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Abstract: In this paper, we propose an efficient and scalable query processing framework for continuous spatial queries (range and k-
nearest-neighbor queries) in mobile peer-to-peer (P2P) environments, where no fixed communication infrastructure or 
centralized/distributed servers are available. Due to the limitations in mobile P2P environment s[1], for example, user mobility, limited 
battery power, limited communication range, and scarce communication bandwidth, it is costly to maintain the exact answer of 
continuous spatial queries. To this end, our framework enables the user to find an approximate answer with quality guarantees. In 
particular, we design two key features to adapt continuous spatial query processing to mobile P2P environments. (1) Each mobile user 
can specify the desired quality of services (QoS) for query answers in a personalized QoS profile. The QoS profile consists of two 
parameters, namely, coverage and accuracy. The coverage parameter indicates the desired level of completeness of the available 
information for computing an approximate answer, and the accuracy parameter indicates the desired level of accuracy of the 
approximate answer. (2) We design a continuous answer maintenance scheme to enable the user to collaborate with other peers to 
continuously maintain her query answer. With these two features in our framework, the user can obtain a query answer from her local 
cache if the answer satisfies her QoS[2] requirements. Otherwise, the user enlists neighbors for help to share their cached information 
to refine the answer. If the re_ned answer still cannot satisfy the QoS requirements, the user broadcasts the query to the peers residing 
within the required search area of the query to find the most accurate answer. Experimental results show that our framework is efficient 
and scalable andprovides an effective tradeoff between the communication overhead and the quality of query answers. 

Keywords: Mobile computing, peer-to-peer computing, continuous query processing, spatio-temporal databases, and GIS. 
  

1. Introduction 

With the advance in new peer-to-peer (or P2P for short) 
wireless communication technologies, for  example, IEEE 
802.11 and Bluetooth, and the computational and storage 
capacity of portable devices, a new information access 
paradigm, known as mobile P2P information access, has 
rapidly taken shape. This paradigm is important for 
environments, where no fixed communication 
infrastructure or centralized/distributed servers [2][3][4] 
are available, such as battlefield and rescue operations. It 
is also useful for other business and civilian applications, 
such as traffic monitoring and resource locator. Existing 
spatial query processing frameworks in mobile 
environments rely on fixed communication infrastructure 
and/or centralized servers or only support snapshot 
queries.  
 
The limitations in these existing works motivate us to 
design a new continuous spatial query processing 
framework that does not require any fixed communication 
infrastructure or centralized/distributed servers. In 
particular, we focus on the two most common spatial 
queries, range queries and k-nearest-neighbor (k-NN) 
queries. Examples of these spatial queries include that the 
rescuers issue range queries to continuously keep track of 
the ambulances within a certain range in a disaster site, 
and the soldiers issue k-NN queries to continuously 
monitor their k- .nearest tanks in a battlefield. 

 
Due to the limitations in mobile P2P environments, for 
example, user mobility (the query issuer and the data 
object are continuously roaming), limited communication 
range, limited battery power, and scarce communication 
resources, it is costly to maintain the exact answer of 
continuous spatial queries. To this end, we propose a 
continuous spatial query processing framework to provide 
approximate answers for mobile users with quality 
guarantees. In particular, we design two key features to 
adapt continuous spatial query processing to mobile P2P 
environments.  
 
[1] The user can specify the desired quality of services 
(QoS) for query answers in a personalized QoS profile. 
The QoS profile consists of two parameters, namely, 
coverage and accuracy. The coverage parameter indicates 
the desired level of completeness of the available 
information for computing an approximate answer, and 
the accuracy parameter indicates the desired level of 
accuracy of the approximate answer.  
 
[2] We design a continuous answer maintenance scheme 
that allows the user to collaborate with peers to 
continuously maintain her answer, instead of always 
processing the query from scratch, in order to reduce 
communication overhead. 
 
The main idea of our framework is that a user can obtain a 
query answer from her local cache if the answer satisfies 
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her QoS requirements, that is, the information stored in 
the local cache satisfies the coverage requirement and the 
answer derived from the local cache satisfies the accuracy 
requirement. In case that the answer does not satisfy the 
QoS requirements, the user asks neighbors to share their 
cached information, in order to refine the answer. If the 
refined query answer still does not satisfy the QoS 
requirements, the user enlists the peers residing within the 
required search area of the query for help to find the most 
accurate answer, and then updates her local cache. Since 
the query issuer and data objects are moving, the query 
answer may become stale.  
 
Thus we propose the continuous answer maintenance 
scheme that enables the user to collaborate with other 
peers to continuously maintain the query answer. When 
the answer derived from the local cache no longer satisfies 
the user's QoS requirements, the user needs to enlist peers 
for help to refine the answer again. We evaluate our 
framework through simulated experiments [5][6]. The 
results show that our framework is efficient and scalable 
in terms of communication overhead and power 
consumption and provides a tradeoff between the 
communication overhead and the quality of query 
answers. In this paper, we focus on continuous range and 
k-NN queries.  
 
However, our framework can be extended to support other 
types of continuous spatial queries, if their query answers 
can be abstracted into monitoring regions, for example, 
continuous reverse-nearest-neighbor queries and 
continuous density queries. The rest of this paper is 
organized as follows. Section 2 surveys previous works 
related to query processing in mobile P2P environments. 
Our system model is presented in Section 3. Section 4 
describes our continuous spatial query processing 
framework for both range and k-NN queries. 

2. Related Work 

Existing spatial query processing [5][7] frameworks in 
mobile environments can be categorized into four 
architecture approaches: centralized, semi-distributed, 
semi-distributed with client cooperation and wireless 
sensor networks.  
 
[1] The centralized approach [8][9] requires fixed 
communication infrastructure and centralized database 
servers for query processing.  
 
[2] The semi-distributed approach is similar to the 
centralized approach, as it also relies on centralized 
database servers for query processing and data storage; 
however the servers delegate some query monitoring tasks 
to the mobile user in order to reduce communication 
overhead.  
 
[3] The semi-distributed [9][10] with client cooperation 
approach considers peer collaboration in mobile P2P 
environments. In this approach, mobile users can only 
share their cached information with other peers, in which 
the information is previously retrieved from centralized 

database servers; thus, this approach does not consider 
query processing among the mobile users.  
 
[4] The algorithms designed for wireless sensor 
networks rely on stationary sensors. Since these sensors 
work like distributed servers to process spatial queries, 
these algorithms cannot be applied to mobile P2P 
environments.  
Due to the dependency on fixed communication 
infrastructure and/or centralized/distributed servers, none 
of these techniques can be applicable to spatial query 
processing in mobile P2P environments. The closest 
works to ours are the systems that support resource 
discovery in mobile P2P environments. These resource 
discovery algorithms enable a mobile or stationary 
resource provider, e.g., a taxi and ATM machine, to 
periodically broadcast its information to mobile users, in 
order to look for potential customers or users.  
 
