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Abstract: Congestion in the network is increasing immensely due to the growth of usage of multimedia application. This lead to 
unresponsive and misbehaving traffic flows. There are few primitive scheduling schemes to control the congestion in the network, which 
worked only at end-to-end network, due which they were unable to prevent the congestion collapse and unfairness created by 
applications that are unresponsive to network congestion. So together we included those schemes and made improvements to make a 
more flexible solution for building a congestion control scheme in network using network border protocol framework. Using NBP 
framework we show the aggregation and connection admission control mechanisms into the NBP framework. The NBP framework 
provides a proper protocol designs which entails the exchange of feedback between routers at the borders of a network in order to detect 
and restrict unresponsive traffic flows before they enter the network, thereby preventing congestion within the network. The NBP 
framework is proposed with enhanced core-stateless fair queuing (ECSFQ) mechanism, which provides fair bandwidth allocations to 
competing flows. 
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1. Introduction 

 
There has been a rapid increase in usage of networked 

multimedia parallels the growth of Internet. Despite novel 
techniques for data compression and multicast for data 
transmission, multimedia applications are bandwidth 
intensive, delay sensitive, and somewhat less tolerant. TCP 
being both a reliable and fair protocol (retransmits every lost 
or corrupted packet and slows down in case of congestion) is 
mostly suited for file transfers, terminal work and web 
browsing. This usually does not work in transporting 
interactive video and sound, where reliability is a weakness 
rather than strength, and consequently UDP is the protocol 
of choice. UDP has no mechanisms either to detect, or to 
control congestion, which classifies it as an unresponsive 
protocol. When low capacity link becomes a bottleneck and 
the network may enter into a state of congestion, UDP 
maintains its transmission rate. It may use almost all capacity 
of that link. While the self-clocking TCP, as congestion 
responsive, will slow down and thus decrease the good put 
that can eventually go to zero. The phenomenon is known as 
a congestion collapse since most of the network resources 
transmit undelivered packets [1]. When the number of TCP 
flows in the Internet is prevalent, the stability of the network 
is guaranteed by the congestion control mechanisms as an 
integral part of the transport protocol. In the presence of  
UDP, the situation radically changes, which makes any co-

existence of different transport protocols a virtual 
impossibility and the appearance of congestion a reality. 
Recent research has focused on studying and resolving this 
problem, as in Network Border Patrol, [2], where all data 
flows are monitored and their sending rates are accordingly 
adjusted via traffic shapers placed at the edge routers. 

Another solution is the Datagram Congestion Control 
Protocol (DCCP) [3], a sort of a blend between UDP and 
TCP, where the complexity of the latter is reduced just to its 
congestion control features. The suggested solutions are still 
being studied and experimented with, which makes the 
question of a suitable congestion control strategy when 
socially responsible and socially irresponsible protocols have 
to work together, as it is the case today on the Internet.  

In this paper, we introduce and investigate a new Internet 
traffic control mechanism called Network Border Patrol 
(NBP). The basic principle of NBP is to compare, at the 
borders of the network, the rates at which each flow’s 
packets are entering and leaving the network. If packets are 
entering the network faster than they are leaving it, then the 
network is very likely to be buffering or, worse yet, 
discarding the flow’s packets. In other words, the network is 
receiving more packets than it can handle. NBP prevents this 
scenario by “patrolling” the network’s borders, ensuring that 
packets do not enter the network at a rate greater than they 
are able to leave it. This has the beneficial effect of 
preventing congestion collapse from undelivered packets; 
because an unresponsive flow’s otherwise undeliverable 
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packets never enter the network in the first place. NBP’s 
prevention of congestion collapse comes at the expense of 
some additional network complexity, since routers at the 
borders of the network (i.e., edge routers) are expected to 
monitor and control the rates of individual flows. NBP also 
introduces an added communication overhead, since in order 
for an edge router to know the rate at which its packets are 
leaving the network, it must exchange feedback with other 
edge routers. However, unlike other existing approaches to 
the problem of congestion collapse, NBP’s added complexity 
is isolated to edge routers; routers within the core of the 
network remain unchanged. Moreover, end systems operate 
in total ignorance of the fact that NBP is implemented in the 
network, so no changes to transport protocols are necessary. 
Note that the primary goal of NBP is to prevent congestion 
collapse from undelivered packets. 

2. Background Work 

2.1 Rate Control Algorithm 

 
The NBP rate-control algorithm regulates the rate at which 

each flow is allowed to enter the network. Its primary goal is 
to converge on a set of per-flow transmission rates 
(hereinafter called ingress rates) that prevents congestion 
collapse due to undelivered packets. It also attempts to lead 
the network to a state of maximum link utilization and low 
router buffer occupancies, and it does this in a manner that is 
similar to TCP. 

