
International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 1 Issue 3, December 2012
www.ijsr.net

Modeling Software Architecture with UML

Ramesh Ponnala1, Gangadhar Adepu2, Santhosh Kumar Nallavelly3

1 Asst. Professor, Dept. of Computer Science & Engineering,
Sree Chaitanya Institute of Technological Sciences, Andhra Pradesh, India

 ramesh.ponnala@gmail.com

2 Asst. Professor, Dept. of Computer Science & Applications,
Sree Chaitanya Institute of Management & Computer Sciences, Andhra Pradesh, India

 gangadhar24mca@gmail.com

3 Asst. Professor, Dept. of Computer Science & Applications,
Sree Chaitanya Institute of Management & Computer Sciences, Andhra Pradesh, India

 santhosh1714@gmail.com

Abstract: Software Architecture is being widely used today to describe a very high level design methodology of large & heterogeneous
software systems. A good Architectural representation scheme holds the key to the effectiveness of a Software architecture description
and usage. In this paper, we look at UML (unified modeling language) as a prospect for a generalized architecture description
language. UML also “unifies" the design principles of each of the object oriented methodologies into a single, standard, language that
can be easily applied across the board for all object-oriented systems and a scheme AND-OR DFD method is introduced and developed.

Keywords: Software Architecture, Unified Modeling Language, Software Architectural modeling view

1. Introduction

An Architectural Style defines a family of systems in terms
of a pattern of structural organization. An awareness of
these Architectural styles can simplify the problem of
defining system architectures. However, most large
systems are heterogeneous and do not follow a single
architectural style. Software Architecture determines how
system components are identified and allocated, how the
components interact to form a system, the amount and
granularity of communication needed for interaction, and
the interface protocols used for communication among
stakeholders: Customers, managers, designers,
programmers. Software Architecture consists of
components, connectors, data, a configuration, and a set of
architectural properties.

 An important feature of architecture is the ability to
facilitate development of large systems, with components
and connectors of varying granularity, implemented by
different developers, in different programming languages,
and with varying operating system requirements. [1]

1.1 Component:

A component is an abstract unit of software that
provides a transformation of data via its interface.
Components can be computation units or data stores.
According to [2], components are loci of computation
and state.

1.2 Connector:
A connector is an abstract mechanism that mediates
communication, coordination, or cooperation among
components. The connectors play a fundamental role in
distinguishing one architectural style from another and
have an important effect on the characteristics of a

particular style [3].

1.3 Datum:
A datum is an element of information that is transferred
from a component, or received by a component, via a
connector.

1.4 Configuration:
A configuration is the structure of architectural
relationships among components, connectors, and data
during some period of system run-time.

2. Literature Review

UML was created by Object Management Group (OMG)
and UML 1.0 specification draft was proposed to the OMG
in January 1997. OMG is continuously putting effort to
make a truly industry standard. [4] UML stands for Unified
Modeling Language.

 UML is different from the other common programming

languages like C++, Java, and COBOL etc.

 UML is a language to specify, to visualize and to build
and to document the artifact of the software systems, as
well as to model business and other systems besides
software systems. [4]

UML is a pictorial language used to make software blue
prints. UML (Unified modeling language) is a clear and
concise modeling language without being tied down to any
technologies. It provides the ability to capture the
characteristics of a system by using notations and is the
language that can be used to model systems and make them
readable. UML provides a wide array of simple, easy to
understand notations for documenting systems based on the

21

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 1 Issue 3, December 2012
www.ijsr.net

Object-Oriented Design principles. These notations are
called the nine diagrams of UML.

2.1 UML Diagrams

A diagram is the graphical presentation of a set of elements,
most often rendered as a connected graph of vertices (things)
and arcs (relationships). A diagram represents an elided view
of the elements that make up a system. The UML includes
nine such diagrams.

2.1.1 Use case Diagram:

This diagram is used to identify the primary elements and
processes that from the system. The primary elements are
termed as "actors" and the processes are called "use cases".

2.1.2 Class Diagram:

A class diagram shows a set of classes, interfaces, and
collaborations and their relationships. This diagram is used
to refine the use case diagram and define the detailed design
of the system. The class diagram classifies the actors defined
in the use case diagram into a set of interrelated classes. The
relationship or association between the classes can be either
an "is-a" or "has-a" relationship. Each class in the class
diagram may be capable of providing certain functionalities.
Class diagrams address the static design view of a system.

2.1.3 Object Diagram:
An object diagram shows a set of objects and their
relationships. Object diagrams represent static snapshots of
instances of the things found in class diagrams. These
diagrams address the static design view or static process
view of a system as do class diagrams, but from the
perspective of real or prototypical cases.

