
International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 1 Issue 2, November 2012
www.ijsr.net

Congestion Control Mechanism using Network
Border Protocol

Ashakiran.G.N1, M.V.Panduranga Rao2, S.Basavaraj Patil3

1Dept of Computer Science and Engineering

BTL Institute of Technology
Bangalore, India

ashakirangn@yahoo.com

2Dept of Computer Science and Engineering
BTL Institute of Technology

Bangalore, India
raomvp@yahoo.com

3Dept of Computer Science and Engineering

BTL Institute of Technology
csehodbtlit@gmail.com

Abstract: Congestion in the network is increasing immensely due to the growth of usage of multimedia application. This lead to
unresponsive and misbehaving traffic flows. There are few primitive scheduling schemes to control the congestion in the network, which
worked only at end-to-end network, due which they were unable to prevent the congestion collapse and unfairness created by
applications that are unresponsive to network congestion. So together we included those schemes and made improvements to make a
more flexible solution for building a congestion control scheme in network using network border protocol framework. Using NBP
framework we show the aggregation and connection admission control mechanisms into the NBP framework. The NBP framework
provides a proper protocol designs which entails the exchange of feedback between routers at the borders of a network in order to detect
and restrict unresponsive traffic flows before they enter the network, thereby preventing congestion within the network. The NBP
framework is proposed with enhanced core-stateless fair queuing (ECSFQ) mechanism, which provides fair bandwidth allocations to
competing flows.

Keywords: Network Border Patrol; Leaky Bucket Algorithm; Feedback Control; Rate Control Algorithm;

1. Introduction

There has been a rapid increase in usage of networked

multimedia parallels the growth of Internet. Despite novel
techniques for data compression and multicast for data
transmission, multimedia applications are bandwidth
intensive, delay sensitive, and somewhat less tolerant. TCP
being both a reliable and fair protocol (retransmits every lost
or corrupted packet and slows down in case of congestion) is
mostly suited for file transfers, terminal work and web
browsing. This usually does not work in transporting
interactive video and sound, where reliability is a weakness
rather than strength, and consequently UDP is the protocol
of choice. UDP has no mechanisms either to detect, or to
control congestion, which classifies it as an unresponsive
protocol. When low capacity link becomes a bottleneck and
the network may enter into a state of congestion, UDP
maintains its transmission rate. It may use almost all capacity
of that link. While the self-clocking TCP, as congestion
responsive, will slow down and thus decrease the good put
that can eventually go to zero. The phenomenon is known as
a congestion collapse since most of the network resources
transmit undelivered packets [1]. When the number of TCP
flows in the Internet is prevalent, the stability of the network
is guaranteed by the congestion control mechanisms as an
integral part of the transport protocol. In the presence of
UDP, the situation radically changes, which makes any co-

existence of different transport protocols a virtual
impossibility and the appearance of congestion a reality.
Recent research has focused on studying and resolving this
problem, as in Network Border Patrol, [2], where all data
flows are monitored and their sending rates are accordingly
adjusted via traffic shapers placed at the edge routers.

Another solution is the Datagram Congestion Control
Protocol (DCCP) [3], a sort of a blend between UDP and
TCP, where the complexity of the latter is reduced just to its
congestion control features. The suggested solutions are still
being studied and experimented with, which makes the
question of a suitable congestion control strategy when
socially responsible and socially irresponsible protocols have
to work together, as it is the case today on the Internet.

In this paper, we introduce and investigate a new Internet
traffic control mechanism called Network Border Patrol
(NBP). The basic principle of NBP is to compare, at the
borders of the network, the rates at which each flow’s
packets are entering and leaving the network. If packets are
entering the network faster than they are leaving it, then the
network is very likely to be buffering or, worse yet,
discarding the flow’s packets. In other words, the network is
receiving more packets than it can handle. NBP prevents this
scenario by “patrolling” the network’s borders, ensuring that
packets do not enter the network at a rate greater than they
are able to leave it. This has the beneficial effect of
preventing congestion collapse from undelivered packets;
because an unresponsive flow’s otherwise undeliverable

35

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 1 Issue 2, November 2012
www.ijsr.net

packets never enter the network in the first place. NBP’s
prevention of congestion collapse comes at the expense of
some additional network complexity, since routers at the
borders of the network (i.e., edge routers) are expected to
monitor and control the rates of individual flows. NBP also
introduces an added communication overhead, since in order
for an edge router to know the rate at which its packets are
leaving the network, it must exchange feedback with other
edge routers. However, unlike other existing approaches to
the problem of congestion collapse, NBP’s added complexity
is isolated to edge routers; routers within the core of the
network remain unchanged. Moreover, end systems operate
in total ignorance of the fact that NBP is implemented in the
network, so no changes to transport protocols are necessary.
Note that the primary goal of NBP is to prevent congestion
collapse from undelivered packets.