On the other hand, a mobile user broadcasts a query to 
peers to express an interest in certain types of resources, 
e.g., .Where is my nearest available taxi.. Once the peer 
finds a match between the query and its requested 
resource, the peer sends the information about the 
available requested resource to the requesting user. Our 
work distinguishes itself from these works, as it  
 
[a] Supports spatial constraints for queries, for example, 
the user can ask for her k-nearest resources and certain 
types of resources within a certain distance range. 
 
[b] Enables the user to specify the desired QoS, namely, 
coverage and accuracy, for query answers, in order to 
achieve a tradeoff between the communication overhead 
and the quality of query answers, and enables the user to 
collaborate with peers to continuously maintain query 
answers, while the existing resource discovery works only 
consider snapshot queries. 

3. System Model 

We present the system model of our continuous spatial 
query processing framework in mobile P2P environments. 
Each mobile user belongs to an object type, such as taxis 
and police cars. A querying user issues a continuous query 
asking for objects of a specific type, and the peers who 
belong to the requested object type are referred to as the 
objects of interest of the query. Every mobile device is 
equipped with a positioning device, such as GPS [8][11], 
to determine its location, which is represented by a 
coordinate (x; y). The mobile user can communicate with 
all neighbors through broadcast communication, a 
neighbor through point-to-point communication, and a 
multi-hop peer through a multi-hop routing protocol 
which contains a sequence of point-to-point 
communications.  
 
Furthermore, each user employs a neighbor discovery 
protocol (NDP) to maintain a list of neighbors. The basic 
idea of NDP is that each user periodically broadcasts a 
beacon message with her identity to neighbors. If the user 
has not received the beacon message of a neighbor for a 
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beacon period or certain beacon periods, the user 
considers that the peer no longer resides in her 
transmission range, therefore the peer is removed from the 
neighbor list. However, the user sends a message to 
request for the peer's information (ID, Loc, TS, 
MaxSpeed, and Type), where ID is the peer's identity, Loc 
is the peer's current location at timestamp TS, MaxSpeed 
is the peer's maximum mobility speed, and Type is the 
peer's object type, through point-to-point communication, 
and inserts the peer into the neighbor list.  
 
In practice, MaxSpeed can be set to the maximum legal 
speed in the system area or the highest speed that has been 
recorded by the user for a certain time period, for 
example, one week. User QoS profile. Each mobile user 
maintains a quality of services (QoS) profile that consists 
of two parameters, namely, coverage (Cmin) and accuracy 
(Amin), where 0_Cmin; Amin_1. Cmin specifies the 
desired level of completeness of the available information 
for computing an approximate answer, and Amin specifies 
the desired level of accuracy of the approximate answer. 
The user can specify larger Cmin and Amin values to 
obtain an answer with better QoS, but they incur higher 
communication overhead. Therefore the user can tune 
these QoS requirements to achieve a performance trade-
off between the communication overhead and the quality 
of query answers. The user can change her QoS 
requirements at any time. 

 
Fig. 1: The structure of a local cache. 

 
spatial queries: A range query is in a form (ID, Range, 
Period, Loc, TS, MaxSpeed, ObjectOfInterest), where ID 
is the query issuer's identity, Range is the distance range 
of the query, Period is the valid time frame of the query, 
Loc is the query issuer's current location, TS is the current 
timestamp, MaxSpeed is the query issuer's maximum 
mobility speed, and ObjectOfInterest is the object type 
requested by the query. Given a range query, its answer 
includes the objects of interest residing in a rectangular 
query region whose left-bottom and right-top vertices are 
(Loc.X Range, Loc.YRange) and (Loc.X+Range, 
Loc.Y+Range), respectively.  
 
A k-NN query is in a form (ID, k, Period, Loc, TS, 
MaxSpeed, and ObjectOfInterest), where k is the required 
number of objects of interest of the query and other 
attributes are the same as in the range query. Given a k-
NN query, its answer includes the k-nearest objects of 
interest to Loc. Although we only focus on range and k-
NN queries in this work, our framework is applicable to 
other continuous spatial query types [10][15] if their 
query answers can be abstracted into monitoring regions. 
For example, our framework can be extended to support 
reverse-nearest neighbor queries and density queries 

because recent research efforts have shown that the 
answer of these query types can be maintained by 
monitoring a region.  
 
Local cache: A local cache is a user's storage space 
dedicated to our framework. The local cache stores three 
tables, area table, object table, and query table. The area 
table and object table maintain the received object 
information, while the query table maintains the received 
continuous queries for the continuous query answer 
maintenance scheme.  
 
The details of the query table will be described in Section 
4.4. Each user maintains two types of object information, 
neighbors and query answers. For the information of 
neighbors, it is modeled by a circular area as the user's 
transmission range [11][12], which is stored in the area 
table, and the object table stores the information of each 
neighbor, where a peer's information is in a form (ID, 
Loc, TS, MaxSpeed, Type), where Loc is the peer's latest 
location information sent by the peer at timestamp TS. For 
the information of a range (or k-NN) query answer, it is 
modeled by a rectangular (or circular) area as the query's 
required search area, which is stored in the area table, and 
the object table stores the information of the objects of 
interest that could reside in the required search area.  
 
If an object is included in multiple areas in the area table, 
the object table only keeps one entry for the object with 
the latest location information received by the user 
through the neighbor discovery protocol, the information 
sharing with neighbors control flow (Section 4.2), the 
query broadcasting [13][14] control flow (Section 4.3), or 
the continuous query answer maintenance control flow 
(Section 4.4). Whenever the user receives the more recent 
location information of an object stored in the object 
table, the user updates the Loc and TS of the object's entry 
accordingly. If an object is no longer referred by any entry 
in the area table, the object is removed from the object 
table.  

Figure 1 depicts the local cache of a mobile user u, where 
u's location is represented by a square and the peers are 
represented by circles with unique labels. The area table 
contains two areas, where the user's transmission range 
A1 is represented by a dotted circle with one object o4, 
and the required search area of a continuous range query 
A2 is represented by a dotted rectangle with six objects o1 
to o6. Thus the object table contains one entry for each of 
the objects of A1 and A2, o1 to o6. 

4. Query Processing Framework 

Figure 2 depicts the four main control flows in our 
framework:  
(1) QoS measurements for a local cache 
(2) Information sharing with neighbors 
(3) Query broadcasting and  
(4) Continuous query answer maintenance.  
Algorithm 1 outlines the first three control flows and 
Algorithm 2 outlines the fourth control flow. We will 
describe each control flow in detail. 
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Fig. 2: The four control flows in our framework. 

 

4.1 QoS Measurements for a Local Cache 

This is the first control flow in our framework, which is 
indicated by thin lines in Figure 2 (Lines 2 to 7 in 
Algorithm 1). This control flow is completely executed on 
the mobile user side without enlisting peers for help. Due 
to user mobility, the cached peer location information 
could become stale. To capture location uncertainty, we 
employ a conservative approach that models an uncertain 
location as an adjusted location region. The adjusted 
location region of a peer's location [17][18] is a circular 
region centered at the peer's location with a radius of 
(tcurrent TS) MaxSpeed, where tcurrent is the current 
time and TS is the timestamp of the latest location update. 

