
International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 1 Issue 2, November 2012
www.ijsr.net

Continuous Query Processing for Mobile Users

Gangadhar Adepu1, R. Sumalatha2

1Jawaharlal Nehru Technological University, Sree Chaitanya College of engineering,
M.Tech(Student)

Karimnagar, Andhrapradesh, India
gangadhar24cmca@gmail.com

2Jawaharlal Nehru Technological University, Sree Chaitanya College of engineering,

Assistant Professor
Karimnagar, Andhrapradesh, India

suma2003@gmail.com

Abstract: In this paper, we propose an efficient and scalable query processing framework for continuous spatial queries (range and k-
nearest-neighbor queries) in mobile peer-to-peer (P2P) environments, where no fixed communication infrastructure or
centralized/distributed servers are available. Due to the limitations in mobile P2P environment s[1], for example, user mobility, limited
battery power, limited communication range, and scarce communication bandwidth, it is costly to maintain the exact answer of
continuous spatial queries. To this end, our framework enables the user to find an approximate answer with quality guarantees. In
particular, we design two key features to adapt continuous spatial query processing to mobile P2P environments. (1) Each mobile user
can specify the desired quality of services (QoS) for query answers in a personalized QoS profile. The QoS profile consists of two
parameters, namely, coverage and accuracy. The coverage parameter indicates the desired level of completeness of the available
information for computing an approximate answer, and the accuracy parameter indicates the desired level of accuracy of the
approximate answer. (2) We design a continuous answer maintenance scheme to enable the user to collaborate with other peers to
continuously maintain her query answer. With these two features in our framework, the user can obtain a query answer from her local
cache if the answer satisfies her QoS[2] requirements. Otherwise, the user enlists neighbors for help to share their cached information
to refine the answer. If the re_ned answer still cannot satisfy the QoS requirements, the user broadcasts the query to the peers residing
within the required search area of the query to find the most accurate answer. Experimental results show that our framework is efficient
and scalable andprovides an effective tradeoff between the communication overhead and the quality of query answers.

Keywords: Mobile computing, peer-to-peer computing, continuous query processing, spatio-temporal databases, and GIS.

1. Introduction

With the advance in new peer-to-peer (or P2P for short)
wireless communication technologies, for example, IEEE
802.11 and Bluetooth, and the computational and storage
capacity of portable devices, a new information access
paradigm, known as mobile P2P information access, has
rapidly taken shape. This paradigm is important for
environments, where no fixed communication
infrastructure or centralized/distributed servers [2][3][4]
are available, such as battlefield and rescue operations. It
is also useful for other business and civilian applications,
such as traffic monitoring and resource locator. Existing
spatial query processing frameworks in mobile
environments rely on fixed communication infrastructure
and/or centralized servers or only support snapshot
queries.

The limitations in these existing works motivate us to
design a new continuous spatial query processing
framework that does not require any fixed communication
infrastructure or centralized/distributed servers. In
particular, we focus on the two most common spatial
queries, range queries and k-nearest-neighbor (k-NN)
queries. Examples of these spatial queries include that the
rescuers issue range queries to continuously keep track of
the ambulances within a certain range in a disaster site,
and the soldiers issue k-NN queries to continuously
monitor their k- .nearest tanks in a battlefield.

Due to the limitations in mobile P2P environments, for
example, user mobility (the query issuer and the data
object are continuously roaming), limited communication
range, limited battery power, and scarce communication
resources, it is costly to maintain the exact answer of
continuous spatial queries. To this end, we propose a
continuous spatial query processing framework to provide
approximate answers for mobile users with quality
guarantees. In particular, we design two key features to
adapt continuous spatial query processing to mobile P2P
environments.

[1] The user can specify the desired quality of services
(QoS) for query answers in a personalized QoS profile.
The QoS profile consists of two parameters, namely,
coverage and accuracy. The coverage parameter indicates
the desired level of completeness of the available
information for computing an approximate answer, and
the accuracy parameter indicates the desired level of
accuracy of the approximate answer.

[2] We design a continuous answer maintenance scheme
that allows the user to collaborate with peers to
continuously maintain her answer, instead of always
processing the query from scratch, in order to reduce
communication overhead.

The main idea of our framework is that a user can obtain a
query answer from her local cache if the answer satisfies

47

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 1 Issue 2, November 2012
www.ijsr.net

her QoS requirements, that is, the information stored in
the local cache satisfies the coverage requirement and the
answer derived from the local cache satisfies the accuracy
requirement. In case that the answer does not satisfy the
QoS requirements, the user asks neighbors to share their
cached information, in order to refine the answer. If the
refined query answer still does not satisfy the QoS
requirements, the user enlists the peers residing within the
required search area of the query for help to find the most
accurate answer, and then updates her local cache. Since
the query issuer and data objects are moving, the query
answer may become stale.

Thus we propose the continuous answer maintenance
scheme that enables the user to collaborate with other
peers to continuously maintain the query answer. When
the answer derived from the local cache no longer satisfies
the user's QoS requirements, the user needs to enlist peers
for help to refine the answer again. We evaluate our
framework through simulated experiments [5][6]. The
results show that our framework is efficient and scalable
in terms of communication overhead and power
consumption and provides a tradeoff between the
communication overhead and the quality of query
answers. In this paper, we focus on continuous range and
k-NN queries.

However, our framework can be extended to support other
types of continuous spatial queries, if their query answers
can be abstracted into monitoring regions, for example,
continuous reverse-nearest-neighbor queries and
continuous density queries. The rest of this paper is
organized as follows. Section 2 surveys previous works
related to query processing in mobile P2P environments.
Our system model is presented in Section 3. Section 4
describes our continuous spatial query processing
framework for both range and k-NN queries.

2. Related Work

Existing spatial query processing [5][7] frameworks in
mobile environments can be categorized into four
architecture approaches: centralized, semi-distributed,
semi-distributed with client cooperation and wireless
sensor networks.

[1] The centralized approach [8][9] requires fixed
communication infrastructure and centralized database
servers for query processing.

[2] The semi-distributed approach is similar to the
centralized approach, as it also relies on centralized
database servers for query processing and data storage;
however the servers delegate some query monitoring tasks
to the mobile user in order to reduce communication
overhead.

[3] The semi-distributed [9][10] with client cooperation
approach considers peer collaboration in mobile P2P
environments. In this approach, mobile users can only
share their cached information with other peers, in which
the information is previously retrieved from centralized

database servers; thus, this approach does not consider
query processing among the mobile users.

[4] The algorithms designed for wireless sensor
networks rely on stationary sensors. Since these sensors
work like distributed servers to process spatial queries,
these algorithms cannot be applied to mobile P2P
environments.
Due to the dependency on fixed communication
infrastructure and/or centralized/distributed servers, none
of these techniques can be applicable to spatial query
processing in mobile P2P environments. The closest
works to ours are the systems that support resource
discovery in mobile P2P environments. These resource
discovery algorithms enable a mobile or stationary
resource provider, e.g., a taxi and ATM machine, to
periodically broadcast its information to mobile users, in
order to look for potential customers or users.

On the other hand, a mobile user broadcasts a query to
peers to express an interest in certain types of resources,
e.g., .Where is my nearest available taxi.. Once the peer
finds a match between the query and its requested
resource, the peer sends the information about the
available requested resource to the requesting user. Our
work distinguishes itself from these works, as it

[a] Supports spatial constraints for queries, for example,
the user can ask for her k-nearest resources and certain
types of resources within a certain distance range.