In the NBP rate-control algorithm, flows may be in one of 
two phases, slow start or congestion avoidance, similar to the 
phases of TCP congestion control.[4] The desirable stability 
characteristics of slow-start and congestion control 
algorithms have been proven in TCP congestion control, and 
NBP expects to benefit from their well-known stability 
features. In NBP, new flows entering the network start with 
the slow-start phase and proceed to the congestion-avoidance 
phase only after the flow has experienced incipient 
congestion. 

The rate-control algorithm is invoked whenever a 
backward feedback packet arrives at an ingress router. Recall 
that backward feedback packets contain a timestamp and a 
list of flows arriving at the egress router from the ingress 
router as well as the monitored egress rates for each flow. 
Upon the arrival of a backward feedback packet, the 
algorithm calculates the current round-trip time between the 
edge routers and updates the base round-trip time (e.base 
RTT), if necessary. 

The base round-trip time (e.baseRTT) reflects the best-
observed round-trip time between the two edge routers. The 
algorithm then calculates deltaRTT, which is the difference 
between the current round-trip time (currentRTT) and the 
base round-trip time (e.baseRTT). A deltaRTT value greater 
than zero indicates that packets are requiring a longer time to 
traverse the network than they once did, and this can only be 
due to the buffering of packets within the network. 

NBP's rate-control algorithm decides that a flow is 
experiencing incipient congestion whenever it estimates that 
the network has buffered the equivalent of more than one of 
the flow's packets at each router hop. To do this, the 
algorithm first computes the product of the flow's ingress 

rate (f.ingressRate) and deltaRTT (i.e., f.ingressRate 
deltaRTT). This value provides an estimate of the amount of 
the flow's data that is buffered somewhere in the network. If 
this amount (i.e., f.ingressRate deltaRTT) is greater than the 
number of router hops between the ingress and the egress 
routers (e.hopcount) multiplied by the size of the largest 
possible packet (MSS) (i.e., MSS e.hopcount), then the flow 
is considered to be experiencing incipient congestion. 

The rationale for determining incipient congestion in this 
manner is to maintain both high link utilization and low 
queuing delay. Ensuring there is always at least one packet 
buffered for transmission on a network link is the simplest 
way to achieve full utilization of the link, and deciding that 
congestion exists when more than one packet is buffered at 
the link keeps queuing delays low. 

The rate quantum is not allowed to exceed the flow's 
current egress rate divided by a constant quantum factor 
(QF). This guarantees that rate increments are not 
excessively large when the round-trip time is small. When 
the rate-control algorithm determines that a flow is 
experiencing incipient congestion, it reduces the flow's 
ingress rate. 

If a flow is in the slow-start phase, it enters the 
congestion-avoidance phase. If a flow is already in the 
congestion-avoidance phase, its ingress rate is reduced to the 
flow's egress rate decremented by a constant value. In other 
words, an observation of incipient congestion forces the 
ingress router to send the flow's packets into the network at a 
rate slightly lower than the rate at which they are leaving the 
network. 

NBP's rate-control algorithm is designed to have 
minimum impact on TCP flows. The rate at which NBP 
regulates each flow (f.ingressRate) is primarily a function of 
the round-trip time between the flow's ingress and egress 
routers (currentRTT). In NBP, the initial ingress rate for a 
new flow is set to be MSS/e.baseRTT, following TCP's 
initial rate of one segment per round-trip time. 

NBP's currentRTT is always smaller than TCP's end-to-
end round-trip time (as the distance between ingress and 
egress routers, i.e., the currentRTT in NBP, is shorter than 
the end-to-end distance, i.e., TCP's round-trip time). As a 
result, f.ingressRate is normally larger than TCP's 
transmission rate when the network is not congested, since 
the TCP transmission window increases at a rate slower than 
NBP's f.ingressRate increases. Therefore, NBP normally 
does not regulate TCP flows. 
However, when congestion occurs, NBP reacts first by 
reducing f.ingressRate and, therefore, reducing the rate at 
which TCP packets are allowed to enter the network. TCP 
eventually detects the congestion (either by losing packets or 
due to longer round-trip times) and then promptly reduces its 
transmission rate. From this time point on, f.ingress Rate 
becomes greater than TCP's transmission rate, and therefore, 
NBP's congestion control does not regulate TCP sources 
until congestion happens again. 
 

2.2 Leaky Bucket Algorithm: 

 
The leaky bucket algorithm is used to regulate the traffic 

flow from the input port to the output port. We assume leaky 
bucket as a bucket with a small hole at the bottom. Hence 
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any packet that enters the bucket at any rate must go out of 
the bucket at a controlled rate from the hole at the bottom. 
Also we assume that the limit of the bucket is infinity. Hence 
there is no case of bucket getting filled and the packets 
getting lost due to the limit of the bucket. 