 
        (a) Range query           (b) Coverage  measurement 

Fig. 3: Coverage measurement for a range query. 
 

In other words, the peer can move in any direction at the 
maximum mobility speed MaxSpeed. We will present 
how to determine the coverage and accuracy for a query 
with respect to the information stored in a local cache for 
both range queries and k-nearest-neighbor (k-NN) 
queries. 
 

4.1.1  Coverage Measurement 

The coverage measurement [11] [15] indicates the level of 
completeness of the available information in a local cache 
for computing a query answer. Given the required search 
area of a query and a local cache, the coverage of the 
information in the local cache is measured by the ratio of 
the intersection of the required search area and the union 
of the areas stored in the area table to the required search 
area. Formally, given a required search area S and a set of 
n areas A1, A2, An in the area table in a local cache L 
intersecting S, the coverage of L with respect to S is 
calculated as: 

 

where Area(R) is the area of a region R. 
 
Since calculating the exact coverage of a large number of 
overlapping areas is costly, we use a histogram approach 
to get approximate coverage measurement. The basic idea 
is that we model the required search area by a uniform 
grid structure and maintain a bitmap, in which each bit 
corresponds to a unique gird cell. Initially, all bits in the 
bitmap are set to zero. For each grid cell, if it is totally 
covered by some area stored in the area table, the 
corresponding bit is set to one. The coverage is the 
number of one in the bitmap divided by the total number 
of bits in the bitmap. Since the bit of a grid cell is set to 
one if its area is totally covered by some monitored area, a 
larger grid cell area results in a larger underestimation of 
the coverage measurement. Although a smaller grid cell 
area gives higher computation precision, it incurs higher 
computational overhead.  
 
In Section 6.3, we study this performance tradeoff 
between the computational overhead and the coverage 
measurement precision. We will discuss the coverage 
measurement for range and k-NN queries. Range queries. 
Figure 3a shows a user's local cache, which stores the 
information about the user's neighbors (the area of the 
user's transmission range is represented by a dotted circle) 
and the adjusted required search area of the user's 
continuous range query is represented by a dotted 
rectangle. The detail of how to adjust the required search 
area of a continuous range query will be discussed in 
Section 4.4.   

 
       (a) 3-NN query      (b) Coverage measurement 

Fig. 4: Coverage measurement for a 3-NN query 
 

In this example, the user wants to measure the coverage of 
the information stored in the local cache with respect to 
the same continuous range query, where the user's 
location is represented by a filled square, the query 
region1 of the range query is represented by a rectangle, 
and the adjusted location region of each object stored in 
the object table is represented by a circle with a unique 
label. Since the required search area of a range query is 
the same as its query region, the user can calculate the 
coverage without enlisting any peers for help. In Figure 
3b, we assume that the required search area is modeled by 
a uniform grid structure of 10 cells. Since all grid cells, 
which are represented by shaded cells, are totally covered 
by the areas stored in the area table, A1 and/or A2, all bits 
in the bitmap are set to one; hence the coverage is 100/100 
= 1. k-NN queries.  
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Figure 4a shows the same local cache as in Figure 3, 
where the local cache stores the information about the 
user's neighbors (the area of the user's transmission range 
is represented by a dotted circle) and the adjusted required 
search area of the user's outstanding continuous range 
query is represented by a dotted rectangle. In this 
example, a user wants to measure the coverage of the 
information stored in the local cache with respect to a new 
k-NN query. The required search area of a k-NN query is 
a minimal circle that totally covers the exact location or 
the adjusted location region of k objects of interest. These 
k objects are not necessary to be the k-nearest objects to 
the user. However, if the user cannot find at least k 
objects of interest in the local cache, the user is unable to 
determine the required search area of the query, S = null. 
Thus the user cannot perform the coverage measurement, 
and the user proceeds to the next control flow: 
information sharing with neighbors.  
 
In this example, we assume that all objects o1 to o6 are 
the objects of interest of the query; therefore the required 
search area of the query is a circle (represented by a bold 
circle) that totally covers the adjusted location regions of 
3-nearest objects, o2, o4, and o6. Then we construct a 
minimum bounding rectangle of the required search area 
and model the rectangle by a uniform grid structure of 10 
fi 10 grid cells, as depicted in Figure 4b. Since 72 grid 
cells, which are represented by shaded cells, are totally 
covered by the areas, there are 72 bits in the bitmap are set 
to one; hence the coverage is 72/100 = 0.72. 
 

4.1.2  Accuracy Measurement 

The accuracy measurement indicates the level of accuracy 
of an approximate answer, which is derived from a local 
cache. It is important to note that we only determine an 
approximate query answer if the coverage requirement is 
satisfied. Since it is very costly to determine an exact 
probabilistic answer for a k-NN query, even an 
approximate approach is computationally expensive [25], 
these approaches are not suitable for mobile devices with 
limited computational resources. To this end, we use a 
heuristic approach to measure the accuracy of a range or 
k-NN query answer.  
 
The accuracy measurement is defined as follows: Given a 
query with a required search area S, a set of m objects of 
interest of the query whose exact locations or adjusted 
location regions intersect S, O = fo1; o2, the probability pi 
of each object oi 2 O being part of the query answer, 
where pi fi 0, and an approximate answer A = fo1; o2; : : : 
; ong, where A fi O, the accuracy, Acc(O;A), is computed 
as the average of (a) the probability pi of correctly making 
a decision of including an object oi in A, and (b) the 
probability 1pi of correctly making a decision of 
excluding an object oi from A; hence the accuracy of A is 
computed as: 

 

We assume a uniform distribution for the actual location 
of an object oi in its adjusted location region when 
computing pi for both range and k-NN queries; however 
our algorithm is completely independent of how we 
compute pi. The following theorem shows the correctness 
of Equation 2. Range queries.  
 
Figure 5a shows a range query, where its query region is 
represented by a rectangle and the adjusted location 
region of each object of interest of the query that 
intersects the query region is represented by a circle. 
Since the required search area of a range query is the same 
as its query region, O contains the objects of interest of 
the query whose exact locations or adjusted location 
regions intersect the query region; thus O = fo1; o2; o3; 
o4; o6g in this example. For each object oi 2 O with an 
exact location, pi is set to one because pi must reside in 
the query region. On the other hand, for each object oi 2 
O with an adjusted location region, since we consider a 
uniform distribution, pi is computed as the ratio of the 
area of the intersection of the adjusted location region and 
the query region to the area of the adjusted location 
region. 
 

 
            (a) Range query        (b) 3-NN query 

 

Fig. 5: Accuracy measurement. 
 

We can maximize the accuracy of an approximate range 
query answer by maximizing pi in each term in Acc 
(O;A). Thus if pi fi 0:5, oi should be included in A; 
however if pi < 0:5, oi should be excluded from A. The 
correctness of this selection threshold is proved in 
Theorem 2. The accuracy measurement for k-NN queries 
has two steps. 
 