2. Background Work

2.1 Rate Control Algorithm

The NBP rate-control algorithm regulates the rate at which

each flow is allowed to enter the network. Its primary goal is
to converge on a set of per-flow transmission rates
(hereinafter called ingress rates) that prevents congestion
collapse due to undelivered packets. It also attempts to lead
the network to a state of maximum link utilization and low
router buffer occupancies, and it does this in a manner that is
similar to TCP.

In the NBP rate-control algorithm, flows may be in one of
two phases, slow start or congestion avoidance, similar to the
phases of TCP congestion control.[4] The desirable stability
characteristics of slow-start and congestion control
algorithms have been proven in TCP congestion control, and
NBP expects to benefit from their well-known stability
features. In NBP, new flows entering the network start with
the slow-start phase and proceed to the congestion-avoidance
phase only after the flow has experienced incipient
congestion.

The rate-control algorithm is invoked whenever a
backward feedback packet arrives at an ingress router. Recall
that backward feedback packets contain a timestamp and a
list of flows arriving at the egress router from the ingress
router as well as the monitored egress rates for each flow.
Upon the arrival of a backward feedback packet, the
algorithm calculates the current round-trip time between the
edge routers and updates the base round-trip time (e.base
RTT), if necessary.

The base round-trip time (e.baseRTT) reflects the best-
observed round-trip time between the two edge routers. The
algorithm then calculates deltaRTT, which is the difference
between the current round-trip time (currentRTT) and the
base round-trip time (e.baseRTT). A deltaRTT value greater
than zero indicates that packets are requiring a longer time to
traverse the network than they once did, and this can only be
due to the buffering of packets within the network.

NBP's rate-control algorithm decides that a flow is
experiencing incipient congestion whenever it estimates that
the network has buffered the equivalent of more than one of
the flow's packets at each router hop. To do this, the
algorithm first computes the product of the flow's ingress

rate (f.ingressRate) and deltaRTT (i.e., f.ingressRate
deltaRTT). This value provides an estimate of the amount of
the flow's data that is buffered somewhere in the network. If
this amount (i.e., f.ingressRate deltaRTT) is greater than the
number of router hops between the ingress and the egress
routers (e.hopcount) multiplied by the size of the largest
possible packet (MSS) (i.e., MSS e.hopcount), then the flow
is considered to be experiencing incipient congestion.

The rationale for determining incipient congestion in this
manner is to maintain both high link utilization and low
queuing delay. Ensuring there is always at least one packet
buffered for transmission on a network link is the simplest
way to achieve full utilization of the link, and deciding that
congestion exists when more than one packet is buffered at
the link keeps queuing delays low.

The rate quantum is not allowed to exceed the flow's
current egress rate divided by a constant quantum factor
(QF). This guarantees that rate increments are not
excessively large when the round-trip time is small. When
the rate-control algorithm determines that a flow is
experiencing incipient congestion, it reduces the flow's
ingress rate.

If a flow is in the slow-start phase, it enters the
congestion-avoidance phase. If a flow is already in the
congestion-avoidance phase, its ingress rate is reduced to the
flow's egress rate decremented by a constant value. In other
words, an observation of incipient congestion forces the
ingress router to send the flow's packets into the network at a
rate slightly lower than the rate at which they are leaving the
network.

NBP's rate-control algorithm is designed to have
minimum impact on TCP flows. The rate at which NBP
regulates each flow (f.ingressRate) is primarily a function of
the round-trip time between the flow's ingress and egress
routers (currentRTT). In NBP, the initial ingress rate for a
new flow is set to be MSS/e.baseRTT, following TCP's
initial rate of one segment per round-trip time.