 

2.3 Feedback Control Algorithm: 

 
The feedback control algorithm in NBP determines how 

and when feedback packets are exchanged between edge 
routers. Feedback packets take the form of ICMP packets 
and are necessary in NBP for three reasons. First, forward 
feedback packets allow egress routers to discover which 
ingress routers are acting as sources for each of the flows 
they are monitoring. 

Second, backward feedback packets allow egress routers 
to communicate per-flow bit rates to ingress routers. Third, 
forward and backward feedback packets allow ingress 
routers to detect incipient network congestion by monitoring 
edge-to-edge round-trip times. 
 

2.4 Network Border Patrol: 

 
Network Border Patrol is a core-stateless congestion 

avoidance mechanism. That is, it is aligned with the  core-
stateless approach [7], which allows routers on the borders 
(or edges) of a network to perform flow classification and 
maintain per-flow state but does not allow routers at the core 
of the network to do so.  

 
Figure. 1. The core-stateless Internet architecture assumed 

by NBP 
 
Figure 1 illustrates this architecture. In this paper, we 

draw a further distinction between two types of edge routers. 
Depending on which flow it is operating on, an edge router 
may be viewed as ingress or an egress router. An edge router 
operating on a flow passing into a network is called an 
ingress router, whereas an edge router operating on a flow 
passing out of a network is called an egress router. Note that 
a flow may pass through more than one egress (or ingress) 
router if the end-to-end path crosses multiple networks. 

NBP prevents congestion collapse through a combination 
of per-flow rate monitoring at egress routers and per-flow 
rate control at ingress routers. [8] Rate monitoring allows an 
egress router to determine how rapidly each flow’s packets 
are leaving the network, whereas rate control allows an 
ingress router to police the rate at which each flow’s packets 

enter the network. Linking these two functions together are 
the feedback packets exchanged between ingress and egress 
routers; ingress routers send egress routers forward feedback 
packets to inform them about the flows that are being rate 
controlled, and egress routers send ingress routers backward 
Feedback packets to inform them about the rates at which 
each flow’s packets are leaving the network. 

3. PROBLEM DEFINITION 

3.1 Existing system: 

 
As a result of its strict adherence to end-to-end congestion 

control, the current Internet suffers from two maladies: 
Congestion collapse from undelivered packets and unfair 
allocations of bandwidth between competing traffic flows. 
            The first malady congestion collapse from 
undelivered packets arises when packets that are dropped 
before reaching their ultimate continually consume 
bandwidth destinations. [9] 
             The second malady unfair bandwidth allocation to 
competing network flows arises in the Internet for a variety 
of reasons, one of which is the existence of applications that 
do not respond properly to congestion. Adaptive applications 
(e.g., TCP-based applications) that respond to congestion by 
rapidly reducing their transmission rates are likely to receive 
unfairly small bandwidth allocations when competing with 
unresponsive applications. The Internet protocols themselves 
can also introduce unfairness. The TCP algorithm, for 
instance, inherently causes each TCP flow to receive a 
bandwidth that is inversely proportional to its round-trip 
time [6]. Hence, TCP connections with short round-trip 
times may receive unfairly large allocations of network 
bandwidth when compared to connections with longer 
round-trip times. 
                   The impact of emerging streaming media traffic 
on traditional data traffic is of growing concern in the 
Internet community. Streaming media traffic is unresponsive 
to the congestion in a network, and it can aggravate 
congestion collapse and unfair bandwidth allocation. 
  

3.2 Proposed system: 

 
To address the maladies of congestion collapse we 

introduce and investigate a novel Internet traffic control 
protocol called Congestion Free Router (CFR). The basic 
principle of CFR is to compare, at the borders of a network, 
the rates at which packets from each application flow are 
entering and leaving the network. If a flow’s packets are 
entering the network faster than they are leaving it, then the 
network is likely buffering or, worse yet, discarding the 
flow’s packets. In other words, the network is receiving 
more packets than it is capable of handling. CFR prevents 
this scenario by “patrolling” the network’s borders, ensuring 
that each flow’s packets do not enter the network at a rate 
greater than they are able to leave the network. This 
patrolling prevents congestion collapse from undelivered 
packets; because unresponsive flow’s otherwise 
undeliverable packets never enter the network in the first 
place.  

37



International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064 

Volume 1 Issue 2, November 2012 
www.ijsr.net 

 

Although CFR is capable of preventing congestion 
collapse and improving the fairness of bandwidth 
allocations, these improvements do not come for free. CFR 
solves these problems at the expense of some additional 
network complexity, since routers at the border of the 
network are expected to monitor and control the rates of 
individual flows in CFR. CFR also introduces added 
communication overhead, since in order for an edge outer to 
know the rate at which its packets are leaving the network, it 
must exchange feedback with other edge routers. Moreover, 
end systems operate in total ignorance of the fact that CFR is 
implemented in the network, so no changes to transport 
protocols are necessary at end systems. 