[b] Enables the user to specify the desired QoS, namely,
coverage and accuracy, for query answers, in order to
achieve a tradeoff between the communication overhead
and the quality of query answers, and enables the user to
collaborate with peers to continuously maintain query
answers, while the existing resource discovery works only
consider snapshot queries.

3. System Model

We present the system model of our continuous spatial
query processing framework in mobile P2P environments.
Each mobile user belongs to an object type, such as taxis
and police cars. A querying user issues a continuous query
asking for objects of a specific type, and the peers who
belong to the requested object type are referred to as the
objects of interest of the query. Every mobile device is
equipped with a positioning device, such as GPS [8][11],
to determine its location, which is represented by a
coordinate (x; y). The mobile user can communicate with
all neighbors through broadcast communication, a
neighbor through point-to-point communication, and a
multi-hop peer through a multi-hop routing protocol
which contains a sequence of point-to-point
communications.

Furthermore, each user employs a neighbor discovery
protocol (NDP) to maintain a list of neighbors. The basic
idea of NDP is that each user periodically broadcasts a
beacon message with her identity to neighbors. If the user
has not received the beacon message of a neighbor for a

48

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 1 Issue 2, November 2012
www.ijsr.net

beacon period or certain beacon periods, the user
considers that the peer no longer resides in her
transmission range, therefore the peer is removed from the
neighbor list. However, the user sends a message to
request for the peer's information (ID, Loc, TS,
MaxSpeed, and Type), where ID is the peer's identity, Loc
is the peer's current location at timestamp TS, MaxSpeed
is the peer's maximum mobility speed, and Type is the
peer's object type, through point-to-point communication,
and inserts the peer into the neighbor list.

In practice, MaxSpeed can be set to the maximum legal
speed in the system area or the highest speed that has been
recorded by the user for a certain time period, for
example, one week. User QoS profile. Each mobile user
maintains a quality of services (QoS) profile that consists
of two parameters, namely, coverage (Cmin) and accuracy
(Amin), where 0_Cmin; Amin_1. Cmin specifies the
desired level of completeness of the available information
for computing an approximate answer, and Amin specifies
the desired level of accuracy of the approximate answer.
The user can specify larger Cmin and Amin values to
obtain an answer with better QoS, but they incur higher
communication overhead. Therefore the user can tune
these QoS requirements to achieve a performance trade-
off between the communication overhead and the quality
of query answers. The user can change her QoS
requirements at any time.

Fig. 1: The structure of a local cache.

spatial queries: A range query is in a form (ID, Range,
Period, Loc, TS, MaxSpeed, ObjectOfInterest), where ID
is the query issuer's identity, Range is the distance range
of the query, Period is the valid time frame of the query,
Loc is the query issuer's current location, TS is the current
timestamp, MaxSpeed is the query issuer's maximum
mobility speed, and ObjectOfInterest is the object type
requested by the query. Given a range query, its answer
includes the objects of interest residing in a rectangular
query region whose left-bottom and right-top vertices are
(Loc.X Range, Loc.YRange) and (Loc.X+Range,
Loc.Y+Range), respectively.

A k-NN query is in a form (ID, k, Period, Loc, TS,
MaxSpeed, and ObjectOfInterest), where k is the required
number of objects of interest of the query and other
attributes are the same as in the range query. Given a k-
NN query, its answer includes the k-nearest objects of
interest to Loc. Although we only focus on range and k-
NN queries in this work, our framework is applicable to
other continuous spatial query types [10][15] if their
query answers can be abstracted into monitoring regions.
For example, our framework can be extended to support
reverse-nearest neighbor queries and density queries

because recent research efforts have shown that the
answer of these query types can be maintained by
monitoring a region.

Local cache: A local cache is a user's storage space
dedicated to our framework. The local cache stores three
tables, area table, object table, and query table. The area
table and object table maintain the received object
information, while the query table maintains the received
continuous queries for the continuous query answer
maintenance scheme.

The details of the query table will be described in Section
4.4. Each user maintains two types of object information,
neighbors and query answers. For the information of
neighbors, it is modeled by a circular area as the user's
transmission range [11][12], which is stored in the area
table, and the object table stores the information of each
neighbor, where a peer's information is in a form (ID,
Loc, TS, MaxSpeed, Type), where Loc is the peer's latest
location information sent by the peer at timestamp TS. For
the information of a range (or k-NN) query answer, it is
modeled by a rectangular (or circular) area as the query's
required search area, which is stored in the area table, and
the object table stores the information of the objects of
interest that could reside in the required search area.

If an object is included in multiple areas in the area table,
the object table only keeps one entry for the object with
the latest location information received by the user
through the neighbor discovery protocol, the information
sharing with neighbors control flow (Section 4.2), the
query broadcasting [13][14] control flow (Section 4.3), or
the continuous query answer maintenance control flow
(Section 4.4). Whenever the user receives the more recent
location information of an object stored in the object
table, the user updates the Loc and TS of the object's entry
accordingly. If an object is no longer referred by any entry
in the area table, the object is removed from the object
table.

Figure 1 depicts the local cache of a mobile user u, where
u's location is represented by a square and the peers are
represented by circles with unique labels. The area table
contains two areas, where the user's transmission range
A1 is represented by a dotted circle with one object o4,
and the required search area of a continuous range query
A2 is represented by a dotted rectangle with six objects o1
to o6. Thus the object table contains one entry for each of
the objects of A1 and A2, o1 to o6.

4. Query Processing Framework

Figure 2 depicts the four main control flows in our
framework:
(1) QoS measurements for a local cache
(2) Information sharing with neighbors
(3) Query broadcasting and
(4) Continuous query answer maintenance.
Algorithm 1 outlines the first three control flows and
Algorithm 2 outlines the fourth control flow. We will
describe each control flow in detail.

49

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 1 Issue 2, November 2012
www.ijsr.net

Fig. 2: The four control flows in our framework.

4.1 QoS Measurements for a Local Cache

This is the first control flow in our framework, which is
indicated by thin lines in Figure 2 (Lines 2 to 7 in
Algorithm 1). This control flow is completely executed on
the mobile user side without enlisting peers for help. Due
to user mobility, the cached peer location information
could become stale. To capture location uncertainty, we
employ a conservative approach that models an uncertain
location as an adjusted location region. The adjusted
location region of a peer's location [17][18] is a circular
region centered at the peer's location with a radius of
(tcurrent TS) MaxSpeed, where tcurrent is the current
time and TS is the timestamp of the latest location update.

 (a) Range query (b) Coverage measurement

Fig. 3: Coverage measurement for a range query.

In other words, the peer can move in any direction at the
maximum mobility speed MaxSpeed. We will present
how to determine the coverage and accuracy for a query
with respect to the information stored in a local cache for
both range queries and k-nearest-neighbor (k-NN)
queries.

4.1.1 Coverage Measurement

The coverage measurement [11] [15] indicates the level of
completeness of the available information in a local cache
for computing a query answer. Given the required search
area of a query and a local cache, the coverage of the
information in the local cache is measured by the ratio of
the intersection of the required search area and the union
of the areas stored in the area table to the required search
area. Formally, given a required search area S and a set of
n areas A1, A2, An in the area table in a local cache L
intersecting S, the coverage of L with respect to S is
calculated as:

where Area(R) is the area of a region R.