NBP's currentRTT is always smaller than TCP's end-to-
end round-trip time (as the distance between ingress and
egress routers, i.e., the currentRTT in NBP, is shorter than
the end-to-end distance, i.e., TCP's round-trip time). As a
result, f.ingressRate is normally larger than TCP's
transmission rate when the network is not congested, since
the TCP transmission window increases at a rate slower than
NBP's f.ingressRate increases. Therefore, NBP normally
does not regulate TCP flows.
However, when congestion occurs, NBP reacts first by
reducing f.ingressRate and, therefore, reducing the rate at
which TCP packets are allowed to enter the network. TCP
eventually detects the congestion (either by losing packets or
due to longer round-trip times) and then promptly reduces its
transmission rate. From this time point on, f.ingress Rate
becomes greater than TCP's transmission rate, and therefore,
NBP's congestion control does not regulate TCP sources
until congestion happens again.

2.2 Leaky Bucket Algorithm:

The leaky bucket algorithm is used to regulate the traffic

flow from the input port to the output port. We assume leaky
bucket as a bucket with a small hole at the bottom. Hence

36

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 1 Issue 2, November 2012
www.ijsr.net

any packet that enters the bucket at any rate must go out of
the bucket at a controlled rate from the hole at the bottom.
Also we assume that the limit of the bucket is infinity. Hence
there is no case of bucket getting filled and the packets
getting lost due to the limit of the bucket.

2.3 Feedback Control Algorithm:

The feedback control algorithm in NBP determines how

and when feedback packets are exchanged between edge
routers. Feedback packets take the form of ICMP packets
and are necessary in NBP for three reasons. First, forward
feedback packets allow egress routers to discover which
ingress routers are acting as sources for each of the flows
they are monitoring.

Second, backward feedback packets allow egress routers
to communicate per-flow bit rates to ingress routers. Third,
forward and backward feedback packets allow ingress
routers to detect incipient network congestion by monitoring
edge-to-edge round-trip times.

2.4 Network Border Patrol:

Network Border Patrol is a core-stateless congestion

avoidance mechanism. That is, it is aligned with the core-
stateless approach [7], which allows routers on the borders
(or edges) of a network to perform flow classification and
maintain per-flow state but does not allow routers at the core
of the network to do so.

Figure. 1. The core-stateless Internet architecture assumed

by NBP

Figure 1 illustrates this architecture. In this paper, we

draw a further distinction between two types of edge routers.
Depending on which flow it is operating on, an edge router
may be viewed as ingress or an egress router. An edge router
operating on a flow passing into a network is called an
ingress router, whereas an edge router operating on a flow
passing out of a network is called an egress router. Note that
a flow may pass through more than one egress (or ingress)
router if the end-to-end path crosses multiple networks.

NBP prevents congestion collapse through a combination
of per-flow rate monitoring at egress routers and per-flow
rate control at ingress routers. [8] Rate monitoring allows an
egress router to determine how rapidly each flow’s packets
are leaving the network, whereas rate control allows an
ingress router to police the rate at which each flow’s packets

enter the network. Linking these two functions together are
the feedback packets exchanged between ingress and egress
routers; ingress routers send egress routers forward feedback
packets to inform them about the flows that are being rate
controlled, and egress routers send ingress routers backward
Feedback packets to inform them about the rates at which
each flow’s packets are leaving the network.

3. PROBLEM DEFINITION

3.1 Existing system:

As a result of its strict adherence to end-to-end congestion

control, the current Internet suffers from two maladies:
Congestion collapse from undelivered packets and unfair
allocations of bandwidth between competing traffic flows.
 The first malady congestion collapse from
undelivered packets arises when packets that are dropped
before reaching their ultimate continually consume
bandwidth destinations. [9]
 The second malady unfair bandwidth allocation to
competing network flows arises in the Internet for a variety
of reasons, one of which is the existence of applications that
do not respond properly to congestion. Adaptive applications
(e.g., TCP-based applications) that respond to congestion by
rapidly reducing their transmission rates are likely to receive
unfairly small bandwidth allocations when competing with
unresponsive applications. The Internet protocols themselves
can also introduce unfairness. The TCP algorithm, for
instance, inherently causes each TCP flow to receive a
bandwidth that is inversely proportional to its round-trip
time [6]. Hence, TCP connections with short round-trip
times may receive unfairly large allocations of network
bandwidth when compared to connections with longer
round-trip times.
 The impact of emerging streaming media traffic
on traditional data traffic is of growing concern in the
Internet community. Streaming media traffic is unresponsive
to the congestion in a network, and it can aggravate
congestion collapse and unfair bandwidth allocation.

