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1. Introduction 
Financial mathematics is evolving as a subject that utilizes 
diverse results from such sophisticated area of mathematics 
as stochastic analysis; numerical analysis; theory of 
differential equation; game theory and theory of dynamical 
system to mention just a few areas�3�. The foundation of 
financial mathematics as it is known today has its origin in 
the seminal papers by Fisher Black and Myron Scholes 
(1973) and by Robert Merton (1973), where the Ito’s formula 
has been used for deriving the Black Scholes equation�3; 8�. 
Other notable contributions were made by Harrison and 
Kreps (1979) and Harrison and Pliska (1981) further showed 
that a natural mathematical framework for the analysis of 
financial markets is stochastic analysis and martingale 
theory. Since then this framework has played a dominating 
role in financial mathematics �12; 13�. This theory has today 
become a powerful and effective tool for quantitative 
analysis in many economical problems �8�. This paper 
employed the martingale theory to model the pricing and 
hedging of certain contingent claims under a number of 
assumptions. A European contingent claim was considered in 
a frictionless market. The paper addresses some of the key 
ideas that underlying the modern approach to the 
mathematical modeling of contingent claims in security 
markets.   

2. Some basic notation from Stochastic 
Analysis 

Let (�, ℱ, �) be a complete probability space, (ℛ�, ℛ�) the 
d-dimensional Euclidean measurable space. A collection ℱ 
of Ω is called a � −algebra, if it satisfies the following 
conditions: 
 
(i) ���; 
(ii) ��ℱ ⇒ �ᶜ�ℱ, where �ᶜ = � �⁄  denotes the 

complement of �; 
(iii) ���ℱ, � ≥ 1, ⇒∪���

� �ℱ. 
 
The pair (�, ℱ) is called a measurable space. 
 

Let � be the collection of subsets of �. The smallest � − 
algebra containing � is called the � −algebra generated by 
�, and is denoted by �(�). The � −algebra generated by all 
open set is called the Borel � −algebra. 
 
2.1 Theorem 
 
Let � be a sub-� −algebra of ℱ, �(�, �) a non negative Borel 
function on �� and � a �-measurable random variable. 
Then for any random variable �, we have 
 
���(�, �)│�� = ���(�, �)│��│��� (2.1)                          
 
Proof:     If � ��� � are two Borel sets and �(��(�)��(�)), 
then  
 ��(�, �)│�� = ���(�)│��,  
 
If � is independent of �, then 
 
 ���(�, �)│�� = ���(�, �)│��│���   
2.2 Theorem 
 
Let � be a probability measure equivalent to � and � a sub 
� −algebra of ℱ. We put � = ��

��
;  ɳ = ��│��. Then for a �-

integrable random variable �, we have 
 
 �� = ��│�� = ɳ������│��  (2.2) 
      
 
Proof:     For any ���, we have 
  ������� = ������� = �������│����� =
������│������ 
   = ������│��ɳ���, 
 
Since ������│��ɳ��� is �-measurable, we get  
 ����│�� = ����│��ɳ 
 ����│�� = ɳ������│��  
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2.1.     Dynamics of underlying securities 
 
Consider a market in which the securities are riskless asset 
(saving account) and risky asset (stock). Assume that the 
unit stock price � is a stochastic process on some filtered 
probability space (�, ℱ, �ℱ��, �) and that 
 
��� = ��(��� + ����), �(0) = �� (2.3)  
 
Where � is a Brownian motion on (�, ℱ, �ℱ��, �), and �, � 
are constant. Equation (2.3) gives the stock price at time � 
as a solution of an SDE, and has the following explicit 
solution 
 

�� = ����� ��� − ��

�
� � + ���� , ���0, ��  

    (2.4) 
 
Showing that �� is lognormal. 
 
The value process ��  of the saving account is assumed to 
satisfies  
 
��� = �����, �� = 1   (2.5)    
 
Whence 
 �� = ���  
 
2.2.     Self-financing portfolios and hedging 
 
A portfolio (�, �) is a pair of adapted processes such that 
��(����. ��) is the number of shares of the saving account 
(resp. of the asset) owned by an investor. The time � of the 
portfolio is �� = ���� + ����. The portfolio defines an 
hedging strategy for the contingent claim � if its terminal 
value is equal to �: 
 
 ���� + ���� = � 
 
The contingent claim � is of the form � = ℎ(��) =
(�� − �)� for a call. 
 