The object diagram is a special kind of class diagram. An
object is an instance of a class. This essentially means that an
object represents the state of a class at a given point of time
while the system is running. The object diagram captures the
state of different classes in the system and their relationships
or associations at a given point of time.

2.1.4 State Diagram:
A state chart diagram shows a state machine, consisting of
states, transitions, events, and activities. State chart diagrams
address the dynamic view of a system. Objects in the system
change states in response to events. In addition to this, a state
diagram also captures the transition of the object's state from
an initial state to a final state in response to events affecting
the system.

2.1.5 Activity Diagram:
Activity diagram is used to capture the process flows in the
system. Similar to a state diagram, an activity diagram also
consists of activities, actions, transitions, initial and final
states, and guard conditions. Activity diagrams address the
dynamic view of a system. They are especially important in

modeling the function of a system and emphasize the flow of
control among objects.

2.1.6 Sequence Diagram:

A sequence diagram represents the interaction between
different objects in the system. This means that the exact
sequence of the interactions between the objects is
represented step by step. Different objects in the sequence
diagram interact with each other by passing "messages".
Sequence diagrams are called interaction diagrams in UML,
which emphasizes the time-ordering of messages.

2.1.7 Collaboration Diagram:

A collaboration diagram groups together the interactions
between different objects. This diagram helps to identify all
the possible interactions that each object has with other
objects. Collaboration diagram is an interaction diagram that
emphasizes the structural organization of the objects that
send and receive messages.

2.1.8 Component Diagram:

The component diagram represents the high-level parts that
make up the system. This diagram depicts, at a high level,
what components form part of the system and how they are
interrelated. It also depicts the components called after the
system has undergone the development or construction
phase. Component diagrams address the static
implementation view of a system. They are related to class
diagrams in that a component typically maps to one or more
classes, interfaces, or collaborations.

2.1.9 Deployment Diagram:

The deployment diagram captures the configuration of the
runtime elements of the application. This diagram is by far
most useful when a system is built and ready to be deployed.
A deployment diagram shows the configuration of run-time
processing nodes and the components that live on them.
Deployment diagrams address the static deployment view of
the architecture.

2.2 Architectural Modeling Views

To describe Software Architecture, we use a model
composed of multiple views or perspectives. In order to
eventually address large and challenging architectures, the
model we propose is made up of six main views:

 Logical view, which is the object model of the

design(when an object-oriented design method is used)
 Process view, this view deals with concurrency and

distribution, system integrity, and fault tolerance [5].
 Component view, which shows the grouped modules of

a given system, modeled using the component diagram.
 Development view, which describes the static

organization of the software in its development
environment.

 Physical view, which describes the mapping(s) of the
software onto the hardware and reflects its distributed
aspect.

22

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 1 Issue 3, December 2012
www.ijsr.net

 Execution view, which is the runtime view of the
system. It involves the mappings of modules to run-
time images, defining the communication among them,
and assigning them to physical resources. Resource
usage and performance are key concerns in the
execution view.

Figure 1: “6+1” View Modeling a System's Architecture

3. Experimental Results: C2 Generator

Let us consider a software system called C2 Generator. This
software system would be written in an object oriented
language like JAVA and it attempts to generate an
architectural representation diagram based on the C2
Generator architecture [6].

It takes as input the components of the system to be
modeled, the connectors and a list of who notifies whom.
But it will suffice to say here that C2 Generator is an
architecture description language (ADL) that is used to
model user interface intensive software systems i.e.,
applications that have a graphical user interface (GUI)
aspect.

This architectural style consists of components and
connectors. Components and connectors both have a defined
top and bottom. The top of a component may be connected
to the bottom of a single connector. The bottom of a
component may be connected to the top of a single
connector. There is no bound on the number of components
or connectors that may be attached to a single connector.

In C2-style architecture, connectors transmit messages
between components, while components maintain state;
perform operations, and exchange messages with other
components via two interfaces which are called top and
bottom.

Each interface consists of a set of messages that may be sent
and a set of messages that may be received. Inter-component
messages are either requests for a component to perform an
operation, or notifications that a given component has
performed an operation or changed state.

In the C2 style, components cannot interact directly but can
do so using the connectors. Each component interface can be
attached to at most one connector. A connector, however,
can be attached to any number of other components and
connectors. Request messages can only be sent “upward”

through the architecture, and notification messages can only
be sent “downward.”The C2 style has another requirement
that the components communicate with each other only
through message passing and never through shared memory.
Also, C2 requires that notifications sent from a component
correspond to the operations of its internal object, rather than
the needs of any components that receive those notifications.

This constraint on notifications helps to ensure substrate
independence, which is the ability to reuse a C2 component
in architectures with differing substrate components (e.g.,
different window systems). The C2 style explicitly does not
make any assumptions about the language(s) in which the
components or connectors are implemented, whether or not
components execute in their own threads of control, the
deployment of components to hosts, or the communication
protocol(s) used by connectors.