Since calculating the exact coverage of a large number of
overlapping areas is costly, we use a histogram approach
to get approximate coverage measurement. The basic idea
is that we model the required search area by a uniform
grid structure and maintain a bitmap, in which each bit
corresponds to a unique gird cell. Initially, all bits in the
bitmap are set to zero. For each grid cell, if it is totally
covered by some area stored in the area table, the
corresponding bit is set to one. The coverage is the
number of one in the bitmap divided by the total number
of bits in the bitmap. Since the bit of a grid cell is set to
one if its area is totally covered by some monitored area, a
larger grid cell area results in a larger underestimation of
the coverage measurement. Although a smaller grid cell
area gives higher computation precision, it incurs higher
computational overhead.

In Section 6.3, we study this performance tradeoff
between the computational overhead and the coverage
measurement precision. We will discuss the coverage
measurement for range and k-NN queries. Range queries.
Figure 3a shows a user's local cache, which stores the
information about the user's neighbors (the area of the
user's transmission range is represented by a dotted circle)
and the adjusted required search area of the user's
continuous range query is represented by a dotted
rectangle. The detail of how to adjust the required search
area of a continuous range query will be discussed in
Section 4.4.

 (a) 3-NN query (b) Coverage measurement

Fig. 4: Coverage measurement for a 3-NN query

In this example, the user wants to measure the coverage of
the information stored in the local cache with respect to
the same continuous range query, where the user's
location is represented by a filled square, the query
region1 of the range query is represented by a rectangle,
and the adjusted location region of each object stored in
the object table is represented by a circle with a unique
label. Since the required search area of a range query is
the same as its query region, the user can calculate the
coverage without enlisting any peers for help. In Figure
3b, we assume that the required search area is modeled by
a uniform grid structure of 10 cells. Since all grid cells,
which are represented by shaded cells, are totally covered
by the areas stored in the area table, A1 and/or A2, all bits
in the bitmap are set to one; hence the coverage is 100/100
= 1. k-NN queries.

50

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 1 Issue 2, November 2012
www.ijsr.net

Figure 4a shows the same local cache as in Figure 3,
where the local cache stores the information about the
user's neighbors (the area of the user's transmission range
is represented by a dotted circle) and the adjusted required
search area of the user's outstanding continuous range
query is represented by a dotted rectangle. In this
example, a user wants to measure the coverage of the
information stored in the local cache with respect to a new
k-NN query. The required search area of a k-NN query is
a minimal circle that totally covers the exact location or
the adjusted location region of k objects of interest. These
k objects are not necessary to be the k-nearest objects to
the user. However, if the user cannot find at least k
objects of interest in the local cache, the user is unable to
determine the required search area of the query, S = null.
Thus the user cannot perform the coverage measurement,
and the user proceeds to the next control flow:
information sharing with neighbors.

In this example, we assume that all objects o1 to o6 are
the objects of interest of the query; therefore the required
search area of the query is a circle (represented by a bold
circle) that totally covers the adjusted location regions of
3-nearest objects, o2, o4, and o6. Then we construct a
minimum bounding rectangle of the required search area
and model the rectangle by a uniform grid structure of 10
fi 10 grid cells, as depicted in Figure 4b. Since 72 grid
cells, which are represented by shaded cells, are totally
covered by the areas, there are 72 bits in the bitmap are set
to one; hence the coverage is 72/100 = 0.72.

4.1.2 Accuracy Measurement

The accuracy measurement indicates the level of accuracy
of an approximate answer, which is derived from a local
cache. It is important to note that we only determine an
approximate query answer if the coverage requirement is
satisfied. Since it is very costly to determine an exact
probabilistic answer for a k-NN query, even an
approximate approach is computationally expensive [25],
these approaches are not suitable for mobile devices with
limited computational resources. To this end, we use a
heuristic approach to measure the accuracy of a range or
k-NN query answer.

The accuracy measurement is defined as follows: Given a
query with a required search area S, a set of m objects of
interest of the query whose exact locations or adjusted
location regions intersect S, O = fo1; o2, the probability pi
of each object oi 2 O being part of the query answer,
where pi fi 0, and an approximate answer A = fo1; o2; : : :
; ong, where A fi O, the accuracy, Acc(O;A), is computed
as the average of (a) the probability pi of correctly making
a decision of including an object oi in A, and (b) the
probability 1pi of correctly making a decision of
excluding an object oi from A; hence the accuracy of A is
computed as:

We assume a uniform distribution for the actual location
of an object oi in its adjusted location region when
computing pi for both range and k-NN queries; however
our algorithm is completely independent of how we
compute pi. The following theorem shows the correctness
of Equation 2. Range queries.

Figure 5a shows a range query, where its query region is
represented by a rectangle and the adjusted location
region of each object of interest of the query that
intersects the query region is represented by a circle.
Since the required search area of a range query is the same
as its query region, O contains the objects of interest of
the query whose exact locations or adjusted location
regions intersect the query region; thus O = fo1; o2; o3;
o4; o6g in this example. For each object oi 2 O with an
exact location, pi is set to one because pi must reside in
the query region. On the other hand, for each object oi 2
O with an adjusted location region, since we consider a
uniform distribution, pi is computed as the ratio of the
area of the intersection of the adjusted location region and
the query region to the area of the adjusted location
region.

 (a) Range query (b) 3-NN query

Fig. 5: Accuracy measurement.

We can maximize the accuracy of an approximate range
query answer by maximizing pi in each term in Acc
(O;A). Thus if pi fi 0:5, oi should be included in A;
however if pi < 0:5, oi should be excluded from A. The
correctness of this selection threshold is proved in
Theorem 2. The accuracy measurement for k-NN queries
has two steps.

Step 1: Distance threshold step. We already find the
required search area of a k-NN query during the coverage
measurement. We consider the objects of interest of the
query O = fo1; o2; whose exact locations or adjusted
location regions intersect the required search area. For
each object oi 2 O with an adjusted location region, we
determine a distance range [dmini; dmaxi], where dmini
and dmaxi are the smallest and largest possible distances
between oi and the querying user u, respectively. On the
other hand, for each object oi 2 O with an exact location,
both dmini and dmaxi are set to the distance between oi
and u.

Then the objects in O are sorted by their smallest possible
distances in increasing order. We find the smallest
possible distance of the (k +1)-st object in the sorted O as
a minimum threshold distance, Tmin, and the largest
possible distance of the k-th object in the sorted O as a
maximum threshold distance, Tmax. Figure 5b shows the

51

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 1 Issue 2, November 2012
www.ijsr.net

sorted O = fo4; o2; o6; o1; o3; o5g, where the smallest
and largest possible distances of the adjusted location
region of each object to u are represented by t and u,
respectively. Since o1 is the (k + 1)-st object, Tmin =
dmin1 that is represented by a dotted line. Since o6 is the
k-th object, Tmax = dmax6 that is represented by a line.

Step 2: Answer selection step. We select the k objects
with the smallest minimum possible distance to an answer
set A.