Step 1: Distance threshold step. We already find the 
required search area of a k-NN query during the coverage 
measurement. We consider the objects of interest of the 
query O = fo1; o2; whose exact locations or adjusted 
location regions intersect the required search area. For 
each object oi 2 O with an adjusted location region, we 
determine a distance range [dmini; dmaxi], where dmini 
and dmaxi are the smallest and largest possible distances 
between oi and the querying user u, respectively. On the 
other hand, for each object oi 2 O with an exact location, 
both dmini and dmaxi are set to the distance between oi 
and u.  
 
Then the objects in O are sorted by their smallest possible 
distances in increasing order. We find the smallest 
possible distance of the (k +1)-st object in the sorted O as 
a minimum threshold distance, Tmin, and the largest 
possible distance of the k-th object in the sorted O as a 
maximum threshold distance, Tmax. Figure 5b shows the 
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sorted O = fo4; o2; o6; o1; o3; o5g, where the smallest 
and largest possible distances of the adjusted location 
region of each object to u are represented by t and u, 
respectively. Since o1 is the (k + 1)-st object, Tmin = 
dmin1 that is represented by a dotted line. Since o6 is the 
k-th object, Tmax = dmax6 that is represented by a line.  
 
Step 2: Answer selection step. We select the k objects 
with the smallest minimum possible distance to an answer 
set A. 
 
Algorithm 1 Continuous spatial query processing 
1: function PROCESSING (Query Q, LocalCache L, 
Float Cmin, Amin) 
// Control Flow 1: QoS measurements for a local cache 
2: S   the required search area of Q 
3: if S 6= null and cov(S;L) _ Cmin then 
4: O   the objects of interest of Q in L intersecting S 
5: A   an answer derived from O 
6: if Acc (O;A) _ Amin then return A 
7: end if 
// Control Flow 2: Information sharing with neighbors 
8: Lp   the neighbor's transmission range and the 
monitored area of the 
query whose requested object type is the same as Q, and 
their objects 
9: S   the required search area of Q 
10: if S 6= null and cov(S;L [ Lp) _ Cmin then 
11: O   the objects of interest of Q in L [ Lp intersecting S 
12: A   an answer derived from O 
13: if Acc(O;A) _ Amin then return A 
14: end if 
// Control Flow 3: Query broadcasting 
15: S   the required search area of Q 
16: Find the objects of interest residing in S 
17: Update the area table and object table accordingly 
18: Compute a query answer A 
19: return A 
 
These selected objects are the first k objects in the sorted 
O and their minimum possible distances are less than 
Tmax. For each object oi € A, pi = min(Tmin dmini - 
dmaxi - dmini )/(dmaxi-dmini) because if the actual 
distance between oi and u is equal to or less than Tmin, oi 
must be one of the k- NN to u. Thus the probability of 
correctly making a decision of including oi in A is pi. For 
each object oj =2 A, pj = (Tmax-dminj)/(dmaxj-dminj) 
because if the actual distance between oj and u is equal to 
or less than Tmax, oj could be one of the k-NN to u. Thus 
the probability of correctly making a decision of 
excluding oj from A is 1 -pj .  
 
Figure 5b shows the sorted O = fo4; o2; o6; o1; o3; o5g of 
a 3-NN query. The first three objects, o4, o2, and o6, are 
selected to an answer set A. Each object oi 2 A must be 
one of the k-NN to u if the actual distance between oi and 
the querying user u is within a distance range 
min(Tmin_dmini ; dmaxi_dmini ), which is represented 
by a gray bold line. We assume p4 = 1, p2 = 0:3, and p6 = 
0:2. For each object oj =2 A, o1, o3, and o5, oj could be 
one of the k-NN to u, if the actual distance between oj and 

u is within a distance range Tmax_dminj , which is also 
represented by a gray bold line.  
 
After the user submits a query and QoS profile to the 
continuous query processor, which is indicated by the 
flow labeled by 1a in Figure 2, if the continuous query 
processor finds an approximate answer that, satisfies the 
user's coverage and accuracy requirements, it returns the 
answer to the user (this flow is labeled by 1b). Otherwise, 
the continuous query processor proceeds to the next 
control flow, that is, information sharing with neighbors 
(this flow is labeled by 2a). 
 

4.2 Information Sharing with Neighbors 

This is the second control flow in our framework, which 
is indicated by thick lines in Figure 2 (Lines 8 to 14 in 
Algorithm 1). When a querying user u fails to get an 
answer from the local cache, the continuous query 
processor initiates this control flow. Since this control 
flow is very simple, we only present its main idea for both 
range and k-NN queries, which can be summarized into 
two steps.  
 
Step 1: Information sharing step.  
In this step, u sends the query to the neighbors through 
broadcast communication. Each neighbor p replies to u 
with (1) the area of p's transmission range along with its 
objects that belong to the requested object type of u's 
query; and/or (2) the monitored required search area of 
each p's continuous query along with its monitored objects 
if its requested object type is the same as u's query, 
through point-to-point communication.  
 
Step 2: Answer refinement step 
After u receives the information from her neighbors, u 
updates the location information of the objects stored in 
the object table accordingly (this flow is labeled by 2b in 
Figure 2). If the coverage of the information stored in u's 
local cache and the information returned by the neighbors 
with respect to the query satisfies u's coverage 
requirement, u derives a new answer from the local cache. 
If the answer also satisfies u's accuracy requirement, the 
continuous query processor returns the answer to u (this 
flow is labeled by 2c). If the answer still cannot satisfy u's 
QoS requirements, the query processor proceeds to the 
query broadcasting control [19][20] flow (this flow is 
labeled by 3a). 
 

4.3 Query Broadcasting 

This is the third control flow in our framework, which is 
indicated by very thick lines in Figure 2 (Lines 15 to 19 in 
Algorithm 1). The key functions of this control flow are to  
1. Search the objects of interest of a query residing in its 
required search area in order to find the most accurate 
answer; and  
2. Have an opportunity for a peer to update an object's 
location stored in the local cache when the peer is 
involved in routing messages [18] [21] for query 
processing, which contains the more updated location of 
the object. The latter function is useful to reduce the 
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location uncertainty of the objects stored in the local 
cache.  
Figures 6a and 6b illustrate this control flow for range and 
k-NN queries, respectively. In both examples, there are 20 
mobile users, m1 to m20, where m15 is a querying user 
(represented by a square), the objects of interest of the 
query are m6, m7, m16, m18, and m20, which are 
represented by triangles, and other users are represented 
by circles. A user's transmission range is represented by a 
dotted circle. Since this control flow will provide the most 
accurate answer for a query, the relevant information of 
this query is removed from the query table and the object 
table before initiating this control flow. In general, the 
query broadcasting control flow has two main steps. 
 

