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Abstract: This research paper demonstrates a method to analyze effect of refinement, fractal index and item state on statistical
behavior of various wavelets and finally we conclude that Haar wavelet type has highest standard deviation , median absolute deviation
and mean absolute deviation values in all of the wavelets that we discussed in this paper and dmey wavelet has the lowest standard
deviation, mean absolute deviation and median absolute deviation values. We use value of refinement = 10, value of fractal index = 0.1,
length =100 and item state =1 in each wavelet type to analyze effect on first order increment and at the same time we analyze statistical
behavior of Histogram, cumulative histogram, autocorrelation and FFT (Fast Fourier Transform) energy spectrum.
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1. Introduction - Fractional Brownian motion

Wavelet analysis is carried out in order to know about
decomposition from which perfect reconstruction is
achieved. The methods used to recreate Brownian motion
are vital tools in learning how certain processes behave in
the hope that predicting behavior may be possible to serve
current scientific needs. One main use of Brownian
motion is in the entertainment industry where the resulting
Brownian curves; created in 2 dimensions, model very
realistic landscapes which have fractal dimension between
2 and 3. Fractal geometry has given rise to an area of
mathematics that gives further understanding of how
dynamic systems work and as the research continues in
this area, more practical uses will be discovered.
Normalized fractional Brownian motion is also called a
Fractal Brownian motion. It is a Brownian motion without
independent increments. It is a Continuous - time
Gaussian process BH(t) on [0, T], which starts at zero, has
expectation zero for all t in [0, T], and has the following
covariance function:

E1Ba(t)Bafs)] = 5[t +|s[*" ~ |t - o),

Where H is a real number in (0, 1), called the Hurst index
or Hurst parameter associated with the fractional
Brownian motion. The value of H determines what kind of
process the fBm is:

If H = 1/2 then the process is Wiener process.

If H > 1/2 then the increments of the process are positively
correlated.

If H < 1/2 then the increments of the process are
negatively correlated.

2. Properties

Modern applications of wavelet theory are diverse as
wave propagation, data compression, signal processing,
image processing, pattern recognition, computer graphics,
the detection of aircrafts and submarines and some other
medical image technology. The technique entails
distorting datasets extracted from patterns to generate
multi fractal spectra that illustrate how scaling varies over
the dataset. The techniques of multifractal analysis have
been applied in a variety of practical situations such as
predicting earthquakes and interpreting medical images.

a. Regularity

Sample-paths are almost nowhere differentiable.
However, almost-all trajectories are Holder continuous of
any order strictly less than H: for each such trajectory,
there exists a constant ¢ such that

|Bilt) — Buls)| < dt — /"~

for every £ > 0.
b. Self-similarity

Probability distribution in case of self similarity has been
shown below:

Bu{at) ~ |a|® Bult).

This property is due to the fact that the covariance
function is homogeneous of order 2H and can be
considered as a fractal property.
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4. Results and Discussion

Here we are going to find how the deviation values get

(b) 1-D fractional Brownian motion increments statistics
using Haar wavelet with Order=2, no. of bins=10 is shown

in diagram below.

O 4 A 2 N N 60 8 0 01 2 03 04

beat L0077:6 M kil Statard devistion 1663
changed when we change the type of wavelets and analyze v RN e R s s
effect on statistical behavior. ot wE | R i el it 136
[0 I 0| | 7 | i : Vs s
Casel e s || o
T 1201 Tre-Simemsiore. BTEC e

(a) Using Haar Wavelet put value of refinement=10,
length=100, fractal index=0.1, item state=1, Then 1-D
fractional Brownian motion synthesis H=0.1 is shown in
diagram below.

Case 2

(a) Using db2 wavelet, put value of
length=100, fractal index=0.1,

state=1,

refinement=10,

Then one

dimensional fractional Brownian motion synthesis H=0.1
is shown in diagram below.
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(b) 1-D fractional Brownian motion statistics using db2
wavelet with Order=2, no. of bins=10 is shown in diagram
below.
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Case3

a) Using Coif Wavelet put the value of refinement=10,
length=100, fractal index=0.1, state=1, then one
dimensional fractional brownian motion synthesis h=0.1 is
shown in diagram below.
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o

(@) 1-D fractional Brownian motion statistics of Coif
Wavelet with Order=2, no. of bins=10 is shown in
diagram below.
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Case4

a) Using dmey Wavelet with refinement=10, length=100,

fractal index=0.1, state=1,

Then one dimensional

fractional Brownian motion synthesis H=0.1 is shown in

diagram below.
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(@) 1-D fractional Brownian motion statistics of dmey

Wavelet with Order=2, no. of bins=10 is shown in
diagram below.
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efficiently fast and offers acceptable results.

results show that this method works

Results & Conclusion

1. The value standard deviation is more in haar wavelet
and less in dmey.

2. The value of median absolute deviation is more in haar
wavelet and less in dmey

3. The value of mean absolute deviation is more in haar
wavelet and less in dmey wavelet.

Wavelet theory has already been shown to provide an
appropriate tool both for analysis and synthesis of long
range dependent processes in one dimension. Number of
results has been provided for characterizing and analyzing
fBm via wavelets. In this paper, we introduced method to
find standard deviation, mean absolute deviation and
median absolute deviation in different wavelets and we
analyzed deviations in values of different wavelet so that
we are able to find which type of wavelet has highest
value and which type of wavelet has lowest value.
Fractional Brownian motion (fBm) offers a convenient
modeling for non-stationary stochastic processes with
long-term dependencies and 1/f-type spectral behavior
over a wide range of frequencies.
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