There are four primary components in this software. The
CreateConnection component has five subcomponents,
which are the various steps taken to create a connection.
First, the component to be connected to first created
component is identified from the connection list. Then new
ports are created and attached to both these components. We
assume here for simplicity that both components can have
unlimited number of ports and so unlimited number of
connections. Then the connector is created and the two ports
are connected. It is obvious that the steps in creating a new
connection start with reading a component name from the
connection list till the connector is attached to the two newly
formed ports. This whole process has to be repeated till there
are no more entries in the connection list. This iterative
property of the system cannot be known from the
decomposition model, though it must occur if the system
executes correctly. Second, there might be repeated entries in
the connection list.

Table 1: Process Decomposition of C2 Generator
 Module Name Submodule(s)

1) ReadInput
2) CreateComponent
3) ReadConnectionList
4) CreateConnection CreateComponentToBeConnected

 CreatePorts
 ConnectPortsToBothComponents
 CreateConnector
 ConnectBothPortsWithConnector

There is no restriction to the number of connections one
component can have with other components. For an entry
that refers to a component which has already been created,
one doesn’t need to create it again, but just identify that
component and create a new port. Hence, once an entry has
been read from the Connection List, one of two things
happen depending on the read value. Either the component
doesn’t exist and needs to be created, or it exists and needs
to be identified. Again, there is no way of knowing this from
the decomposition model. Let us now consider how the
AND-OR DFD tackles these issues.

23

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 1 Issue 3, December 2012
www.ijsr.net

3.1 AND-OR DFD Representation of C2 Generator

Figure 2: AND-OR DFD representation of C2 Generator

From Figure 2, we see that the data flow is represented by
this modified DFD, but with two significant differences.
Firstly, there is an OR-group of two components that
illustrate that once an entry has been read from the
connection list, either a new component is created, or control
moves to an existing component, depending on the value
read from the connection list. Second, the iterative portion of
the system has been illustrated by a shaded box. So we now
can tell that the steps starting from the reading of the
connection list to the connection of the ports by a connector
are iterative and are executed for each entry in the
connection list

3.2 Architecting UML of C2 Generator

In order to see how UML can construct the Software
Architecture of a system, let us go back to the example of the
C2 Generator. Table 2 shows the logical decomposition of
the system. The use of layering in modeling C2 style
architecture for GUI intensive software systems [6] and the
use of layering in representation of module view of an
architecture using UML also indicate the vast potential for
the layering style.

The logical (conceptual) decomposition highlights the main
components of the system and their subcomponents if any.

Table 2: Logical Decomposition of C2 Generator

Module Name Sub Module(s)

1) C2
Generator

2) Component

3) Port

4) Connection

CreateComponent
CerateConnector
UpdateComponentList
UpdateConnectionList

CheckForFreePort
CreatePort

CreateConnector

UpdateConnectingComponen
t
UpdateConnectedComponent

We see that the C2Generator component has the task of
creating the component(s) and the connector, and updating
the component and connection lists. The component module
checks for free ports on the component(s) and if there are
free ports, then it creates the physical port. The Port
component creates the connector in turn, and the connector
component joins the two components (called the connecting
component and the connected component here) and updates
the two components for the connection created.

3.3 Conceptual View of C2 Generator

From table2, we came to know about Logical decomposition
of C2 Generator. Let us now try to construct the logical
architectural view for C2 Generator. Figure 2 shows the
conceptual architectural view of the C2 Generator using
UML constructs.

Figure 3: Conceptual view of C2 Generator

Figure 3 show the conceptual architectural view of the C2
Generator using UML constructs [7]. The problem with this

24

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 1 Issue 3, December 2012
www.ijsr.net

representation lies in the relationship of the port and the
Connector Conn. i.e. a connector can be broken off from one
component and joined to another component. So a
composition doesn’t hold good here. Even an aggregation
doesn’t hold good because when the connector is isolated
from the ports of both the connecting components, it ceases
to exist independently. So here is a situation where there is a
composition relationship that involves two components and a
connector.

3.4 Execution View of C2 Generator

The execution view or process view of C2 Generator will be
modeled from the process decomposition model we saw
earlier. Figure 4 shows one sequence diagram representing
the execution configuration of the C2 Generator.

The C2Generator first creates the connecting component by
calling the Create Component () procedure and interacting
with the component module. The component module in turn
then creates a port and connects the newly created
component to it by calling the Create And Connect To Port
() procedure and communicating with the Port module. The
Port module now creates the connector and attaches the port
to this connector by calling two functions and talking to the
Connector module. Once this is done and the control is back
to the C2 Generator component, it now reads the connection
list and checks if the component to be connected exists or
not. If it exists, control moves to this existing component and
that component is connected via a new port to the already
created connector. If the component doesn’t exist then it is
created before being connected to the connector.