A portfolio is self financing if its changes in value are due to 
changes of prices, not the rebalancing of the portfolio, 
equivalently if one has   
 
��� = ����� + �����    (2.6)  
 
Black-Scholes methodology is to find a hedging strategy for 
the contingent claim assuming the value of the hedging 
portfolio is a smooth function of time and the underlying. A 
portfolio made up of �� shares of the underlying asset 
which hedges the derivatives is constructed. 
 
Definition:  Suppose that some contingent security is 
represented by a stochastic process � on (�, ℱ, �ℱ��, �). 
Then a portfolio � = (��, ��) is said to replicate � if at 
any time ���0, ��, we have 
 
 �� = ����� + ����� 
 

with probability one. 
 
Definition:  A hedging strategy is self financing portfolio that 
replicates some specified contingent security. 
 
Remark:  For a European call, a hedging strategy is always 
available in an ideal condition. 
 
Since the call price process �(�, ��) depend on �� and �. 
Then setting �(�, ��) = �� 
 
 ��� = ����� + ��(��� − �����) 
   = ���� + (� − �)������� +  ������ 
  = ��

��
�� + ��

��
��� + �

�
���

��� ��
����� 

   

= ���
��

+ ��
��

� + �
�

���

��� ��
���� �� +                       ��

��
������ 

 
By identification, we have 

��
��

+
��
��

� +
1
2

���

��� ��
��� = ��� + (� − �)���� 

 
since 
 ��

��
��� = �����, ��� �� = ��

��
 

 
Therefore 

 ��
��

+ �
�

���

��� ��
��� = �� − ���

��
��

 
 
Hence, the price of an European option is �(�, ��) where � 
is the solution of  

 ��
��

(�, �) + �
�

���� ���

��� (�, �) + �� ��
��

(�, �) =
��(�, �) 
 
which satisfies the terminal condition  
 �(�, �) = (� − �)� 
 
2.3.     Martingale approach and Pricing by Arbitrage 
 
The process � is not a martingale. Hence Setting � = ���

�
, 

the process 
 
 ����� �−�� − ��� − �

�
���� = �������� =

���� �(� − �)�� − �
�

(� − �)��� 

 
is a martingale where  �� = �−��� − �

�
����. The choice 

�� = ������ as a multiplier is such that the price of the risky 
and riskless asset multiplied by this factor is a martingale. 
We now want show that if � is the value of a self financing 
portfolio, the process �������� is a martingale. 
 
2.3.1 Lemma (Discounted processes) 
 
A trading strategy (�, �) is self financing if and only if its 
discounted value process ��� satisfies 
 ���� = ����������   (2.7)   
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Proof:    Assume (�, �) is a self financing. Since ��� = ������, 
by eqn(2.5) and using integration by parts formula 
 ���� = ������� − ���������  
        = ���������� + ������ − ����� + ������� 
     = ���������� + ������ − ���������� + ������� 
         = ���������� − ���������� 
         = ���(������) 
         = ���������� 
 
Similarly, we can also used the Girnanov’s theorem to 
establish the above result. 
 
2.3.2  Girsanov’s theorem  
 
A change of probability changes the law of the variable or of 
the process. 
 
Proof:  Now we show that there exist a unique probability 
measure �∗ equivalent to � such that the ��� is a �∗-
martingale. In fact, we can rewriter equation (2.3) as  
 
 ���� = ���(� − �)�� + ����  
 
Consequently, if we put ��∗

��
│ℱ� = �(−�. �)� with 

�(�) = � = (� − �) �⁄ , then by the Girsanov’s theorem and 
setting  
 
��

∗ = �� + ��, where � = ���
�

 the dynamics of � may 
therefore be written as 
  ��� = ��(��� + ����

∗) 
 
or ,in an equivalent form the dynamics of the discounted 
price ��� = ������ are  
 
 ���� = �������

∗  (2.8)   
 
which solution is 
 

 ��� = ����� ����
∗ − ���

�
� . 