Algorithm 1 Continuous spatial query processing
1: function PROCESSING (Query Q, LocalCache L,
Float Cmin, Amin)
// Control Flow 1: QoS measurements for a local cache
2: S the required search area of Q
3: if S 6= null and cov(S;L) _ Cmin then
4: O the objects of interest of Q in L intersecting S
5: A an answer derived from O
6: if Acc (O;A) _ Amin then return A
7: end if
// Control Flow 2: Information sharing with neighbors
8: Lp the neighbor's transmission range and the
monitored area of the
query whose requested object type is the same as Q, and
their objects
9: S the required search area of Q
10: if S 6= null and cov(S;L [Lp) _ Cmin then
11: O the objects of interest of Q in L [Lp intersecting S
12: A an answer derived from O
13: if Acc(O;A) _ Amin then return A
14: end if
// Control Flow 3: Query broadcasting
15: S the required search area of Q
16: Find the objects of interest residing in S
17: Update the area table and object table accordingly
18: Compute a query answer A
19: return A

These selected objects are the first k objects in the sorted
O and their minimum possible distances are less than
Tmax. For each object oi € A, pi = min(Tmin dmini -
dmaxi - dmini)/(dmaxi-dmini) because if the actual
distance between oi and u is equal to or less than Tmin, oi
must be one of the k- NN to u. Thus the probability of
correctly making a decision of including oi in A is pi. For
each object oj =2 A, pj = (Tmax-dminj)/(dmaxj-dminj)
because if the actual distance between oj and u is equal to
or less than Tmax, oj could be one of the k-NN to u. Thus
the probability of correctly making a decision of
excluding oj from A is 1 -pj .

Figure 5b shows the sorted O = fo4; o2; o6; o1; o3; o5g of
a 3-NN query. The first three objects, o4, o2, and o6, are
selected to an answer set A. Each object oi 2 A must be
one of the k-NN to u if the actual distance between oi and
the querying user u is within a distance range
min(Tmin_dmini ; dmaxi_dmini), which is represented
by a gray bold line. We assume p4 = 1, p2 = 0:3, and p6 =
0:2. For each object oj =2 A, o1, o3, and o5, oj could be
one of the k-NN to u, if the actual distance between oj and

u is within a distance range Tmax_dminj , which is also
represented by a gray bold line.

After the user submits a query and QoS profile to the
continuous query processor, which is indicated by the
flow labeled by 1a in Figure 2, if the continuous query
processor finds an approximate answer that, satisfies the
user's coverage and accuracy requirements, it returns the
answer to the user (this flow is labeled by 1b). Otherwise,
the continuous query processor proceeds to the next
control flow, that is, information sharing with neighbors
(this flow is labeled by 2a).

4.2 Information Sharing with Neighbors

This is the second control flow in our framework, which
is indicated by thick lines in Figure 2 (Lines 8 to 14 in
Algorithm 1). When a querying user u fails to get an
answer from the local cache, the continuous query
processor initiates this control flow. Since this control
flow is very simple, we only present its main idea for both
range and k-NN queries, which can be summarized into
two steps.

Step 1: Information sharing step.
In this step, u sends the query to the neighbors through
broadcast communication. Each neighbor p replies to u
with (1) the area of p's transmission range along with its
objects that belong to the requested object type of u's
query; and/or (2) the monitored required search area of
each p's continuous query along with its monitored objects
if its requested object type is the same as u's query,
through point-to-point communication.

Step 2: Answer refinement step
After u receives the information from her neighbors, u
updates the location information of the objects stored in
the object table accordingly (this flow is labeled by 2b in
Figure 2). If the coverage of the information stored in u's
local cache and the information returned by the neighbors
with respect to the query satisfies u's coverage
requirement, u derives a new answer from the local cache.
If the answer also satisfies u's accuracy requirement, the
continuous query processor returns the answer to u (this
flow is labeled by 2c). If the answer still cannot satisfy u's
QoS requirements, the query processor proceeds to the
query broadcasting control [19][20] flow (this flow is
labeled by 3a).

4.3 Query Broadcasting

This is the third control flow in our framework, which is
indicated by very thick lines in Figure 2 (Lines 15 to 19 in
Algorithm 1). The key functions of this control flow are to
1. Search the objects of interest of a query residing in its
required search area in order to find the most accurate
answer; and
2. Have an opportunity for a peer to update an object's
location stored in the local cache when the peer is
involved in routing messages [18] [21] for query
processing, which contains the more updated location of
the object. The latter function is useful to reduce the

52

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 1 Issue 2, November 2012
www.ijsr.net

location uncertainty of the objects stored in the local
cache.
Figures 6a and 6b illustrate this control flow for range and
k-NN queries, respectively. In both examples, there are 20
mobile users, m1 to m20, where m15 is a querying user
(represented by a square), the objects of interest of the
query are m6, m7, m16, m18, and m20, which are
represented by triangles, and other users are represented
by circles. A user's transmission range is represented by a
dotted circle. Since this control flow will provide the most
accurate answer for a query, the relevant information of
this query is removed from the query table and the object
table before initiating this control flow. In general, the
query broadcasting control flow has two main steps.

4.3.1 Required search area step

We will discuss how to find the required search area of a
range or k-NN query. Range series. Since the required
search area of a range query is the same as its query
region, the querying user u can determine the required
search area without enlisting peers for help. In Figure 6a,
the required search area of the range query is represented
by a rectangle. k-NN queries. For a k-NN query, the
querying user u needs to broadcast the query to peers to
find at least k objects. Then the required search area of the
query is a circular area centered at u with a radius of the
required search range of the query, which is the distance
from u to the k-th nearest object. To find at least k objects,
u broadcasts the query with a hop distance h = 1 to the
neighbors. If u cannot find at least k objects within one
hop, u increases h by one and rebroadcasts the query with
the updated h to the neighbors.

Fig. 6: Query broadcasting for range and NN queries.

When a peer p receives the query, p sends its information
to u through point-to- point communication. If the
received h is larger than one, p decreases h by one and
forwards the query with the updated h to the neighbors
through broadcast communication. p simply drops
duplicate messages without processing or forwarding
them. It is important to note that when a peer participates
in routing a reply to u, the peer has an opportunity to
update the location information of the objects stored in the
local cache. U keeps performing this broadcast process
until u finds at least k objects of interest. It is expected
that u receives replies from more peers as h increases.
Receiving the replies from the same set of peers with two
consecutive hop distances, h and h+1, implies that the
total number of objects of interest of u's query in u's
network partition or the system is less than k.

When this case takes place, u can postpone this step for a
while or proceed to the next step by reducing k to the
number of objects of interest that are already found by this
step. In Figure 6b, the querying user u = m15 issues a 3-
NN query. After u broadcasts the query with a hop
distance h = 1 to the neighbors, u receives replies from
three peers, m12, m16, and m18, which are located in u's
transmission range [22] (represented by a black dotted
circle).

Among these three peers, u finds two objects of interest,
m16 and m18. Since u requires three objects to determine
a required search area, u rebroadcasts the query with an
increased hop distance h = 2. Then u receives replies from
five more peers, m2, m6, m11, m13, and m17, which are
located in the transmission ranges of m12, m16, and m18
(represented by gray dotted circles). Since u finds three
objects of interest, m6, m16, and m18, u terminates the
broadcast process and determines the required search area.
The required search area is a circle centered at u with a
radius of the required search range, which is the distance
from u to the 3-th nearest object, m6, which is represented
by a black circle. Although u already finds three objects
of interest, they do not constitute a correct query answer.
This is because the correct answer is m16, m18 and, m7.
This missing of m7, which is outside the searched area
with h = 2, will be resolved in the next step.