4.3.1  Required search area step 

We will discuss how to find the required search area of a 
range or k-NN query. Range series. Since the required 
search area of a range query is the same as its query 
region, the querying user u can determine the required 
search area without enlisting peers for help. In Figure 6a, 
the required search area of the range query is represented 
by a rectangle. k-NN queries. For a k-NN query, the 
querying user u needs to broadcast the query to peers to 
find at least k objects. Then the required search area of the 
query is a circular area centered at u with a radius of the 
required search range of the query, which is the distance 
from u to the k-th nearest object. To find at least k objects, 
u broadcasts the query with a hop distance h = 1 to the 
neighbors. If u cannot find at least k objects within one 
hop, u increases h by one and rebroadcasts the query with 
the updated h to the neighbors. 

 
Fig. 6: Query broadcasting for range and NN queries. 

 
When a peer p receives the query, p sends its information 
to u through point-to- point communication. If the 
received h is larger than one, p decreases h by one and 
forwards the query with the updated h to the neighbors 
through broadcast communication. p simply drops 
duplicate messages without processing or forwarding 
them. It is important to note that when a peer participates 
in routing a reply to u, the peer has an opportunity to 
update the location information of the objects stored in the 
local cache. U keeps performing this broadcast process 
until u finds at least k objects of interest. It is expected 
that u receives replies from more peers as h increases. 
Receiving the replies from the same set of peers with two 
consecutive hop distances, h and h+1, implies that the 
total number of objects of interest of u's query in u's 
network partition or the system is less than k.  

 
When this case takes place, u can postpone this step for a 
while or proceed to the next step by reducing k to the 
number of objects of interest that are already found by this 
step. In Figure 6b, the querying user u = m15 issues a 3-
NN query. After u broadcasts the query with a hop 
distance h = 1 to the neighbors, u receives replies from 
three peers, m12, m16, and m18, which are located in u's 
transmission range [22] (represented by a black dotted 
circle).  
 
Among these three peers, u finds two objects of interest, 
m16 and m18. Since u requires three objects to determine 
a required search area, u rebroadcasts the query with an 
increased hop distance h = 2. Then u receives replies from 
five more peers, m2, m6, m11, m13, and m17, which are 
located in the transmission ranges of m12, m16, and m18 
(represented by gray dotted circles). Since u finds three 
objects of interest, m6, m16, and m18, u terminates the 
broadcast process and determines the required search area. 
The required search area is a circle centered at u with a 
radius of the required search range, which is the distance 
from u to the 3-th nearest object, m6, which is represented 
by a black circle. Although u already finds three objects 
of interest, they do not constitute a correct query answer. 
This is because the correct answer is m16, m18 and, m7. 
This missing of m7, which is outside the searched area 
with h = 2, will be resolved in the next step. 
 
Algorithm 2 Continuous query answer maintenance 
1: function MAINTENANCE (Query Q, LocalCache L, 
Float Cmin, Amin) 
// Control Flow 4: Continuous query answer maintenance 
2: if Q is a k-NN query then 
3: Send Q and AggregateMaxSpeed to the peers residing 
in S 
4: end if 
5: Update the object table when receiving a noti_cation 
message 
6: Periodically evaluate the query answer A 
7: if A becomes uncertain and Acc(A) < Amin then 
8: Go to Line 2 in Algorithm 1 to start the Control Flow 1 
9: else return A 
 

4.3.2  Query dissemination step 

Once we finish the required search area step, both range 
and k-NN queries are boiled down to range queries with 
their required search areas as the range query region. The 
main idea of this step to retrieve the objects of interest 
within the range query region u broadcasts the query 
along with the range query region to the neighbors. When 
a peer p receives the query, if p belongs to the requested 
object type, p sends its information to u through point-to-
point communication. In addition, if p's transmission 
range intersects the range query region, p rebroadcasts the 
query to the neighbors. Similar to the required search area 
step, the peer participating in routing messages [23] has 
an opportunity to update the peer location information 
stored in the local cache. After u receives the replies from 
the objects of interest within the range query region, u 
computes the answer. 
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Range queries: The answer of a range query simply 
includes the objects of interest located in the required 
search area. Figure 6a shows that u receives replies from 
four objects of interest, m6, m7, m16, and m18, and these 
objects constitute the query answer. 
 
k-NN queries: Among the objects of interest located in 
the required search area of the query, u selects the k-
nearest objects as the answer. Figure 6b shows that u 
receives replies from four objects of interest,m6, m7, 
m16, andm18, u realizes that m7 is closer to herself than 
m6. Thus u can find a correct answer, which includes m7, 
m16, and m18. After the continuous query processor 
[24]finds the query answer, it updates the local cache 
accordingly (this flow is labeled by 3b). The required 
search space of the query along with the ID list of its 
objects of interest residing in the required search area is 
inserted into the area table. Then the information of these 
objects is inserted into the object table.  
Finally the answer is returned to the user (this flow is 
labeled by 3c). We will describe how to monitor the 
answer in the continuous query answer maintenance 
control flow. 
 

4.4 Continuous Query Answer Maintenance 

This is the fourth control flow in our framework, which is 
indicated by a very thick white line in Figure 2 and 
outlined by Algorithm 2. The main tasks of this control 
flow are (1) collaborative query maintenance: the 
querying user collaborates with peers to forward the query 
to other peers who could become part of the answer 
(Section 4.4.1); and (2) query evaluation: the querying 
user computes the answer locally as long as the answer 
derived from the local cache satisfies her QoS 
requirements (Section 4.4.2).  
 

4.4.1 Collaborative query maintenance 

Each user maintains a query table. In the query table, a 
range query is stored in a form (ID, Loc, TS, Range, 
Period, MaxSpeed, ObjectOfInterest), where ID is the 
query issuer's identity, Loc is the query location point, TS 
records the time when the query is issued, Range is the 
required search range of the query, Period is the valid time 
period of the query, MaxSpeed is the maximum mobility 
speed of the query issuer, and ObjectOfInterest is the 
requested object type of the query. Likewise, a k-NN 
query is stored in a similar form (ID, Loc, TS, Range, 
Period, MaxSpeed, ObjectOfInterest, and 
AggregateMaxSpeed), where AggregateMaxSpeed is the 
maximum mobility speed of the objects of interest that 
could reside in the required search area of the query. In 
general, the collaborative query maintenance task has 
three main steps.  
 
Step 1: Query dissemination step.  
This step mainly disseminates a query to the peer located 
in the required search area. For a range query, since its 
required search area is the same as its query region, the 
peer can store the query in the query table during the 

query dissemination step in the query broadcasting control 
flow, as discussed in Section 4.3. On the other hand, for a 
k-NN query, it needs to disseminate an extra parameter 
for the query, AggregateMaxSpeed, to the peer located in 
its required search area. Thus after the querying user u 
gets a query answer, u broadcasts the query and its 
AggregateMaxSpeed to the peer residing in the required 
search area. Then the peer stores the query in the query 
table.   
 