 
Thus, the discounted price ���� , � ≥ 0� is a martingale under 
the risk neutral probability �∗ as soon as �∗ is a Brownian 
motion under the probability�∗. The Girsanov’s theorem 
states that there exist a probability measure �∗, equivalent 
to �, such that , under �∗, the process (��

∗, � ≥ 0) is a 
Brownian motion. The probability measure �∗ is defined by 
its Radon-Nykodym density: ��∗ = ���� on the � −algebra 
ℱ� with �� = ��� �−��� − �

�
����. The discounted value of 

any self financing portfolio is a martingale. Since 
 
 ������ = �� + � ������ ���

∗�
�     

    (2.9) 
 
It follows that 
 
 ������ = �∗�������│ℱ�� = �∗������│ℱ�� 
   (2.10) 
 

and �� = �∗(�����). The hedging portfolio is obtained 
from the fact that a martingale with respect to a Brownian 
filtration may be written as a stochastic integral with 
respect to the Brownian motion, hence 
 
 �∗������│ℱ�� = �� + � ����

∗�
�     

    (2.11)  
 
2.4.    Pricing of European option. 
 
Now we consider the trading of European call or put option. 
Then the pay-off of a call option is ℎ(��)  with ℎ(�) =
(� − �)�, we have 
 
 � = �∗(����(�� − �)�) = �∗������������� −
������∗�������  
 

As ������ = ����� ����
∗ − ���

�
�, we get immediately the 

following Black-Scholes formula 
 
 � = ������(��, �)� − ���������(��, �)�  
With 

 ��(�, �) = �
�√�

�� � �
������ + �√�

�
 , ��(�, �) =

��(�, �) − �√�  
 
The price of the call at time � equals �(�, ��) =

�∗�����(�� − �)�│ℱ��  with  
 
 �(�, �) =

�����(�, � − �)� − ����(���)����(�, � − �)�
  

 
The time � value of the hedging portfolio may be written in 

the form�(�, ��), apply Ito’s formula to get 
 

  ���� = ���� ���
��

+ ���
��
��

+ �
�

����
� ���

��� −

��� (�, ��)�� + �������
��
��

(�, ��)���
∗ 

  
 
As  �����(�, ��) = ��� is a martingale, the drift term is equal 

to zero,  
 

 ��
��

+ �� ��
��

+ �
�

���� ���
��� − �� = 0,⩝ � ≥ 0,⩝ � ≥

0. 
 
Therefore, 
 
 ���� = �������

��
��

(�, ��)���
∗  

3. The Ito’s process model 
Let the time horizon be�0, ��. Let � = (��, … ��) be a 
Brownian motion on a complete probability space (�, ℱ, �). 
We denote by �� the natural filtration of �� and � the set of 
measurable ��-adapted processes. We consider financial 
markets which consist of � + 1 asset. The price process ��

� 
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of each asset � is assumed to be strickly positive Ito process, 
we represent ��

� as  
 
 ���

� = ���
���(�)�� + ��

���(�)����, ��
� = ��, 0 < � <

�     (3.1) 
 
Where � = (��, … , ��) is called the expected rate return 
vector and � the volatility matrix. 
 
We specify asset 0 as the numeraire asset and set 
�� = (��

�)�� and call �� the deflate at time �. By Ito formula, 
we have 
 
 ��� = −�����(�) − |��(�)|� + ��(�)������    
     (3.2) 
 
Setting �� = (��

�, … , ��
�) ��� ��� = ����

�, … , ���
��, where 

���
� = ����

�. Then we have 
 
 ����

� = ����
���(�)�� + ���

���(�)����, 1 ≤ � < � 
      (3.3) 
 
Where 
 

 
��(�) = ��(�) − ��(�) + |��(�)|� − ��(�). ��(�);  ��(�) =
��(�) − ��(�). 
 
In particular, if asset 0 is a saving account with interest rate 
process �(�), then 
 
 ��(�) = ��(�) − �(�);  ��(�) = ��(�). 
 