Algorithm 2 Continuous query answer maintenance
1: function MAINTENANCE (Query Q, LocalCache L,
Float Cmin, Amin)
// Control Flow 4: Continuous query answer maintenance
2: if Q is a k-NN query then
3: Send Q and AggregateMaxSpeed to the peers residing
in S
4: end if
5: Update the object table when receiving a noti_cation
message
6: Periodically evaluate the query answer A
7: if A becomes uncertain and Acc(A) < Amin then
8: Go to Line 2 in Algorithm 1 to start the Control Flow 1
9: else return A

4.3.2 Query dissemination step

Once we finish the required search area step, both range
and k-NN queries are boiled down to range queries with
their required search areas as the range query region. The
main idea of this step to retrieve the objects of interest
within the range query region u broadcasts the query
along with the range query region to the neighbors. When
a peer p receives the query, if p belongs to the requested
object type, p sends its information to u through point-to-
point communication. In addition, if p's transmission
range intersects the range query region, p rebroadcasts the
query to the neighbors. Similar to the required search area
step, the peer participating in routing messages [23] has
an opportunity to update the peer location information
stored in the local cache. After u receives the replies from
the objects of interest within the range query region, u
computes the answer.

53

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 1 Issue 2, November 2012
www.ijsr.net

Range queries: The answer of a range query simply
includes the objects of interest located in the required
search area. Figure 6a shows that u receives replies from
four objects of interest, m6, m7, m16, and m18, and these
objects constitute the query answer.

k-NN queries: Among the objects of interest located in
the required search area of the query, u selects the k-
nearest objects as the answer. Figure 6b shows that u
receives replies from four objects of interest,m6, m7,
m16, andm18, u realizes that m7 is closer to herself than
m6. Thus u can find a correct answer, which includes m7,
m16, and m18. After the continuous query processor
[24]finds the query answer, it updates the local cache
accordingly (this flow is labeled by 3b). The required
search space of the query along with the ID list of its
objects of interest residing in the required search area is
inserted into the area table. Then the information of these
objects is inserted into the object table.
Finally the answer is returned to the user (this flow is
labeled by 3c). We will describe how to monitor the
answer in the continuous query answer maintenance
control flow.

4.4 Continuous Query Answer Maintenance

This is the fourth control flow in our framework, which is
indicated by a very thick white line in Figure 2 and
outlined by Algorithm 2. The main tasks of this control
flow are (1) collaborative query maintenance: the
querying user collaborates with peers to forward the query
to other peers who could become part of the answer
(Section 4.4.1); and (2) query evaluation: the querying
user computes the answer locally as long as the answer
derived from the local cache satisfies her QoS
requirements (Section 4.4.2).

4.4.1 Collaborative query maintenance

Each user maintains a query table. In the query table, a
range query is stored in a form (ID, Loc, TS, Range,
Period, MaxSpeed, ObjectOfInterest), where ID is the
query issuer's identity, Loc is the query location point, TS
records the time when the query is issued, Range is the
required search range of the query, Period is the valid time
period of the query, MaxSpeed is the maximum mobility
speed of the query issuer, and ObjectOfInterest is the
requested object type of the query. Likewise, a k-NN
query is stored in a similar form (ID, Loc, TS, Range,
Period, MaxSpeed, ObjectOfInterest, and
AggregateMaxSpeed), where AggregateMaxSpeed is the
maximum mobility speed of the objects of interest that
could reside in the required search area of the query. In
general, the collaborative query maintenance task has
three main steps.

Step 1: Query dissemination step.
This step mainly disseminates a query to the peer located
in the required search area. For a range query, since its
required search area is the same as its query region, the
peer can store the query in the query table during the

query dissemination step in the query broadcasting control
flow, as discussed in Section 4.3. On the other hand, for a
k-NN query, it needs to disseminate an extra parameter
for the query, AggregateMaxSpeed, to the peer located in
its required search area. Thus after the querying user u
gets a query answer, u broadcasts the query and its
AggregateMaxSpeed to the peer residing in the required
search area. Then the peer stores the query in the query
table.

Step 2: Query table synchronization step.
When a peer p discovers a new neighbor p0, this step
takes place to synchronize the query tables of p and p0
through a three-way message exchange via point-to-point
communication. Without loss of generality, we assume
that the peer with a smaller ID initiates this step. We
consider that p initiates this step. (1) p sends a list p:L of
the query IDs in the query table to p0. (2) After p0
receives p:L, p0 generates a list p0:L of the query IDs in
the query table. Then p0 replies to p with the information
of the queries in p0:L but not in p:L, p0:L n p:L, and a list
of query IDs in p:L but not in p0:L, p:Lnp0:L. (3) p stores
the received queries in the query table and sends the
information of the queries included in the received list to
p0. p0 stores the received queries in the query table.

Step 3: Notification step.
For each new query received during the query table
synchronization step, the peer, p and/or p0, performs this
step to decide whether to send its information to the query
issuer. Due to user mobility, the peer has to adjust the
required search area of a range or k-NN query to capture
the effect of location uncertainty. We will discuss how to
adjust the required search area of a range or k-NN query.
Range queries. Figure 7a shows a range query, where the
original query location point is represented by a gray
square and the original required search area is represented
by a dotted rectangle. Similar to the location adjustment of
peer locations,

Fig. 7: Required search area adjustment

We use a conservative approach to adjust the required
search area of the range query, where the querying user u
can move at the maximum mobility speed MaxSpeedu in
any direction. Thus the distance from the original query
location point and the u's current location is at most r =
(tcurrent - TS) _ MaxSpeedu. In other words, u could be
anywhere within a circular location region centered at the
original query location point with a radius of r, which is
represented by a gray circle. To ensure that an adjusted
required search area contains all the possible range query

54

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 1 Issue 2, November 2012
www.ijsr.net

regions, regardless of the u's actual location within u's
adjusted location region, we extend each edge of the
original required search area by r. The adjusted required
search area is represented by a rectangle.

k-NN queries: Figure 7b shows a k-NN query, where the
original query location point is represented by a gray
square and the original required search area is represented
by a dotted circle. Similar to range queries, the adjusted
location region of a querying user u is centered at the
original query location point with a radius of r = (tcurrent-
TS)_MaxSpeedu, which is represented by a gray circle.
Consider a case that all the objects of interest residing in
the required search area move at AggregateMaxSpeed;
therefore the maximum possible distance between u and
each of these objects is r_rmax_Range, where rmax =
(tcurrent - TS) _ AggregateMaxSpeed, and Range is the
original required search range, which is the original
distance between u and the k-th nearest object in the
answer. Since u could be anywhere within the adjusted
location region, the adjusted required search area is a
circular area centered at the original query location point
with a radius of 2_r_rmax_Range. Whenever u finds a
larger AggregateMaxSpeed, u broadcasts it to the objects
residing in the adjusted required search area.
After the peer, p and/or p0, determines the required search
area of a newly received query, if the peer is located in the
adjusted required search area, the peer sends her
information as a notification message to the querying user
through point to point communication. Otherwise, the
peer will periodically evaluate the query until the query is
expired.

4.4.2 Query evaluation

The main idea of this task is that the querying user, u,
checks whether to derive a certain query answer from the
local cache. A certain query answer can be returned to u
without any QoS measurement. If u cannot get a certain
answer from the local cache, u can find an answer from
the local cache as long as the answer satisfies her QoS
requirements.

Fig. 8: The answer of a 3-NN query.

In case that u cannot find an answer from that satisfies her
QoS requirements, u restarts the query processing by
executing the second control flow: information sharing
with neighbors. Once u receives a notification message
through the collaborative query maintenance task, u
updates the object table accordingly. It is important to
note that u will adjust the required search area of the
queries stored in the area table as in Section 4.4.1, when u
is requested to return the information of the local cache to

a peer in the information sharing step in the second
control flow.

