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Abstract: Algorithms of parallel realization of classical "congruent" methods of generation of pseudo-random numbers are discussed. 
Algebraic (equational) and matrix interpretations of ways of realization of algorithms are presented. In order to achieve high level of 
performance of modern and perspective technical tools of cryptographic protection of data, as well as to provide contemporary stochastic 
methods of modeling, it is necessary to realize existing "congruent" methods in parallel. In developing solutions for the problems of 
high level of complexity, such as cryptographic protection of data, ensuring high levels of security of functioning in real time is of out-
most importance. In this article the means of ensuring of functional diagnosis of the tools for pseudo-random numbers generation by 
means of application of classical methods of superfluous arithmetic coding (module control) are briefly discussed. 
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1. Introduction 

Pseudo-random number (PRN) generators have important 
applied meaning for the implementation of most crypto-
graphic algorithms and key material generation systems [1] – 
[6]. Stricter requirements for the encryption speed and in-
creasing amount of data which needs to be protected cause 
the necessity to construct parallel algorithms of PRN genera-
tion, what should be supported by providing the required 
level of reliability of their operation [7], [8]. 

The purpose of the article is constructing parallel algo-
rithms of PRN generation with control of calculation errors 
based on the congruent method. 

2. Varieties of the congruent method 

Varieties of the congruent method, in particular, are ex-
pressed by formulas (1) – (4): 
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where m  – module, b  – multiple, mb 0 ; c  – increment,

mc 0 ; nx  – the initial value, mxn 0 ; m
  – smal-

lest non-negative residue of number   module m . 
In accordance with the purpose, we pose a problem to 

construct parallel algorithms of PRN generation with control 
of calculation errors. Algorithms of PRN generation are 
shown as algebraic and matrix formulas. 

3. Development of parallel algorithms 

3.1 Algebraic method 

Formula (1) can take the following series of algebraic trans-
formations: 
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with ,2,1k or we have: 
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where
m
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i b , ki ,,2,1  . 

For (2) it is possible to get: 
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with ,3,2k or we have: 
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For (3) it is possible to get: 
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For (4) it is possible to get: 
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3.2 Examples 

Let’s have 4310 x , 756b , 2047m . 

Find 321 ,, xxx using (5): 
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Let’shave 4120 x , 531b , 711c , 4093m . 

Find 4321 ,,, xxxx using (6): 
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3.3 Matrix method 

Let’s present the considered algorithms of PRN generation in 
matrix form. 

For (1) it is possible to get: 
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For (2) it is possible to get: 
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For (3) it is possible to get: 
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For (4) it is possible to get: 
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3.4 Examples 

Let’s have 431nx , 756b , 2047m . 

Find 321 ,, xxx using (9): 
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Let’shave 412nx , 531b , 711c , 4093m . 

Find 4321 ,,, xxxx using (10): 
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4. Control of calculation errors 

Let’s use ,qmM   as a composite module in calculating 

any of the obtained systems of expressions (5) – (8), where 
mq   module introduced for the implementation of control 

of calculation errors. 
Then each of the expressions (5) – (8) can be rewritten as 

a system of expressions on module M , for example (7): 
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Control digits are calculated by the system: 
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Thus the result of (11), (12) is a redundant arithmetic 

code, represented by informational  



 knn xx ,,1  and control 

vectors  knn rr  ,,1  . If the minimal values of the arithmetic 

code distance 1min  qd control arithmetic expressions are 

as follows: 
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The final result is: 
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5. Conclusion 

Developed algorithms of accurate parallel PRN generation 
provide the required level of perspective highly productive 
cryptographic means of protection of data. 
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