3.1.       Fundamental question 
 
What condition should we impose on coefficients � ��� � 
of the price process ��� such that market is fair?. The 
following theorem provides a partial answer to this 
question. 
 
3.1.1 Theorem 
 
If the market is fair, the linear equation 
 
 �(�)�(�) = �(�), �� � �� �� �0, �� � �   
 (3.4)  
 
Has a solution ��(��)�. Conversely, if  
 
 � ���� ��

� � ���(�)�����
� �� < ∞, 1 ≤ � ≤ �                 

(3.5) 
 
And equation (3.4) has a solution ��(��)�  satisfying  
 
 � ���� ��

� � |�(�)|����
� �� < ∞ (3.6)  

 

then the probability measure �∗ with Radon-Nikodym 
derivative ��∗

��
= ℎ(−�. �)� is an equivalent martingale 

measure. 
The next theorem provides a sufficient condition for the 
existence of a unique martingale measures. 
 
3.1.2 Theorem 
 
Assumed that � ≥ �, a satisfies equation (3.5) and 
��(�)�(�) are non degenerated for all �, where ��(�) 
stands for the transpose of �(�). Setting  �(�) =
���(�)�(�)�����(�)�(�). If � satisfies equation (3.4) and 
(3.6), then there exist a unique equivalent martingale 
measure �∗ for the market. We have 
 
 � ���∗

��
│ℱ�� =

��� �− � �(�)���
�

� − �
� � |�(�)|����

� � , 0 ≤ � ≤ � 
 
Proof     Under the assumption of the theorem, the market 
is standard, so by theorem (3.1.1), there exist an equivalent 
martingale measure. To prove the uniqueness, let �∗ be an 
equivalent martingale measure. There exist a ��(��)� such 
that  
 
��∗

��
= ℎ(�. �)�.  By theorem (3.1.1), we have 

 
 �(�)�(�) = �(�).   (3.7)  
 

Now applying ���(�)�(�)�����(�) to both sides of the 
equation (3.7), we have 
 
  
�(�)�(�) ���(�)�(�)�����(�) =  ���(�)�(�)�����(�)�(�)  
 
Since �(�) = ���(�)�(�)�����(�)�(�), we get �(�) = �(�) 
which proved the uniqueness. 
 
Remark: if � = �, then � satisfies equation (3.4) 
automatically. 
 
3.2     Pricing and hedging of European contingent claims 
 
We present the pricing and hedging of European contingent 
claims. We assume that the market fair. Let ℎ be a 
contingent claim. Assume that ��ℎ is �∗-integrable for some 
�∗�ℳ�. Setting  
 
 �� = ��

���∗���ℎ│ℱ��  (3.8)  
 
and letting �� be the price process of an asset, we want to 
show that for a replicate contingent claims the fair price is 
unique. 
 
3.2.1 Theorem 
 
Let �∗, ��ℳ� and ℎ be a �∗ and �-replicatable contingent 
claim. Let �� (����. ��) be the wealth process of a �∗-

639



International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064 

Volume 2 Issue 1, January 2013 
www.ijsr.net 

(resp.�-) hedging strategy for ℎ. Then �� ��� �� are the 
same. 
 
Proof     Setting ��� = ������� = ����. Then ��� is a �∗-
martingale and a �-super martingale and ��� is a �-
martingale and a �∗-super martingale. Since �� =  �� = �, 
we have 
 
�∗����│ℱ�� = ��� ≥ ������│��� = ��� We have ��  ≥  ��, a.s.. 
Similarly, we have ��  ≥  ��, a.s.. Hence � = �. 
 
Remark    According to theorem (3.2.1), for a �∗-replicatable 
contingent claim ℎ it is natural to define its “fair” price at 
time � by equation (3.8). we call this method  arbitrage 
pricing. The next theorem shows that the replicatability of a 
contingent claim and the arbitrage pricing of replicatable 
contingent claim are independent of the choice of 
numeraire.  
 
3.2.2  Theorem 
 
Let �∗�ℳ� and ℎ be a �∗-replicatable contingent claim and 
� be a fair hedging strategy for ℎ. Then for any 0 ≤ � ≤ �, 
ℎ is a ��(�∗)-replicatable contingent claim and its “fair” 
price process remains the same. 
 