We will describe how to check the certainty of a range or
k-NN query answer. Range queries. Since the required
search area of a range query is the same as its query
region, the querying user u always knows the exact
required search area of the query. Thus u simply adjusts
the location of the objects of interest stored in the local
cache, and then selects the objects with adjusted location
regions intersecting the query region. If all these objects
are totally included in the required search area, the
accuracy of an answer that includes all these objects is
one; hence this answer is a certain one.

k-NN queries: In contrast to range queries, u needs to
determine the required search area of a k-NN query, and
calculate the minimum and maximum possible distances
between each object of interest in the local cache to u's
current location. Then u finds an object p with the k-th
smallest maximum possible distance. The required search
area is a circle centered as u's current location with a
radius of the maximum distance between p and u. If there
are only k objects intersecting the required search area,
their adjusted locations or exact locations must be totally
included in the required search area; therefore these k
objects constitute a certain query answer.

Figure 8 shows the answer of a 3-NN query at two time
instances, where the current location of the querying user
u is represented by a black square, and the exact location
or the adjusted location region of each object of interest of
the query is represented by a black circle or a dotted
circle, respectively.

Figure 8a shows an answer, in which o5 has the third
smallest maximum possible distance to u; therefore the
required search area (represented by a circle) is a circular
area with a radius of the distance from u to the farthest
point on the adjusted location region of o5 from u. Since
there are only three objects, o2, o4, and o5, whose
adjusted location regions are totally covered by the
adjusted required search area, these objects constitute a
certain answer.

Figure 8b shows the query answer at a later time, where
the adjusted location regions of objects, o1 to o5, are
expanded, and the location of o6 is adjusted. o5 still has
the third smallest maximum possible distance to u, so the
required search area is a circle at u with a radius of the
distance from u to the farthest point on the adjusted
location region of o5. Since the adjusted location regions
of four objects, o2, o3, o4, and o5, intersect the required
search area, any three of these four objects could be the
actual query answer; hence the answer becomes uncertain,
and u needs to check the accuracy of the query answer.

5. Simulation Model

In this section, we present a simulation model [25][26]
that is used to evaluate our continuous spatial query

55

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 1 Issue 2, November 2012
www.ijsr.net

processing framework (denoted as ContQP) in a mobile
P2P environment.

5.1 Baseline Algorithms

To our best knowledge, ContQP is the first framework
realizing continuous spatial query processing in mobile
P2P environments. We design two baseline algorithms
that have a subset of the control flows of ContQP to
evaluate the performance of ContQP. Since the
continuous query answer maintenance scheme (the fourth
control flow) is the one of the key features of our
framework, the baseline algorithms do not have this
control flow.
1. In the first baseline algorithm (denoted as LocalQP),
the user only monitors the transmission range. If the user
cannot find an answer that satisfies her QoS requirements
from the local cache, that is, the first control flow: QoS
measurements for the local cache, the user execute the
query broadcasting control flow (the third control flow) to
find the answer.
In the second baseline algorithm (denoted as PeerQP), if
the user fails to find an answer from a local cache, the
user proceeds to the information sharing with neighbors
(the second control flow) to find the answer. If the answer
still cannot satisfy the user's QoS requirements, the user
executes the query broadcasting control flow to find the
answer.

5.2 Power Consumption Model

Each mobile user is equipped a wireless network interface
card that supports two communication methods: point-to-
point and broadcast communication. The user can
communicate with all neighbors through broadcast
communication, one of the neighbors through point-to-
point communication, and a multi-hop peer through a
point-to-point multi-hop routing that contains a sequence
of point-to-point communication.

In this work, we focus on the application layer and do not
have any assumption on the underlying multi-hop routing
protocol; therefore any multi-hop routing protocol can be
applied to our framework. It has shown that the power
consumption of wireless communication can be modeled
by linear formulas in terms of message sizes and
communication methods. For point-to-point
communication, Ppoint, a source user S sends a message
to a destination user D. The affected users of this
communication method are the users who reside in S's
transmission range, RS, D's transmission range, RD, and
their transmission ranges, RSD. The power consumption
of Ppoint where f is a fixed setup cost, and v is a variable
cost in terms of the size of a message msg in bytes, jmsgj.

Table 1: Parameters for point-to-point communication

Conditions µ W. s/byte µ W. s

S
D

Peers € RSD

Peers € RS

Peers € RD

Vsend = 1.9
Vrecv = 0.5
Vsd_disc = 0
Vs_disc = 0
Vd_disc = 0

Fsend = 454
Frecv = 356
Fsd_disc = 70
Fs_disc = 24
Fd_disc = 56

TABLE 2: Parameters for broadcast communication

Conditi
ons

µ W.
s/byte

µ W. s

S
Peers €
RS

Vbsend =
1.9

Vbrecv =
0.5

Fbsend =
266
Fbrecv =
56

is measured by the following equations.

For broadcast communication, Pbc, a source user S
broadcasts a message to the peers residing in S's
transmission range, SR. The power consumption of Pbc is
measured by the following equations: The parameter
settings for Ppoint and Pbc are depicted in Tables 1 and 2,
respectively.

5.3 Performance Metrics

We evaluate the performance of our framework in terms
of four metrics.
[1] Number of messages: metric measures the average
number of messages incurred by our framework per query
evaluation.
[2] Power consumption: metric measures the average
power consumption per query evaluation based on the
power consumption models described in Section 5.2.
[3] False negative: This metric measure the average
relative number of objects missed in an approximate
answer compared to an actual one. Given an actual answer
set A and an approximate answer set bA, the relative false
negative is computed as jA n bAj=jAj.
[4] False positive: This metric measure the average
relative number of extra objects in an approximate answer
compared to an actual one. The false positive is computed
as j bA n Aj=jAj.

5.4 Simulation Settings

We implement our framework for both range queries
continuously report the object(s) of a specific type within
a certain range from a query issuer, and k-NN queries
continuously report the k-nearest object(s) of a specific

56

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 1 Issue 2, November 2012
www.ijsr.net

type to a query issuer in C++. Each experiment runs 1,000
seconds. Unless mentioned otherwise, we generate 200
mobile users moving at a speed distributed uniformly
between 1 and 20 meter(s) per second based on the
.random waypoint model [27] in a 1,000m _ 1,000m
space. Each user belongs to one of 10 object types. 20%
of the users issue continuous queries for a time period of
1,000 seconds, and they evaluate their query answers
every second.

TABLE 3: Parameter settings for experiments
Parameters Default

Values
Ranges

No. of mobile users
Coverage
Accuracy
Mobility speed
No. of objects (k)
Range distance(Range)
Grid cell area
Beacon interval
Query period
No. of queries
Transmission range
No. of object types

200
0.8
0.8

[1, 20] m/sec
5

200 meters
42 m2

1 sec
1,000 sec

20% of users
100 meters

10

100 to 500
0.5 to 1.0
0.5 to 1.0

[1, 5] to [1, 30] m/sec
2 to 10

150 to 350 meters
22 to 122 m2
1 to 5 sec
2 to 10 sec

5% to 40% of users
-
-

The default coverage, Cmin, and accuracy, Amin,
requirements are set to 0:8. The grid cell area for the
approximate coverage measurement is 16 m2. The
transmission range of each user is 100 meters, and the
beacon interval is one second. We first assume that a
querying user receives the beacon her neighbors before
evaluating a query, and then we remove this assumption
by increasing the beacon interval in Section 6.6.
For query parameters, the range distance, Range, of range
queries is 200 meters, and the required number of objects,
k, of k-NN queries is five. Table 3 summarizes the
parameter settings.

