solution is often called the disease free 
equilibrium. The steady state infection gives the maximum 
number of susceptible who can be infected. Let �(�, �, �)  be 
the equilibrium point of the system described by the equation 
(3.1) – (3.3). At the equilibrium state, we have  ��

��
= ��

��
=

��
��

= 0 .  That is 
 
          � − �� − ���       (3.4)
      
         (1 − �)��� − (� + �)�    (3.5) 
     
       ���(1 + �) + �� − (� + �)�.    (3.6)  
 
In order to obtain the disease free equilibrium state as well as 
the endemic equilibrium state, we solve equation (3.4) – 
(3.5) simultaneously. For the disease free equilibrium state, 

both latently infectious class and the infectious class must be 
zero, we have 
 
        � − ��∗ − ��∗�∗ = 0     (3.7) 
  
        (1 − �)��∗�∗ − (� + �)�∗    (3.8) 
  
       ��∗�∗(1 + �) + ��∗ − (� + �)�∗.    (3.9) 
    
 
Where �∗ is the maximum number of susceptible, �∗ is the 
maximum latent population and �∗ is the maximum number 
of infected. From equation (3.8), we have 
 
(1 − �)��∗�∗ =  (� + �)�∗   
               �∗ = (���)�∗

(���)��∗
.       (3.10) 

    
 
From equation (3.8) and (3.9), we have  
 
                ��∗�∗ =  (���)�∗

���
    

��∗�∗ =  
(� + �)�∗ − ��∗

1 + �
   

Therefore 
 
                  (���)�∗���∗

���
=  (���)�∗

���
   

                  (���)�∗
���

=  � �
���

+ ���
���

� �∗   

                  =  (���)��(���)(���)�∗
(���)(���)

  

(� + �)�∗ =
(� − �� + � + � + �� + ��)�∗

1 − �
 

  = (���(���)�)�∗
���

 
(1 − �)(� + �)�∗ =  (2� + (1 + �)�)�∗ 

 �∗
�∗

=  (���)(���)
(���(���)�)

   (3.11)   
     
 
Substituting equation (3.11) into (3.10) gives  
 
 �∗ = ���

�(���)
∙ (���)(���)

(���(���)�)
    

 
Therefore 
 
 �∗ = (���)(���)

�(���(���)�)
 .  

 
3.3 Stability Analysis of the Disease-free Equilibrium 
State 
 
To determine the stability or otherwise of the disease –free 
equilibrium state �∗, we examine the behavior of the model 
population near this equilibrium solution. We determine the 
condition(s) that must be met if the disease is to be totally 
eradicated from the population. We linearize  equation (2.1), 
(2.2) and (2.3) to get the Jacobian matrix J   
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 � =

 �
−� − �� 0 −��

(1 − �)�� −� − � (1 − �)��
��(1 + �) � ��(1 + �) − (� + �)

� 

 
At the disease –free equilibrium �∗(�∗, �∗, �∗) the Jacobian 
matrix becomes 
 
 �� =

�
−� 0 −�
0 −� − � (1 − �)�
0 � �(1 + �) − (� + �)

� 

 
The characteristic equation |�� − ��| = 0 is obtained from 
the Jacobian determinant with the eigen values ��(� = 1,2,3) 
 
 (�� − ��) =

 �
−� − � 0 −�

0 −� − � − � (1 − �)�
0 � �(1 + �) − (� + �) − �

� = 0 

 (� + �)��(1 − �)�� + �(� + � + �)��(1 + �)� −
(� + �) − �� = 0 
           �� = −�   

��(1 − �)�� + �(� + � + �)��(1 + �)� − (� + �) − ��
= 0 

      ⤇ �� − ��� + �� + ��� − �� − �� − �� + �� +
��� − �� + �� − �� + �� + ��� −           �� − �� − �� =
0 
      ⤇ �� + �(� + �� − � − � − � − �) + �� + ��� −
�� + �� + �� + ��� − �� − �� −  ��� + �� = 0 
      ⤇ �� − �(� + �� − 2� − � − �) + �� + �� + �� +
�� − �� + ��� − �� − ��� − �� +  ��� = 0  
 
Applying the formula method, we obtain    ��,� =
�����������±�(�����������)���(����������������������)

�
          
=

− (��������(���))±�(�(���)�������)���(����������������������)
�

 
 
Hence 
 �� =

− (��������(���))��(�(���)�������)���(����������������������)
�

 
 �� =

−
(��������(���))�����������(���)�

�
��(����������������������)

�
 

If 2� + � + � − �(1 + �) is positive and −4(�� + �� +
�� − �� − ��� − 2�� + ��) is positive then �� is less than 
zero if  
(2� + � + � − �(1 + �)) +
�(2� + � + � − �(1 + �))� − 4(�� + �� + �� − �� − ��� − 2�� + ��  <
0  
 
That is 
    �(2� + � + � − �(1 + �))�� − 4(�� + �� + �� − �� −
��� − 2�� + ��)  <  �(2� + � + � − �(1 + �))�� 
 
or  

4(�� + �� + �� − �� − ��� − 2�� + ��)  > 0 

�� + �� + �� + �� − 2�� − (1 + �)�� > 0 
 
Therefore 
�(� + �) + �(� + �)  >  �(2� + (1 + �)�). 
 
3.4 The Basic Reproduction Number �� 
 
The basic reproduction number �� is defined as the average 
number of secondary infections that occur when one 
infective is introduced into a completely susceptible host 
population �6�. �� = �

�∗
. Hence  

�� =
1

(� + �)(� + �)
�(2� + (1 + �)�)

 

                     �(���(���)�)
(���)(���)

.     (3.12)  
 
Therefore, the disease –free equilibrium state of the model is  
 
 �∗(�∗�∗�∗) = �(���(���)�)

(���)(���)
. 

4. Conclusion 
In this paper, we present a mathematical model of 
Tuberculosis transmission dynamics. The population was 
partitioned into three compartments. The disease –free 
equilibrium state �∗(�∗�∗�∗) was determined and its stability 
analysis conducted using the Routh Hurwitz theorem. The 
analysis shows that the necessary and sufficient condition for 
the disease equilibrium state to be stable is if  �(���(���)�)

(���)(���)
<

1 and unstable if �(���(���)�)
(���)(���)

> 1. This means that the 
disease may infect the whole population if we fail to control 
parameters �, �, �, � ��� � so that �� < 1. 
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