Step 2: Query table synchronization step.  
When a peer p discovers a new neighbor p0, this step 
takes place to synchronize the query tables of p and p0 
through a three-way message exchange via point-to-point 
communication. Without loss of generality, we assume 
that the peer with a smaller ID initiates this step. We 
consider that p initiates this step. (1) p sends a list p:L of 
the query IDs in the query table to p0. (2) After p0 
receives p:L, p0 generates a list p0:L of the query IDs in 
the query table. Then p0 replies to p with the information 
of the queries in p0:L but not in p:L, p0:L n p:L, and a list 
of query IDs in p:L but not in p0:L, p:Lnp0:L. (3) p stores 
the received queries in the query table and sends the 
information of the queries included in the received list to 
p0. p0 stores the received queries in the query table.  
 
Step 3: Notification step. 
For each new query received during the query table 
synchronization step, the peer, p and/or p0, performs this 
step to decide whether to send its information to the query 
issuer. Due to user mobility, the peer has to adjust the 
required search area of a range or k-NN query to capture 
the effect of location uncertainty. We will discuss how to 
adjust the required search area of a range or k-NN query. 
Range queries. Figure 7a shows a range query, where the 
original query location point is represented by a gray 
square and the original required search area is represented 
by a dotted rectangle. Similar to the location adjustment of 
peer locations, 

 
Fig. 7: Required search area adjustment 

 
We use a conservative approach to adjust the required 
search area of the range query, where the querying user u 
can move at the maximum mobility speed MaxSpeedu in 
any direction. Thus the distance from the original query 
location point and the u's current location is at most r = 
(tcurrent - TS) _ MaxSpeedu. In other words, u could be 
anywhere within a circular location region centered at the 
original query location point with a radius of r, which is 
represented by a gray circle. To ensure that an adjusted 
required search area contains all the possible range query 
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regions, regardless of the u's actual location within u's 
adjusted location region, we extend each edge of the 
original required search area by r. The adjusted required 
search area is represented by a rectangle.  
 
k-NN queries: Figure 7b shows a k-NN query, where the 
original query location point is represented by a gray 
square and the original required search area is represented 
by a dotted circle. Similar to range queries, the adjusted 
location region of a querying user u is centered at the 
original query location point with a radius of r = (tcurrent-
TS)_MaxSpeedu, which is represented by a gray circle. 
Consider a case that all the objects of interest residing in 
the required search area move at AggregateMaxSpeed; 
therefore the maximum possible distance between u and 
each of these objects is r_rmax_Range, where rmax = 
(tcurrent - TS) _ AggregateMaxSpeed, and Range is the 
original required search range, which is the original 
distance between u and the k-th nearest object in the 
answer. Since u could be anywhere within the adjusted 
location region, the adjusted required search area is a 
circular area centered at the original query location point 
with a radius of 2_r_rmax_Range. Whenever u finds a 
larger AggregateMaxSpeed, u broadcasts it to the objects 
residing in the adjusted required search area.  
After the peer, p and/or p0, determines the required search 
area of a newly received query, if the peer is located in the 
adjusted required search area, the peer sends her 
information as a notification message to the querying user 
through point to point communication. Otherwise, the 
peer will periodically evaluate the query until the query is 
expired.  
 

4.4.2 Query evaluation 

The main idea of this task is that the querying user, u, 
checks whether to derive a certain query answer from the 
local cache. A certain query answer can be returned to u 
without any QoS measurement. If u cannot get a certain 
answer from the local cache, u can find an answer from 
the local cache as long as the answer satisfies her QoS 
requirements. 

 
Fig. 8: The answer of a 3-NN query. 

 
In case that u cannot find an answer from that satisfies her 
QoS requirements, u restarts the query processing by 
executing the second control flow: information sharing 
with neighbors. Once u receives a notification message 
through the collaborative query maintenance task, u 
updates the object table accordingly. It is important to 
note that u will adjust the required search area of the 
queries stored in the area table as in Section 4.4.1, when u 
is requested to return the information of the local cache to 

a peer in the information sharing step in the second 
control flow.  
 
We will describe how to check the certainty of a range or 
k-NN query answer. Range queries. Since the required 
search area of a range query is the same as its query 
region, the querying user u always knows the exact 
required search area of the query. Thus u simply adjusts 
the location of the objects of interest stored in the local 
cache, and then selects the objects with adjusted location 
regions intersecting the query region. If all these objects 
are totally included in the required search area, the 
accuracy of an answer that includes all these objects is 
one; hence this answer is a certain one.  
 
k-NN queries: In contrast to range queries, u needs to 
determine the required search area of a k-NN query, and 
calculate the minimum and maximum possible distances 
between each object of interest in the local cache to u's 
current location. Then u finds an object p with the k-th 
smallest maximum possible distance. The required search 
area is a circle centered as u's current location with a 
radius of the maximum distance between p and u. If there 
are only k objects intersecting the required search area, 
their adjusted locations or exact locations must be totally 
included in the required search area; therefore these k 
objects constitute a certain query answer.  
 
Figure 8 shows the answer of a 3-NN query at two time 
instances, where the current location of the querying user 
u is represented by a black square, and the exact location 
or the adjusted location region of each object of interest of 
the query is represented by a black circle or a dotted 
circle, respectively.  
 
Figure 8a shows an answer, in which o5 has the third 
smallest maximum possible distance to u; therefore the 
required search area (represented by a circle) is a circular 
area with a radius of the distance from u to the farthest 
point on the adjusted location region of o5 from u. Since 
there are only three objects, o2, o4, and o5, whose 
adjusted location regions are totally covered by the 
adjusted required search area, these objects constitute a 
certain answer.  
 
Figure 8b shows the query answer at a later time, where 
the adjusted location regions of objects, o1 to o5, are 
expanded, and the location of o6 is adjusted. o5 still has 
the third smallest maximum possible distance to u, so the 
required search area is a circle at u with a radius of the 
distance from u to the farthest point on the adjusted 
location region of o5. Since the adjusted location regions 
of four objects, o2, o3, o4, and o5, intersect the required 
search area, any three of these four objects could be the 
actual query answer; hence the answer becomes uncertain, 
and u needs to check the accuracy of the query answer.  

5. Simulation Model 

In this section, we present a simulation model [25][26] 
that is used to evaluate our continuous spatial query 
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processing framework (denoted as ContQP) in a mobile 
P2P environment. 
 
 

5.1 Baseline Algorithms 

To our best knowledge, ContQP is the first framework 
realizing continuous spatial query processing in mobile 
P2P environments. We design two baseline algorithms 
that have a subset of the control flows of ContQP to 
evaluate the performance of ContQP. Since the 
continuous query answer maintenance scheme (the fourth 
control flow) is the one of the key features of our 
framework, the baseline algorithms do not have this 
control flow.  
1. In the first baseline algorithm (denoted as LocalQP), 
the user only monitors the transmission range. If the user 
cannot find an answer that satisfies her QoS requirements 
from the local cache, that is, the first control flow: QoS 
measurements for the local cache, the user execute the 
query broadcasting control flow (the third control flow) to 
find the answer.  
In the second baseline algorithm (denoted as PeerQP), if 
the user fails to find an answer from a local cache, the 
user proceeds to the information sharing with neighbors 
(the second control flow) to find the answer. If the answer 
still cannot satisfy the user's QoS requirements, the user 
executes the query broadcasting control flow to find the 
answer. 