Proof     Keeping the notations of the proof of the previous 
theorem and by equation (3.8), we have 
 

 ���(��
� )��ℎ� = �∗���(��

� )��ℎ� = ��
�

��
� �∗���ℎ� =

���
��

��
�� 

 
This implies that a �∗-hedging strategy for ℎ is also a �-
hedging strategy for ℎ. So ℎ is a �-replicatable contingent 
claim. By the Bayes rule, we have 
 
 (��

�)�������
� ℎ│ℱ�� = (��

�)����
���∗�����

� ℎ│ℱ��   
= ��

���∗���ℎ│ℱ�� 
 
This proves that the “fair” price process of ℎ is independent 
of the choice of numeraire. 

4. Pricing of Exotic Options 
We present the pricing of path-dependent exotic option. 
These are Asian options, lookback options and barrier 
option. Asian options have a payoff equal to ��

� � ���� −�
�

��
�

 and depend the average of � over the time interval 
�0, ��. Lookback options have a payoff equal to 
(���������� − �)� and depend on the maximum of � over 
the time interval. Barrier options are options which 
disappear when the underlying asset hit a pre specified 
barrier. In an ideal market situation we apply the martingale 
approach to price those options under the risk neutral 
probability measure. 
 
 
 

4.1       Asian Options 
 
An Asian option is an option whose payoff depends on a 
suitably defined average of the asset over a certain time 
period. We consider the geometric average rate call option 
whose payoff is given by  
 

 ℎ� = ���� ��
� � ���(��)���

� � − ��
�

 
 
Let  ��

� denote the price at time �. Letting �∗ be the 
equivalent martingale measure of ��. By equation (2.10) we 
have  
 
 ��

(�) = ���(���)�∗�ℎ�│ℱ�� (4.1)  
 
Letting 
 

 �� = � ���(��)���
�    (4.2) 

    
 
Then        
 
 ℎ� = ���� ��

�
�� + �

� � ���(����
��)���

� +
���

�
������ − ��

�
 

   = (���� − �)� 
 
Where 
 

 ��� �
��
� ��

����
� �

, �� = �
� � ���(����

��)���
�       (4.3)

  
 
recall that  
 

 �� = ����� ��� − ��

�
� � + ���

∗�, 
 
we have 
 

 �� = ��� ��
� � ��� − ��

�
� (� − �) + �(��

∗ −�
�

��
∗)���� 

   = ��∗(���)���  
 
with  
 

 �∗ = �� − ��

�
� ���

��
,   �� = �

� � �(��
∗ − ��

∗)���
�

   (4.4) 
 
Since �� is independent of ℱ� and �� is ℱ�-measurable, by 
theorem (2.1) we have ��

(�) = ���(���)�(�, ��), where 
 
 �(�, �) = �∗ �����∗(���)��� − ��

�
�   

 
�� is a Gaussian random variable with mean zero and 
variance �∗�(� − �) with  
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 �∗� = ��(���)�

��
   (4.5) 

    
 
We now have 
 
 �(�, �) =

���∗(���) � ���∗����� − ����∗(���)�
��

��
�

√��
����

� �� 
 (4.6) 

 = ����∗��∗�
� �(���)�(��

∗) − ��(��
∗) 

 
Where  
 

  ��
∗ = ���(� �⁄ )���∗��∗��(���)

�∗√���
,     ��

∗ =
���(� �⁄ )��∗(���)

�∗√���
   (4.7) 

 
We turn to the pricing of an arithmetic average rate call 
option whose payoff is given by  
 

 ℎ� = ��
� � ���� − ��

� �
�

 
 
Letting ��

(�) denote the price at time �. By equation (2.10) 
we have 
 

 ��
(�) = �∗ ����(���) ��

� � ���� − ��
� �

�
│ℱ��  

   (4.8) 
 
From �8; 9�, we have 
 

 �� = �∗ ���
� � ���� − ��

� �
�

│ℱ��    

    (4.9) 
 
Since � ��

���
� ���� is independent of ℱ�, we have 

 

 �� = ���∗ ��� ��
���

� ���� − ��
�� ��� −

� �����
� ��

�
│ℱ�� = ���(�, ��) 

