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Abstract: Algorithms of parallel realization of classical "congruent’ methods of generation of pseudo-random numbers are discussed.
Algebraic (equational) and matrix interpretations of ways of realization of algorithms are presented. In order to achieve high level of
performance of modern and perspective technical tools of cryptographic protection of data, as well as to provide contemporary stochastic
methods of modeling, it is necessary to realize existing "‘congruent’™ methods in parallel. In developing solutions for the problems of
high level of complexity, such as cryptographic protection of data, ensuring high levels of security of functioning in real time is of out-
most importance. In this article the means of ensuring of functional diagnosis of the tools for pseudo-random numbers generation by
means of application of classical methods of superfluous arithmetic coding (module control) are briefly discussed.
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1. Introduction

Pseudo-random number (PRN) generators have important
applied meaning for the implementation of most crypto-
graphic algorithms and key material generation systems [1] —
[6]. Stricter requirements for the encryption speed and in-
creasing amount of data which needs to be protected cause
the necessity to construct parallel algorithms of PRN genera-
tion, what should be supported by providing the required
level of reliability of their operation [7], [8].

The purpose of the article is constructing parallel algo-
rithms of PRN generation with control of calculation errors
based on the congruent method.

2. Varieties of the congruent method

Varieties of the congruent method, in particular, are ex-
pressed by formulas (1) — (4):

Xn+1 = |bxn|m’ @)

Xn41 = [pXn +¢| | ()

X1 = ‘bd X + c‘ , 3)
m

Xni1 :‘bldlxn + b;’z Xp1 + c‘m, 4)

wherem — module, b — multiple,0 <b<m: ¢ — increment,
0<c<m: Xy — the initial value,0 < x, <m;

— smal-
m

lest non-negative residue of number « modulem .

In accordance with the purpose, we pose a problem to
construct parallel algorithms of PRN generation with control
of calculation errors. Algorithms of PRN generation are
shown as algebraic and matrix formulas.

3. Development of parallel algorithms

3.1 Algebraic method

Formula (1) can take the following series of algebraic trans-
formations:
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withk =1, 2, ... or we have:
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whereﬂi:‘bi‘ i=12,...,k.
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For (2) it is possible to get:
Xnaa =[bX, +¢]
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withk =2, 3,...or we have:

Xn4l = |ﬂlxn + 7/1|m’
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whereﬁiz‘b"m, y1=lel visr = c{Z/ﬂwl} ; Xq = b"%g +C[jz_lﬂj+1]
= B m
m
For (3) it is possible to get: =‘ 5314 412 + 711(531° + 5312 + 531+1)‘4093 =946,
d
Xn+1 = ‘b Xp + C‘m' 3.3 Matrix method
Xos = ‘bd xn+1+c‘ :‘ p2d X +c(bd +1)‘ , Let’s present the considered algorithms of PRN generation in
m m matrix form.
Xos3 :‘bd Xoso +c‘ :‘ p3d X +c(b2d +pd +1)‘ ’ For (1) it is possible to get:
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For (4) it is possible to get: m
where
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.................................... 1 N
_ For (3) it is possible to get:
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32 Examples where 5 =b%| | 71 =[e|,,, 711 = C[Zﬂ} +1] :
Let’s have xg =431, b =756, m = 2047 . m j=1 m
Find x;, X5, X3 using (5): i=12..k.
X = |bX0|m = |756 . 431| 2047 =363, For (4) it is possible to get:
, , X=|Ax, +Bx,, +G|
X, =|p?xo| =756 -431|2047 =130, m
m
3 3 Z B 71
X3 :|b x0|m =|756 ‘431|2047 =24. f 5
e PV L R L
Let’shave xg =412, b =531, c =711, m=4093. 1 ... n -1 '
Find xq, X2, X3, X4 using (6): Ay B 7k

m

X, =|bx +c| =|531-412+711|,  =2554, where A, :W +ﬁ1‘m: h = s+ Bl

X, =‘ b%x, + (4 +1)‘m

wheni=3,4,...;
_ 2 _ _ .
= ‘ 5312 - 412 + 711(531 +1) ‘4093 = 2102, B =|Biia,, whenk=23,...;
2 71=C7 =| (ks + Aa)|  whenk =2,3,....
1= m 3.4 Examples
=‘ 531° - 412 + 711(531% + 531 + 1)‘4093 = 3577, Let’s have x, =431, b =756, m = 2047 .

Find x1, X2, X3 using (9):
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756 363
X=[Bx,| =||756%|-431] =[130|
756° 24

2047
Let’shave x, =412, b =531, c =711, m =4093.
Find xq, X2, X3, X4 using (10):
X=[Bx, +G|_

531 711
5317 711-(531+1)
= 412 + X
711-@31 +531+1)

531°
531* 711-@313—+5312—F531+1)

2554
2102
3577 |
946

4. Control of calculation errors

Let’s useM =m-q, as a composite module in calculating
any of the obtained systems of expressions (5) — (8), where
g<m module introduced for the implementation of control

of calculation errors.
Then each of the expressions (5) — (8) can be rewritten as
a system of expressions on module M , for example (7):

* * * *
Xnpg = ‘/5'1 Xn + 71

M
X0 =|B3%5 473, Gk
Xk =BG + 7],
* di * * S 5
where £; =‘b ‘M,}/l :|C|M17i+1= c Zﬂj +1 ;
j=l M

i=1..k.
Control digits are calculated by the system:

sk o
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r — **r + sk ,
n+2 ‘ﬁz nt7r2 q, (12)

sk o
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where 8™ :‘bdi‘q’ " :|C|q' Vi =

kL
¢ Xp +1

j=1

q

i=1...k

Thus the result of (11), (12) is a redundant arithmetic
code, represented by informational [x;+1,...,x;+k Jand control
VECtors [F,, ..., Tk |- If the minimal values of the arithmetic
code distance d,,;, = g —1control arithmetic expressions are
as follows:

k3

error is no, if |x;,;
q

~ Tt =0,

error is, if

X

*
n+j q _rn+j #0,

wherel< j<k.
The final result is:

*
s eees Xnpk = | Xnak
m

*
v Xnp2 = |Xnt2
m

*
Xni1 = [Xna1
m

5. Conclusion

Developed algorithms of accurate parallel PRN generation
provide the required level of perspective highly productive
cryptographic means of protection of data.
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