5.2 Power Consumption Model 

Each mobile user is equipped a wireless network interface 
card that supports two communication methods: point-to-
point and broadcast communication. The user can 
communicate with all neighbors through broadcast 
communication, one of the neighbors through point-to-
point communication, and a multi-hop peer through a 
point-to-point multi-hop routing that contains a sequence 
of point-to-point communication.  
 
In this work, we focus on the application layer and do not 
have any assumption on the underlying multi-hop routing 
protocol; therefore any multi-hop routing protocol can be 
applied to our framework. It has shown that the power 
consumption of wireless communication can be modeled 
by linear formulas in terms of message sizes and 
communication methods. For point-to-point 
communication, Ppoint, a source user S sends a message 
to a destination user D. The affected users of this 
communication method are the users who reside in S's 
transmission range, RS, D's transmission range, RD, and 
their transmission ranges, RSD. The power consumption 
of Ppoint where f is a fixed setup cost, and v is a variable 
cost in terms of the size of a message msg in bytes, jmsgj. 

 
Table 1: Parameters for point-to-point communication 

 

Conditions µ W. s/byte µ W. s 

S 
D 

Peers € RSD 

Peers € RS 

Peers € RD 

Vsend = 1.9 
Vrecv = 0.5 
Vsd_disc  = 0 
Vs_disc  = 0 
Vd_disc  = 0 

Fsend  = 454 
Frecv = 356 
Fsd_disc  = 70 
Fs_disc  = 24 
Fd_disc  = 56 

 
 

TABLE 2: Parameters for broadcast communication 
 

Conditi
ons 

µ W. 
s/byte 

µ W. s 

S 
Peers € 
RS 

Vbsend = 
1.9 

Vbrecv = 
0.5 

Fbsend  = 
266 
Fbrecv =    
56 

 
is measured by the following equations. 

 

 
 

For broadcast communication, Pbc, a source user S 
broadcasts a message to the peers residing in S's 
transmission range, SR. The power consumption of Pbc is 
measured by the following equations: The parameter 
settings for Ppoint and Pbc are depicted in Tables 1 and 2, 
respectively. 
 

 
 

5.3 Performance Metrics 

We evaluate the performance of our framework in terms 
of four metrics.  
[1] Number of messages: metric measures the average 
number of messages incurred by our framework per query 
evaluation.  
[2] Power consumption: metric measures the average 
power consumption per query evaluation based on the 
power consumption models described in Section 5.2.  
[3] False negative: This metric measure the average 
relative number of objects missed in an approximate 
answer compared to an actual one. Given an actual answer 
set A and an approximate answer set bA, the relative false 
negative is computed as jA n bAj=jAj. 
[4] False positive: This metric measure the average 
relative number of extra objects in an approximate answer 
compared to an actual one. The false positive is computed 
as j bA n Aj=jAj. 

5.4 Simulation Settings 

We implement our framework for both range queries 
continuously report the object(s) of a specific type within 
a certain range from a query issuer, and k-NN queries 
continuously report the k-nearest object(s) of a specific 
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type to a query issuer in C++. Each experiment runs 1,000 
seconds. Unless mentioned otherwise, we generate 200 
mobile users moving at a speed distributed uniformly 
between 1 and 20 meter(s) per second based on the 
.random waypoint model [27] in a 1,000m _ 1,000m 
space. Each user belongs to one of 10 object types. 20% 
of the users issue continuous queries for a time period of 
1,000 seconds, and they evaluate their query answers 
every second. 

 
TABLE 3: Parameter settings for experiments 
Parameters Default 

Values 
Ranges 

No. of mobile users 
Coverage 
Accuracy 
Mobility speed 
No. of objects (k) 
Range distance(Range) 
Grid cell area 
Beacon interval 
Query period 
No. of queries 
Transmission range 
No. of object types 

200 
0.8 
0.8 

[1, 20] m/sec 
5 

200 meters 
42 m2 

1 sec 
1,000 sec 

20% of users 
100 meters 

10 

100 to 500 
0.5 to 1.0 
0.5 to 1.0 

[1, 5] to [1, 30] m/sec 
2 to 10 

150 to 350 meters 
22 to 122 m2 
1 to 5 sec 
2 to 10 sec 

5% to 40% of users 
- 
- 

 
The default coverage, Cmin, and accuracy, Amin, 
requirements are set to 0:8. The grid cell area for the 
approximate coverage measurement is 16 m2. The 
transmission range of each user is 100 meters, and the 
beacon interval is one second. We first assume that a 
querying user receives the beacon her neighbors before 
evaluating a query, and then we remove this assumption 
by increasing the beacon interval in Section 6.6.  
For query parameters, the range distance, Range, of range 
queries is 200 meters, and the required number of objects, 
k, of k-NN queries is five. Table 3 summarizes the 
parameter settings. 

6. Experimental Results 

This section presents the experimental results of our 
framework, ContQP, in comparison with the baseline 
algorithms, LocalQP and PeerQP, with respect to various 
numbers of users, numbers of continuous queries, QoS 
requirements, query parameters (the range distance of 
range queries and the value of k of k-NN queries), user 
mobility speeds, beacon intervals, and query period 
intervals. 
 

6.1 Effect of the Number of Users 

Figures 9a and 9b show that ContQP outperforms the 
baseline algorithms in terms of number communication 
overhead. The reason is that LocalQP executes the query 
broadcasting control flow for each query evaluation and 
PeerQP only slightly reduces the number of times of 
executing this control flow. On the other hand, ContQP 
effectively avoids executing the relatively expensive 
query broadcasting control flow through the continuous 
query answer maintenance control flow that efficiently 
maintains the user's local cache. Increasing the number of 
users results in more users residing in the required search 

area of queries, thus the communication overhead 
increases.  
 
Figure 9c shows that the false negative improves, as there 
are more users. In a sparser environment [18] [26], the 
user is more likely to suffer from a network partition 
problem, in which the user is unable to communicate with 
all objects residing in the query's required search area. 
With a higher user density, the user has a lower 
probability of suffering from the network partition 
problem, so the false negative reduces. When there are 
more users, ContQP has a higher probability to select 
more extra objects to an answer (Figure 9d). Since the 
false positive of ContQP for range queries in all the 
experiments is user of ContQP has a higher probability to 
get an answer from the information shared by neighbors 
about the adjusted research search area of their queries 
and their transmission ranges. 
 

 
Fig. 9: Number of Mobile Users (Range Queries) 

 

 
Fig. 10: Number of mobile users (k-NN queries). 

 

 
(a) Power consumption     (b) False Negative  

Fig. 11: Number of querying users (range queries). 
 

 
(a) Power consumption     (b) False Negative  

Fig. 12: Number of querying users (k-NN queries). 
 