Figure 4: Sequence Diagram for C2 Generator

This implementation is efficient because the control flow
doesn’t move back and forth. Both the components are ready
before the ports are created and both the ports are ready
before the connector is created and the connection made. So
we see that UML is rather useful for representing different
views of the software architecture of a system [7], [8]. It
does reasonably well and represents all the facets of that
view clearly. Moreover, UML is good for all the views, and
not just the process view which can be adequately
represented by the AND-OR DFD. Moreover, we can extend
UML by constraints, tagged values, stereotypes and profiles
[9].

4. Summary

Table3: Summary of C2 Generator
View Components Connectors Containers Stakeholders Concerns Tool Support
Logical Class association, Class category End-user Functionality Rose

 inheritance,

 containment

Process Task Rendezvous, Process System Performance, UNAS/SALE
 Message, designer, availability, DADS
 Broadcast, integrator S/W fault tolerance,

 RPC, etc. Integrity

Component Module Interaction Component Developer Interoperability Rose

Development Subsystem compilation Subsystem Developer, Organization, Apex, SoDA

 dependency, (library) manager reuse,

 “with” clause, portability, line of-
 “include” product

Physical Node Communication Physical System Scalability, UNAS,
 medium, subsystem designer performance, Openview
 LAN, WAN, availability DADS
 Bus, etc.

Execution Mappings of node Run time view End-user, Resource usage and Rose
 Developer performance

Scenario Step, Web End-user, Understandability Rose
 Scripts developer

25

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 1 Issue 3, December 2012
www.ijsr.net

References

[1]. Medvidovic, N., Taylor, R.: "A framework for

classifying and comparing architecture description

languages," Proceedings of the 6th European conference

held jointly with the 5th ACM SIGSOFT international

symposium on Foundations of software engineering,

Zurich, Switzerland, Pages: 60 - 76, 1997.

[2]. Shaw, M., DeLine, R., Klein, D., Ross, T., Young, D.,

Zelesnik, G.: "Abstractions for Software Architecture

and Tools to Support Them," IEEE Transactions on

Software Engineering, 21(4):314-335, April 1995.

[3]. Perry, D., Wolf, A.: "Foundations for the study of

software architecture," ACMSIGSOFT

SoftwareEngineering Notes, Volume 17, Issue 4

(October 1992), Pages: 40 - 52, 1992.

[4]. “OMG Unified Modeling Language Specification,”

Version 1.5, March 2003. Clements, C., Bachmann, F.,

Bass, L., Garlan, D., Ivers, J., Little, R., Nord, R.,

Stafford, J.

[5]. “Documenting Software Architectures: Views and

Beyond.” Addison- Wesley, 2003, ISBN 0-201-

70372-6.

[6]. Medvidovic, N., Rosenblum, D.: "Assessing the

Suitability of a Standard Design Method for Modeling

Software Architectures." In Proceedings of the First

Working IFIP Conference on Software Architecture

(WICSA1), pages 161-182, San Antonio, TX, February

22-24, 1999.

[7]. Hofmeister, C., Nord, R., Soni, D.: “Applied Software

Architecture,” Addison- Wesley, 2000, ISBN 0-201-

32571-3.

[8]. Hofmeister, C., Nord, R., Soni, D.: "Describing

software architecture with UML,"Proceedings of the

TC2 First Working IFIP Conference on Software

Architecture (WICSA1), Pages: 145 - 160, 1999.

[9]. Medvidovic, N., Rosenblum, D., Robbins, J., Redmiles,

D.: "Modeling Software Architectures in the Unified

Modeling Language," ACM Transactions on Software

Engineering and Methodology (TOSEM), Volume 11,

Issue 1 (January 2002), Pages: 2 - 57, 2002.

Author Profile

Ramesh Ponnala received the MCA and M.Tech degrees in

Computer Science and Engineering from Jawaharlal Nehru

Technological University. He is Sun Certified Java

Professional and AP-SET Holder. From 2009 onwards he is

staying in Sree Chaitanya Institute of Technological

Sciences as an Assistant Professor.

Gangadhar Adepu received the MCA and pursuing M.Tech

degrees in Computer Science and Engineering from

Jawaharlal Nehru Technological University in 2006 and

2012, respectively. During 2006-2010, he stayed in Sree

Chaitanya Institute of Management & Computer Sciences as

an Assistant Professor.

Santhosh Kumar Nallavelly received the MCA and

pursuing M.Tech degrees in Computer Science and

Engineering from Jawaharlal Nehru Technological

University in 2006 and 2012, respectively. During 2006-

2010, he stayed in Sree Chaitanya Institute of Management

& Computer Sciences as an Assistant Professor.

26