6. Experimental Results

This section presents the experimental results of our
framework, ContQP, in comparison with the baseline
algorithms, LocalQP and PeerQP, with respect to various
numbers of users, numbers of continuous queries, QoS
requirements, query parameters (the range distance of
range queries and the value of k of k-NN queries), user
mobility speeds, beacon intervals, and query period
intervals.

6.1 Effect of the Number of Users

Figures 9a and 9b show that ContQP outperforms the
baseline algorithms in terms of number communication
overhead. The reason is that LocalQP executes the query
broadcasting control flow for each query evaluation and
PeerQP only slightly reduces the number of times of
executing this control flow. On the other hand, ContQP
effectively avoids executing the relatively expensive
query broadcasting control flow through the continuous
query answer maintenance control flow that efficiently
maintains the user's local cache. Increasing the number of
users results in more users residing in the required search

area of queries, thus the communication overhead
increases.

Figure 9c shows that the false negative improves, as there
are more users. In a sparser environment [18] [26], the
user is more likely to suffer from a network partition
problem, in which the user is unable to communicate with
all objects residing in the query's required search area.
With a higher user density, the user has a lower
probability of suffering from the network partition
problem, so the false negative reduces. When there are
more users, ContQP has a higher probability to select
more extra objects to an answer (Figure 9d). Since the
false positive of ContQP for range queries in all the
experiments is user of ContQP has a higher probability to
get an answer from the information shared by neighbors
about the adjusted research search area of their queries
and their transmission ranges.

Fig. 9: Number of Mobile Users (Range Queries)

Fig. 10: Number of mobile users (k-NN queries).

(a) Power consumption (b) False Negative

Fig. 11: Number of querying users (range queries).

(a) Power consumption (b) False Negative

Fig. 12: Number of querying users (k-NN queries).

Since PeerQP does not continuously maintain the query
answer, the user only as a higher chance to get the query
answer from the information shared by neighbors about
their transmission ranges; thus PeerQP slightly reduces
the power consumption. The number of querying users
has only slight effect on the false negative (Figure 11b).
Figure 12 shows that the results of k-NN queries are
similar to that of range queries.

57

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 1 Issue 2, November 2012
www.ijsr.net

6.2 Effect of QoS Requirements

TABLE 4: Approximate coverage computation.

Grid Size Area 22 42 62 82 102 122

Coverage 0.632 0.624
0.61

2
0.60

6
0.6

0.58
6

Computation time
(ms)

137.96
3

35.09
4

15.7
7

9.17
3

5.93
2

4.22
8

Table 4 shows the precision of the approximate coverage
measurement with respect to increasing the grid cell area
from 22 to 122 m2. Since, the bit of a grid cell is set to
one, if it is totally covered by some monitored area that is
either stored in a user's local cache or shared by a user's
neighbor, increasing the grid cell area leads to a larger
underestimation of the approximate coverage
measurement. The results indicate that when the grid cell
area increases, the precision only degrades slightly, while
the computational time significantly decreases. Therefore,
we choose 16 m2 as the default grid cell area [22][24] for
all the experiments because this area size gives the
greatest improvement ratio on the computational time.

(a) Power consumption (b) False Negative

Fig. 13: Coverage requirements (range queries).

(a) Power consumption (b) False Negative

Fig. 14: Coverage requirements (k-NN queries).

Figures 13 and 14 show that the coverage requirement,
Cmin, only affects ContQP slightly for range and k-NN
queries, respectively. After ContQP finds a query answer,
the query's required search area is contained by the
adjusted required search area that is monitored by the
continuous query answer maintenance control flow, the
coverage of the information stored in the local cache with
respect to the query is one. Figure 13a shows that PeerQP
incurs less communication overhead than ContQP, as
Cmin is small. This is because the user of PeerQP is more
likely to find an answer from the local cache or the
information shared by neighbors; however, the query
answer accuracy is very low (Figure 13b).

(a) Power consumption (b) False Negative

Fig. 15: Accuracy requirements (range queries).

(a) Power consumption (b) False Negative

Fig. 16: Accuracy requirements (k-NN queries).

Figures 15 and 16 show that when the accuracy
requirement, Amin, gets larger, the communication
overhead of ContQP increases, while its accuracy
improves. This is because a larger Amin results in a
higher probability that the user needs to execute the
relatively expensive query broadcasting control flow to
find the most accurate possible query answer. However,
LocalQP executes this control flow for each query
evaluation, while PeerQP has a much higher chance to
execute this control flow than ContQP. Therefore, Amin
achieves a tradeoff between the communication overhead
and the query answer accuracy for ContQP.

6.3 Effect of Query Parameters

Figure 17 shows the results of all the algorithms with
respect to increasing the range distance, Range, of range
queries from 150 to 350 meters. It is expected that the
communication overhead increases, as Range gets larger
(Figure 17a). ContQP is more scalable than the baseline
algorithms, because ContQP has a higher probability to
find an answer from the information shared by neighbors,
when Range increases. The increase of Range results in
larger required search areas for queries, where the user is
more likely to suffer from the network partition problem;
thus the false negative increases (Figure 13b).
Figure 18 shows the performance of all the algorithms
with respect to increasing the required number of objects
of interest, k, of k-NN queries from 2 to 10. Similar to
range queries, increasing k incurs higher power
consumption and ContQP is more scalable than the
baseline algorithms (Figure 18a). When k is larger, there
is a higher probability for the user of ContQP and PeerQP
to execute the query broadcasting control flow to find the
most accurate possible answer; thus their query answer
accuracy improves (Figure 18b).

58

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 1 Issue 2, November 2012
www.ijsr.net

6.4 Effect of Mobility Speeds

Figures 19 and 20 show the performance evaluation with
respect to varying the user mobility speed from [1; 5] to
[1; 30] meters per second for range and k-NN queries,
respectively. Since LocalQP executes the query
broadcasting control flow for each query evaluation, it is
not affected by the mobility speed. PeerQP is only slightly
affected by the mobility speed, as it only avoids a small
number of times of executing the query broadcasting
control flow. When the mobility speed increases, ContQP
incurs higher power consumption (Figures 19a and 20a).
The reason is that increasing the mobility speed results in
higher uncertainty in location information, which leads to
a higher decay rate in the accuracy of an answer derived
from a local cache; thus ContQP has a higher probability
to execute the relatively expensive query broadcasting
control flow to find the answer. Since the user can get

(a) Power consumption (b) False Negative

Fig. 17: Range distance (Range queries).

(a) Power consumption (b) False Negative

Fig. 18: Required Number of objects (k-NN queries).

most cases, so its performance is slightly affected by the
query period. However, the communication overhead of
ContQP reduces and then stabilizes, as the query period
increases (Figure 22a). In the experiment, we maintain the
same number of querying users, decreasing the query
period results in more new querying users that execute the
relatively expensive query broadcasting control flow to
find initial query answers.
Figure 22b shows that the answer accuracy reduces, as the
query period increases. This is because the uncertainty of
the location information stored in a user's local cache
increases for a longer time period.

(a) Power consumption (b) False Negative

Fig. 19: Maximum mobility speeds (range queries).