Since PeerQP does not continuously maintain the query 
answer, the user only as a higher chance to get the query 
answer from the information shared by neighbors about 
their transmission ranges; thus PeerQP slightly reduces 
the power consumption. The number of querying users 
has only slight effect on the false negative (Figure 11b). 
Figure 12 shows that the results of k-NN queries are 
similar to that of range queries. 
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6.2 Effect of QoS Requirements 

 
TABLE 4: Approximate coverage computation. 

Grid Size Area 22 42 62 82 102 122 

Coverage 0.632 0.624 
0.61

2 
0.60

6 
0.6 

0.58
6 

Computation time 
(ms) 

137.96
3 

35.09
4 

15.7
7 

9.17
3 

5.93
2 

4.22
8 

 
Table 4 shows the precision of the approximate coverage 
measurement with respect to increasing the grid cell area 
from 22 to 122 m2. Since, the bit of a grid cell is set to 
one, if it is totally covered by some monitored area that is 
either stored in a user's local cache or shared by a user's 
neighbor, increasing the grid cell area leads to a larger 
underestimation of the approximate coverage 
measurement. The results indicate that when the grid cell 
area increases, the precision only degrades slightly, while 
the computational time significantly decreases. Therefore, 
we choose 16 m2 as the default grid cell area [22][24] for 
all the experiments because this area size gives the 
greatest improvement ratio on the computational time. 
 

 
(a) Power consumption     (b) False Negative  

Fig. 13: Coverage requirements (range queries). 
 

 
(a) Power consumption     (b) False Negative  

Fig. 14: Coverage requirements (k-NN queries). 
 
Figures 13 and 14 show that the coverage requirement, 
Cmin, only affects ContQP slightly for range and k-NN 
queries, respectively. After ContQP finds a query answer, 
the query's required search area is contained by the 
adjusted required search area that is monitored by the 
continuous query answer maintenance control flow, the 
coverage of the information stored in the local cache with 
respect to the query is one. Figure 13a shows that PeerQP 
incurs less communication overhead than ContQP, as 
Cmin is small. This is because the user of PeerQP is more 
likely to find an answer from the local cache or the 
information shared by neighbors; however, the query 
answer accuracy is very low (Figure 13b).  
 
 

 
(a) Power consumption     (b) False Negative  

Fig. 15: Accuracy requirements (range queries). 
 

 
(a) Power consumption     (b) False Negative  

Fig. 16: Accuracy requirements (k-NN queries). 
 
Figures 15 and 16 show that when the accuracy 
requirement, Amin, gets larger, the communication 
overhead of ContQP increases, while its accuracy 
improves. This is because a larger Amin results in a 
higher probability that the user needs to execute the 
relatively expensive query broadcasting control flow to 
find the most accurate possible query answer. However, 
LocalQP executes this control flow for each query 
evaluation, while PeerQP has a much higher chance to 
execute this control flow than ContQP. Therefore, Amin 
achieves a tradeoff between the communication overhead 
and the query answer accuracy for ContQP. 
 

6.3 Effect of Query Parameters 

Figure 17 shows the results of all the algorithms with 
respect to increasing the range distance, Range, of range 
queries from 150 to 350 meters. It is expected that the 
communication overhead increases, as Range gets larger 
(Figure 17a). ContQP is more scalable than the baseline 
algorithms, because ContQP has a higher probability to 
find an answer from the information shared by neighbors, 
when Range increases. The increase of Range results in 
larger required search areas for queries, where the user is 
more likely to suffer from the network partition problem; 
thus the false negative increases (Figure 13b).  
Figure 18 shows the performance of all the algorithms 
with respect to increasing the required number of objects 
of interest, k, of k-NN queries from 2 to 10. Similar to 
range queries, increasing k incurs higher power 
consumption and ContQP is more scalable than the 
baseline algorithms (Figure 18a). When k is larger, there 
is a higher probability for the user of ContQP and PeerQP 
to execute the query broadcasting control flow to find the 
most accurate possible answer; thus their query answer 
accuracy improves (Figure 18b). 
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6.4 Effect of Mobility Speeds 

Figures 19 and 20 show the performance evaluation with 
respect to varying the user mobility speed from [1; 5] to 
[1; 30] meters per second for range and k-NN queries, 
respectively. Since LocalQP executes the query 
broadcasting control flow for each query evaluation, it is 
not affected by the mobility speed. PeerQP is only slightly 
affected by the mobility speed, as it only avoids a small 
number of times of executing the query broadcasting 
control flow. When the mobility speed increases, ContQP 
incurs higher power consumption (Figures 19a and 20a). 
The reason is that increasing the mobility speed results in 
higher uncertainty in location information, which leads to 
a higher decay rate in the accuracy of an answer derived 
from a local cache; thus ContQP has a higher probability 
to execute the relatively expensive query broadcasting 
control flow to find the answer. Since the user can get 

 

 
(a) Power consumption     (b) False Negative  

Fig. 17: Range distance (Range queries). 

 
(a) Power consumption     (b) False Negative  

Fig. 18: Required Number of objects (k-NN queries). 
 
most cases, so its performance is slightly affected by the 
query period. However, the communication overhead of 
ContQP reduces and then stabilizes, as the query period 
increases (Figure 22a). In the experiment, we maintain the 
same number of querying users, decreasing the query 
period results in more new querying users that execute the 
relatively expensive query broadcasting control flow to 
find initial query answers.  
Figure 22b shows that the answer accuracy reduces, as the 
query period increases. This is because the uncertainty of 
the location information stored in a user's local cache 
increases for a longer time period. 
 
 

 
(a) Power consumption     (b) False Negative  

Fig. 19: Maximum mobility speeds (range queries). 
 

 
(a) Power consumption     (b) False Negative  

Fig. 20: Maximum mobility speeds (k-NN queries) 
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7. Conclusion 

We design a continuous query processing framework for 
range and k-nearest-neighbor queries in mobile peer-to-
peer (P2P) environments. Our framework has two key 
features. Our framework provides an approximate answer 
for the user with two personalized QoS guarantees, 
namely, coverage and accuracy.  
 
The user is able to collaborate with peers to maintain 
query answers. Our framework has four main control 
flows. The user derives an answer from the local cache 
and measures the quality of the answer. If the answer 
satisfies the user's QoS requirements, it is returned to the 
user. Otherwise, the user enlists neighbors for help to turn 
in their cached information to refine the answer. If the 
refined answer still cannot satisfy the user's QoS 
requirements, the user searches the required search area of 
the query to get the answer. Then the user collaborates 
with peers to maintain the answer. We evaluate our 
framework through experiments.  
 
The results show that our framework is efficient and 
scalable in terms of communication overhead, and the 
QoS requirements achieve a performance tradeoff 
between the communication overhead and the quality of 
query answers. 

 
a) Power consumption     (b) False Negative  

Fig. 21: Beacon intervals (k-NN queries). 
 

 
a) Power consumption     (b) False Negative  

Fig. 22: Query period (range queries). 
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