 
Where 
 

 �(�, �) = �∗ ��� ��
������ − ��

� �
�

� , �� =

��
�� ��� − � �����

� �  (4.10) 
 
Since  
 
 ���

�� = −��
����� + ��

���〈�, �〉� =  ��
���(�� −

�)�� − ����
∗� 

 
We have 
 
 ��� = ��� − � �����

� � ���
�� − �� =  ���(�� −

�)���
∗� − �� 

 

By Ito’s formula, we get 
 
 ��� = ����(�, ��) + �(�, ��)��� + �〈�, (. , �. )〉 
        
= �� ���(�, ��)�� + ��(�, ��)��� + �

�
���(�, ��)�〈�, �〉�� +

�(�, ��)��� + �〈�, �(. , �. )〉� 
 
where  �〈�, �〉� = ��

�����  ; 
 �〈�, �(. , �. )〉� = ��(�, ��)�〈�, �〉� = −��(�, ��)�������� 

  ~�� ��� − (1 + ���)�� + �
�

����
���� + ��� (�, ��)��. 

 
Since �� is a martingale under �∗, the right hand side of the 
above term will vanish which lead to the following PDE 
 

�� − (1 + ��)�� + ����

�
��� + �� = 0, � ≥ 0  

   (4.11) 
 
Satisfying the following boundary condition: 
 
�(�, �) = 0      and     �(�, �) = ������(���) − 1�, 
 
Since  
 �∗���

����� = �∗ ���� ��(��
∗ − ��

∗) −

���

�
− �� (� − �)�� = ��(���) 

and  
 ��(�, �) = −�∗ �� ��

������ ≥ ��
� �,  

 
We have the next boundary condition: 
  lim�→� ��(�, �) = 0. 
 
4.2  Lookback option 
 
Lookback options are options whose payoff at expiration 
depends on the maximum or minimum realized asset over 
the option’s life. We consider the lookback rate call option 
whose payoff is defined by  
 
 ℎ� = max�����(�� − �)� 
 
Letting �� denote its price at time �. By equation (2.10) we 
have 
 
 �� = ���(���)�∗�ℎ�│ℱ��    (4.12)  
 
We let � = � − �

�
��, and set �� = max����� �� ;  �� =

max����� ��  
 
then �� is ℱ�-measurable. Since  
 
 ��

���� = ����max�������(��
∗ − ��

∗)� + �(� − �)� 
 
Since ��

���� is independent of ℱ�. By using these notation 
and letting �� = ���(��, �), we have 
 
�� = ���(���)�∗�ℎ�│ℱ�� 
 �� = ���(���)�∗����(��, �) − �│ℱ�� 

641



International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064 

Volume 2 Issue 1, January 2013 
www.ijsr.net 

  = ���(���)�∗����(��, ��) − ��│ℱ�� + �� − � 
   = ���(���)�∗����(��, ��)�│ℱ�� + �� − � 
       
=���(���)���∗����(��

����, ��
����)�│ℱ�� + �� − � 

 = ���(���)���∗�(��
���� − �)��│����

����
+ �� − � 

    
= ���(���)���∗ ���� ��max�������(��

∗ − ��
∗) +

�(� − �)� − ����� + �� − �  
    = ���(���)��������(max�������(��� +
��) − �)��� + �� − �  
  = −��1 − ����(����)� + � ������

� (�)���
����   

 
See �8; 10� for detail computation, we get the following 
formula 
 

�� = �� ��(��)(1 + ��

��
)� + �����(���) ��(��) −

��

��
(��

����)���
������(��)� −���(���)�  (4.13) 

 
Where 
 

 �� =
������

��
������

����(���)

�√���
 

 �� =
�������

��
������

����(���)

�√���
 

 �� =
�������

��
������

����(���)

�√���
 

5. Conclusion 
In this paper, we propose the martingale approach to the 
pricing of contingent claims in a Black-Scholes model 
setting. The pricing formulas for the celebrated Black-
Scholes equation were presented. Explicit formulas for the 
valuation of European, Asian and Look back option using 
martingale approach in an ideal market situation were 
derived. 
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