4. Architectural Components 

The only components of the network that require 
modification by CFR are edge routers; the input ports of 
OutRouter routers must be modified to perform per-flow 
monitoring of bit rates, and the output ports of InRouter 
routers must be modified to perform per-flow rate control.[5] 
In addition, both the InRouter and the OutRouter routers 
must be modified to exchange and handle CFR feedback 
packets. 

The input ports of OutRouter routers are enhanced in 
CFR. Fig. 2 illustrates the architecture of an OutRouter 
router’s input port. Data packets sent by InRouter routers 
arrive at the input port of the OutRouter router and are first 
classified by flow. Flow classification is performed by 
InRouter routers on every arriving packet based upon a flow 
classification policy.  
An example flow classification policy is to examine the 
packet’s source and destination network addresses, and to 
aggregate all packets arriving on an InRouter router and 
destined to the same OutRouter router into the same CFR 
flow (i.e., a macro-flow).  

 
Figure. 2. An input port of an NBP egress router 

 
Other flow classification policies can be used, for 

instance, in the case of IPv6, flows may be classified by 
examining the packet header’s flow label, whereas in the 
case of IPv4, it could be done by examining the packet’s 
source and destination addresses and port numbers. 

After classifying packets into flows, each flow’s bit rate is 
then rate monitored using a rate estimation algorithm such as 
the Time Sliding Window (TSW) algorithm. These rates are 
collected by a feedback controller, which returns them in 
backward feedback packets to an InRouter router whenever a 
forward feedback packet arrives from that InRouter router. 

 

 
Figure. 3. An output port of an NBP ingress router 

 
The output ports of InRouter routers are also enhanced in 

CFR. Each output port contains a flow classifier; per-flow 
traffic shapers (e.g., leaky buckets), a feedback controller, 
and a rate controller (see Fig. 3). The flow classifier 
classifies packets into flows, and the traffic shapers limit the 
rates at which packets from individual flows enter the 
network. The feedback controller receives backward 
feedback packets returning from OutRouter routers and 
passes their contents to the rate controller. It also generates 
forward feedback packets that are transmitted to the 
network’s OutRouter routers.  

5. Implementation 

 
The various modules in the protocol are as follows: 

  
A. Source Module:- 

The task of this Module is to send the packet to the 
InRouter router. 
 

B. InRouter Router Module:- 
An edge router operating on a flow passing into a 
network is called an InRouter router. CFR prevents 
congestion collapse through a combination of per-
flow rate monitoring at OutRouter routers and per-
flow rate control at InRouter routers. Rate control 
allows an InRouter router to police the rate at which 
each flow’s packets enter the network. InRouter 
Router contains a flow classifier, per-flow traffic 
shapers (e.g., leaky buckets), a feedback controller, 
and a rate controller 

 
C. Router Module:- 

The task of this Module is to accept the packet from 
the InRouter router and send it to the OutRouter 
router. 

 
D. OutRouter Router Module:- 

An edge router operating on a flow passing out of a 
network is called an OutRouter router. CFR prevents 
congestion collapse through a combination of per-
flow rate monitoring at OutRouter routers and per-
flow rate control at InRouter routers. Rate monitoring 
allows an OutRouter router to determine how rapidly 
each flow’s packets are leaving the network. Rate 
monitored using a rate estimation algorithm such as 
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the Time Sliding Window (TSW) algorithm. 
OutRouter Router contains a flow classifier, Rate 
monitor, and a feedback controller. 

 
E. Destination Module:- 

The task of this Module is to accept the packet from 
the OutRouter router and stored in a file in the 
Destination machine. 

6. Conclusion 

Using network border protocol framework we have 
presented a novel congestion-avoidance mechanism for the 
Internet. Unlike the existing primitive Internet congestion 
control schemes, which were solely on end-to-end control, 
the NBP framework is able to prevent congestion collapse 
from undelivered packets. The enhanced core-stateless fair 
queuing complements NBP framework by providing fair 
bandwidth allocations in a core-stateless fashion. 

NBP framework prevents congestion collapse through a 
combination of per-flow rate monitoring at OutRouter 
routers and per-flow rate control at InRouter routers. Rate 
monitoring allows an OutRouter router to determine how 
rapidly each flow’s packets are leaving the network, whereas 
rate control allows an InRouter router to police the rate at 
which each flow’s packets enter the network. Linking these 
two functions together are the feedback packets exchanged 
between InRouter and OutRouter routers; InRouter routers 
send OutRouter routers forward feedback packets to inform 
them about the flows that are being rate controlled, and 
OutRouter routers send InRouter routers backward feedback 
packets to inform them about the rates at which each flow’s 
packets are leaving the network. By matching the InRouter 
rate and OutRouter rate of each flow, CFR prevents 
congestion collapse within the network. 
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