3.2 Proposed system:

To address the maladies of congestion collapse we

introduce and investigate a novel Internet traffic control
protocol called Congestion Free Router (CFR). The basic
principle of CFR is to compare, at the borders of a network,
the rates at which packets from each application flow are
entering and leaving the network. If a flow’s packets are
entering the network faster than they are leaving it, then the
network is likely buffering or, worse yet, discarding the
flow’s packets. In other words, the network is receiving
more packets than it is capable of handling. CFR prevents
this scenario by “patrolling” the network’s borders, ensuring
that each flow’s packets do not enter the network at a rate
greater than they are able to leave the network. This
patrolling prevents congestion collapse from undelivered
packets; because unresponsive flow’s otherwise
undeliverable packets never enter the network in the first
place.

37

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 1 Issue 2, November 2012
www.ijsr.net

Although CFR is capable of preventing congestion
collapse and improving the fairness of bandwidth
allocations, these improvements do not come for free. CFR
solves these problems at the expense of some additional
network complexity, since routers at the border of the
network are expected to monitor and control the rates of
individual flows in CFR. CFR also introduces added
communication overhead, since in order for an edge outer to
know the rate at which its packets are leaving the network, it
must exchange feedback with other edge routers. Moreover,
end systems operate in total ignorance of the fact that CFR is
implemented in the network, so no changes to transport
protocols are necessary at end systems.

4. Architectural Components

The only components of the network that require
modification by CFR are edge routers; the input ports of
OutRouter routers must be modified to perform per-flow
monitoring of bit rates, and the output ports of InRouter
routers must be modified to perform per-flow rate control.[5]
In addition, both the InRouter and the OutRouter routers
must be modified to exchange and handle CFR feedback
packets.

The input ports of OutRouter routers are enhanced in
CFR. Fig. 2 illustrates the architecture of an OutRouter
router’s input port. Data packets sent by InRouter routers
arrive at the input port of the OutRouter router and are first
classified by flow. Flow classification is performed by
InRouter routers on every arriving packet based upon a flow
classification policy.
An example flow classification policy is to examine the
packet’s source and destination network addresses, and to
aggregate all packets arriving on an InRouter router and
destined to the same OutRouter router into the same CFR
flow (i.e., a macro-flow).

Figure. 2. An input port of an NBP egress router

Other flow classification policies can be used, for

instance, in the case of IPv6, flows may be classified by
examining the packet header’s flow label, whereas in the
case of IPv4, it could be done by examining the packet’s
source and destination addresses and port numbers.

After classifying packets into flows, each flow’s bit rate is
then rate monitored using a rate estimation algorithm such as
the Time Sliding Window (TSW) algorithm. These rates are
collected by a feedback controller, which returns them in
backward feedback packets to an InRouter router whenever a
forward feedback packet arrives from that InRouter router.

Figure. 3. An output port of an NBP ingress router

The output ports of InRouter routers are also enhanced in

CFR. Each output port contains a flow classifier; per-flow
traffic shapers (e.g., leaky buckets), a feedback controller,
and a rate controller (see Fig. 3). The flow classifier
classifies packets into flows, and the traffic shapers limit the
rates at which packets from individual flows enter the
network. The feedback controller receives backward
feedback packets returning from OutRouter routers and
passes their contents to the rate controller. It also generates
forward feedback packets that are transmitted to the
network’s OutRouter routers.

5. Implementation

The various modules in the protocol are as follows:

A. Source Module:-

The task of this Module is to send the packet to the
InRouter router.

B. InRouter Router Module:-
An edge router operating on a flow passing into a
network is called an InRouter router. CFR prevents
congestion collapse through a combination of per-
flow rate monitoring at OutRouter routers and per-
flow rate control at InRouter routers. Rate control
allows an InRouter router to police the rate at which
each flow’s packets enter the network. InRouter
Router contains a flow classifier, per-flow traffic
shapers (e.g., leaky buckets), a feedback controller,
and a rate controller

C. Router Module:-

The task of this Module is to accept the packet from
the InRouter router and send it to the OutRouter
router.

D. OutRouter Router Module:-

An edge router operating on a flow passing out of a
network is called an OutRouter router. CFR prevents
congestion collapse through a combination of per-
flow rate monitoring at OutRouter routers and per-
flow rate control at InRouter routers. Rate monitoring
allows an OutRouter router to determine how rapidly
each flow’s packets are leaving the network. Rate
monitored using a rate estimation algorithm such as

38

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 1 Issue 2, November 2012
www.ijsr.net

the Time Sliding Window (TSW) algorithm.
OutRouter Router contains a flow classifier, Rate
monitor, and a feedback controller.