(a) Power consumption (b) False Negative

Fig. 20: Maximum mobility speeds (k-NN queries)

59

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 1 Issue 2, November 2012
www.ijsr.net

7. Conclusion

We design a continuous query processing framework for
range and k-nearest-neighbor queries in mobile peer-to-
peer (P2P) environments. Our framework has two key
features. Our framework provides an approximate answer
for the user with two personalized QoS guarantees,
namely, coverage and accuracy.

The user is able to collaborate with peers to maintain
query answers. Our framework has four main control
flows. The user derives an answer from the local cache
and measures the quality of the answer. If the answer
satisfies the user's QoS requirements, it is returned to the
user. Otherwise, the user enlists neighbors for help to turn
in their cached information to refine the answer. If the
refined answer still cannot satisfy the user's QoS
requirements, the user searches the required search area of
the query to get the answer. Then the user collaborates
with peers to maintain the answer. We evaluate our
framework through experiments.

The results show that our framework is efficient and
scalable in terms of communication overhead, and the
QoS requirements achieve a performance tradeoff
between the communication overhead and the quality of
query answers.

a) Power consumption (b) False Negative

Fig. 21: Beacon intervals (k-NN queries).

a) Power consumption (b) False Negative

Fig. 22: Query period (range queries).

60

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 1 Issue 2, November 2012
www.ijsr.net

References

[1] Y. Cai, K. A. Hua, and G. Cao, .Processing range-
monitoring queries on heterogeneous mobile objects,.
in Proc. of MDM, 2004.

[2] C.-Y. Chow, H. V. Leong, and A. T. S. Chan,
.Distributed group-based cooperative caching in a
mobile broadcast environment,. in Proc. Of MDM,
2005.

[3] C.-Y. Chow, H. V. Leong, and A. T. S. Chan,
.GroCoca: Group-based peer-to-peer cooperative
caching in mobile environment,. IEEE Journal on
Selected Areas in Communications, vol. 25, no. 1, pp.
179.191, 2007.

[4] B. Gedik and L. Liu, .MobiEyes: Distributed
processing of continuously moving queries on
moving objects in a mobile system,. in Proc. Of
EDBT, 2004.

[5] T. Hara, .Effective replica allocation in ad hoc
networks for improving data accessibility,. in Proc. of
IEEE INFOCOM, 2001.

[6] H. Hu, J. Xu, and D. L. Lee, .A generic framework
for monitoring continuous spatial queries over
moving objects,. in Proc. of ACM SIGMOD, 2005.

[7] Z. Huang, C. S. Jensen, H. Lu, and B. C. Ooi,
.Skyline queries against mobile lightweight devices in
manets,. in Proc. of IEEE ICDE, 2006.

[8] W.-S. Ku, R. Zimmermann, and H. Wang, .Location-
based spatial queries with data sharing in wireless
broadcast environments,. IEEE Transactions on
Mobile Computing, vol. 7, no. 5, 2008.

[9] M. F. Mokbel, X. Xiong, and W. G. Aref, .SINA:
Scalable incremental processing of continuous
queries in spatio-temporal databases,. in Proc.of
ACM SIGMOD, 2004.

[10] M. Papadopouli and H. Schulzrinne, .Effects of
power conservation, wireless coverage and
cooperation on data dissemination among mobile
devices,. in Proc. of ACM MobiHoc, 2001.

[11] Y. Tao, D. Papadias, and Q. Shen, .Continuous
nearest neighbor search,. in Proc. of VLDB, 2002.

[12] H. Cao, O. Wolfson, B. Xu, and H. Yin, .MOBI-DIC:
Mobile discovery of local resources in peer-to-peer
wireless network,. IEEE Data Engineering Bulletin,
vol. 28, no. 3, pp. 11.18, 2005.

[13] O. Wolfson, B. Xu, and R. M. Tanner, .Mobile peer-
to-peer data dissemination with resource constraints,.
in Proc. of MDM, 2007.

[14] O. Wolfson, B. Xu, H. Yin, and H. Cao, .Search-and-
discover in mobile P2P network databases,. in Proc.
of IEEE ICDCS, 2005.

[15] J. M. Kang, M. F. Mokbel, S. Shekhar, T. Xia, and D.
Zhang, .Continuous evaluation of monochromatic and
bichromatic reverse nearest neighbors,. in Proc. of
IEEE ICDE, 2007.

[16] C. S. Jensen, D. Lin, B. C. Ooi, and R. Zhang,
.Effective density queries of continuously moving
objects,. in Proc. of IEEE ICDE, 2006.

[17] B. Zheng, J. Xu, W.-C. Lee, and D. L. Lee, .Grid-
partition index: A hybrid method for nearest-neighbor
queries in wireless location-based services,. VLDB
Journal, vol. 1, no. 15, pp. 21.39, 2006.

[18] N. Chand, R. C. Joshi, and M. Misra, .Cooperative
caching strategy in mobile ad hoc networks based on
clusters,. Wireless Personal Communications, vol. 1,
no. 43, pp. 41.63, 2007.

[19] W. Wu and K.-L. Tan, .Global cache management in
nonuniform mobile broadcast,. in Proc. of MDM,
2006.

[20] A. Coman, M. A. Nascimento, and J. Sander,
.Exploiting redundancy in sensor networks for energy
efficient processing of spatiotemporal region queries,.
in Proc. of CIKM, 2005.

[21] N. Dimokas, D. Katsaros, and Y. Manolopoulos,
.Cooperative caching in wireless multimedia sensor
networks,. Mobile Networks and Applications, no. 3-
4, pp. 337.356, 2008.

[22] Y. Yao, X. Tang, and E.-P. Lim, .Continuous
monitoring of kNN queries in wireless sensor
networks,. in Proc. of MSN, 2006.

[23] Z. J. Haas and M. R. Pearlman, .The performance of
query control schemes for the zone routing protocol,.
IEEE/ACM Transactions on Networking, vol. 9, no.
4, pp. 427.438, 2001.

[24] L. Li, J. Y. Halpern, P. Bahl, Y.-M. Wang, and R.
Wattenhofer, .Analysis of a cone-based distributed
topology control algorithm for wireless multi-hop
networks,. in Proc. of ACM PODC, 2001.

[25] R. Cheng, J. Chen, M. F. Mokbel, and C.-Y. Chow,
.Probabilistic verifiers: Evaluating constrained
nearest neighbor queries over uncertain data,. in Proc.
of IEEE ICDE, 2008.

[26] L. M. Feeney and M. Nilsson, .Investigating the
energy consumption of a wireless network interface
in an ad hoc networking environment,. in Proc. of
IEEE INFOCOM, 2001. J. Broch, D. A. Maltz, D. B.
Johnson, Y.-C. Hu, and J. Jetcheva, .A performance
comparison of multi-hop wireless ad hoc network
routing protocols,. in Proc. of ACM MOBICOM,
1998.

Gangadhar Adepu received the MCA and pursuing M.Tech
degrees in Computer Science and Engineering from Jawaharlal
Nehru Technological University in 2006 and 2012, respectively.
During 2006-2010, he stayed in Sree Chaitanya Institute of
Management & Computer Sciences as Assistant Professor.

R. Sumalatha received the B.Tech and M.Tech degrees in
Computer Science and Engineering from Jawaharlal Nehru
Technological University. She is staying in Sree Chaitanya
College of Engineering as Assistant Professor.

61