E. Destination Module:-

The task of this Module is to accept the packet from
the OutRouter router and stored in a file in the
Destination machine.

6. Conclusion

Using network border protocol framework we have
presented a novel congestion-avoidance mechanism for the
Internet. Unlike the existing primitive Internet congestion
control schemes, which were solely on end-to-end control,
the NBP framework is able to prevent congestion collapse
from undelivered packets. The enhanced core-stateless fair
queuing complements NBP framework by providing fair
bandwidth allocations in a core-stateless fashion.

NBP framework prevents congestion collapse through a
combination of per-flow rate monitoring at OutRouter
routers and per-flow rate control at InRouter routers. Rate
monitoring allows an OutRouter router to determine how
rapidly each flow’s packets are leaving the network, whereas
rate control allows an InRouter router to police the rate at
which each flow’s packets enter the network. Linking these
two functions together are the feedback packets exchanged
between InRouter and OutRouter routers; InRouter routers
send OutRouter routers forward feedback packets to inform
them about the flows that are being rate controlled, and
OutRouter routers send InRouter routers backward feedback
packets to inform them about the rates at which each flow’s
packets are leaving the network. By matching the InRouter
rate and OutRouter rate of each flow, CFR prevents
congestion collapse within the network.

References

[1] S. Floyd and K. Fall, “Promoting the Use of End-to-End
Congestion Control in the Internet,” IEEE/ACM
Transactions on Networking, August 1999, To appear.

[2] J. Padhye,V. Firoiu, D. Towsley, and J. Kurose,
“ModelingTCP Throughput: A SimpleModel and its
Empirical Validation,” in Proc. of ACM SIGCOMM,
September 1998, pp. 303–314.

[3] B. Suter, T.V. Lakshman, D. Stiliadis, and A.
Choudhury, “Design Considerations for Supporting TCP
with Per-Flow Queueing,” in Proc. of IEEE Infocom
’98, March 1998, pp. 299–305.

[4] B. Braden et al., “Recommendations on Queue
Management andCongestion Avoidance in the Internet,”
RFC 2309, IETF, April 1998.

[5] A. Demers, S. Keshav, and S. Shenker, “Analysis and
Simulation of a Fair Queueing Algorithm,” in Proc. of
ACM SIGCOMM, September 1989, pp.1–12.

[6] A. Parekh and R. Gallager, “A Generalized Processor
Sharing Approach to Flow Control – the Single Node
Case,” IEEE/ACM Transactions on Networking, vol. 1,
no. 3, pp. 344–357, June 1993.

[7] I. Stoica, S. Shenker, and H. Zhang, “Core-Stateless Fair
Queueing: Achieving Approximately Fair Bandwidth

Allocations in High Speed Networks,” in Proc. of ACM
SIGCOMM, September 1998, pp. 118–130.

[8] D. Lin and R. Morris, “Dynamics of Random Early
Detection,” in Proc. Of ACM SIGCOMM, September
1997, pp. 127–137.

[9] D. Bertsekas and R. Gallager, Data Networks, second
edition, Prentice Hall, 1987.

Ashakiran.G.N received the B.E. degree in Computer Science and
Engineering from Sri Revana Siddeshwara Institute of Technology,
Bangalore. At present persuing the Master of Technology in
Computer Science and Engineering Department at BTL institute of
Technology, Bangalore.

M.V.Panduranga Rao is a research scholar at National Institute of
Technology Karnataka, Mangalore, India. His research interests are
in the field of Real time and Embedded systems on Linux platform
and Security. He has published various research papers across India
and in IEEE international conference in Okinawa, Japan. He has
also authored two reference books on Linux Internals. He is the
Life member of Indian Society for Technical Education and
IAENG.

S.Basavaraj. Patil Started career as Faculty Member in
Vijayanagar Engineering College, Bellary (1993-1997).Then
moved to Kuvempu University BDT College of Engineering as a
Faculty member. During this period (1997-2004), carried out Ph.D.
Research work on Neural Network based Techniques for Pattern
Recognition in the area Computer Science & Engineering. Also
consulted many software companies (ArisGlobal, Manthan
Systems, etc.,) in the area of data mining and pattern recognition
His areas of research interests are Neural Networks and Genetic
Algorithms. He is presently mentoring two PhD and one MSc
(Engg by Research) Students. He is presently working as professor
at BTL institute of technology.

39

