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1. Introduction 

The main goal of any cryptographic system (CS) is to protect 

data from uncontrolled changes during their transmitting via 

public communication channels or other usage. Ability of CS 

to provide this protection makes it sensitive to the distortion 

influence of different origin (random noise, cryptanalyst's 

simulating actions) while transmitting via communication 

channels. Change of one bit of encrypted data (cryptograms) 

may lead to partial or complete loss of decrypted data, which 

in turn will lead to loss of management and control while 

carrying out different tasks, that's why it's necessary to use 

CS adapted to work in such conditions to transmit crypto-

grams accurately. 

At the same time, there already exist approaches to creat-

ing such CS [1, 2]. In works [3-5], a block CS functioning in 

the ℤ� ring of non-negative integers modulo p was consid-

ered. However, it is known that systems functioning in the 

Galois field with characteristic 2 possess a number of ad-

vantages, such as high performance, ease of implementation 

and effectiveness. 

Purpose of this article is to develop interference -stable 

modular CS in the polynomial ring GF(2), able to resist de-

structive influences, both intentional and unintentional. 

2. System architecture 

CS that is able to resist the destructive effects of different 

origin was suggested in [3-6]. Encryption and decryption 

rules are defined in a general form: 

 

 � → 
��: �, (1) 

 � → ���: �, (2) 

 

where � – cryptogram, � – plaintext, �� and �� – encryption 

and decryption keys. When �� ≠ �� CS is called asymmetric, 

and when �� = �� – symmetric [7, 8]. 

Plaintext M is divided into blocks ��, ��, … ,��, where  

 �� – �-bit block of plaintext. Accordingly, � encryption op-

erations and n decryption operations will be required to ob-

tain cryptograms sequence ��, ��, … , ��. Therefore, the 

transformations (1) and (2) can be rewritten as 

 

 

���
���� → 
��,�:��,�� → 
��,�: ��,⋯⋯⋯⋯⋯⋯�� → 
��,!: ��;

 (3) 

 

���
���� → ���,�: ��,�� → ���,�: ��,⋯⋯⋯⋯⋯⋯�� → ���,! : ��;

 (4) 

 

where ��,� ≠ ��,�	 or ��,� ≠ ��,�	 ($ = 1, 2, … , �) in corre-

sponding cases. 

Let's consider the cryptograms blocks system (3) in a form 

of binary vectors system: 

 

 

���
��&� = '()*�

(�) ()*�(�) ⋯ (+(�),,&� = '()*�(�) ()*�(�) ⋯ (+(�),,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯&� = '()*�(�) ()*�(�) ⋯ (+(�),;
 (5) 

 

where (-(�) ∈ /0, 11; $ = 1, 2, … , �; 2 = � − 1,� − 2,… , 0. 

We will represent the coefficients (-(�) of system (5) as a 

coefficients of algebraic polynomials of Galois fields GF(4) 
with characteristic 4 = 2. Then (5) takes the form: 

 

 

���
����(5) = ()*�

(�) 5)*� + ()*�(�) 5)*� +⋯+ (+(�),��(5) = ()*�(�) 5)*� + ()*�(�) 5)*� +⋯+ (+(�),⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯��(5) = ()*�(�) 5)*� + ()*�(�) 5)*� +⋯+ (+(�);
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While transmitting the cryptograms sequence ��(5), ��(5), … , ��(5), distortion influence manifests itself 

as that instead of sent cryptograms other ��∗(5), ��∗(5), … , ��∗(5) are accepted. Accordingly, as a result 

of accepted cryptograms decryption the recipient receives the 

plaintext blocks ��∗(5),��∗(5), … ,��∗(5) that differ from the 

original. 

We will represent ��(5) as the least non-negative poly-

nomial residues on the polynomial grounds ��(5), such as 

gcd ;��(5),�-(5)< = 1, where $ ≠ 2; 	$, 2 = 1, 2, … , �, and 

0 ≤ deg	��(5) < deg	��(5), where deg	��(5) is the power 

of polynom ($ = 1, 2, … , �). Then we can consider crypto-

gram set /��(5), ��(5), … , ��(5)1 as a single information 

unit of the modular polynomial code (MPC) on the poly-

nomial bases system ��(5),��(5), … ,��(5). According 

to the Chinese Remainder Theorem for polynomials [9, 10] 

for a given set of pairwise relatively prime polynomials ��(5),��(5), … ,��(5) and a set of polynomials ��(5), ��(5), … , ��(5), such that deg	��(5) < deg	��(5) the 

simultaneous congruences 

 

 

��
��(5) = ��(5)	mod	��(5),
�(5) = ��(5)	mod	��(5),⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯�(5) = ��(5)	mod	��(5)

 (6) 

 

has got the unambiguous solution	�(5). 
MPC expansion operation /��(5), ��(5), … , ��(5)1 is ex-

ecuted by introducing r redundant polynomial grounds ��@�(5),��@�(5), … ,��@A(5) and receiving r redundant 

residues ��@�(5), ��@�(5), … , ��@A(5): 
 

 

��
���@�(5) = �(5)	mod	��@�(5),
��@�(5) = �(5)	mod	��@�(5),⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯��@A(5) = �(5)	mod	��@A(5).

  

 

And gcd ;��(5),�-(5)< = 1, where $ ≠ 2; 
$, 2 = 1, 2, … , � + C  and  deg	��(5), … ,deg	��(5) <deg	��@�(5) < 	…	… < deg	��@A(5).  

Together, information block elements /��(5), ��(5), … , ��(5)1 and obtained redundant crypto-

gram sequence /��@�(5), ��@�(5), … , ��@A(5)1 form ex-

tended MPC in the polynomial ring D[5] over GF(2). 
Let’s introduce MPC and linear binary code (LBC) 

metric. 

MPC metric: code vector weight /�(5)1 in MPC is a num-

ber of non-nil cryptograms (deductions) and it is designated 

as G(/�(5)1). 
Code distance between /�(5)1 and /�(5)1 is estimated 

as their difference weight G(/�(5) − �(5)1). 
Minimum code distance of MPC is the shortest distance 

between any of two code vectors according to Hamming tak-

ing into account the given weight definition. 

We understand arbitrary distortion of one of the MPC 

code word cryptograms under a single mistake in the MPC 

code word. Accordingly, multiple H error is defined as arbi-

trary distortion of H cryptograms of the MPC code word. 

The obtained code detects all single errors, if the amount 

of redundant cryptograms C ≥ 1, and corrects H or less errors 

if 2H ≤ C. 
Detection of errors in the accepted cryptogram sequence ��∗(5), … , ��∗(5), … , ��@A∗ (5) is executed by comparing �∗(5) with �(5) = ∏ ��(5)��K� , where simultaneous con-

gruences solution (6) for accepted cryptogram sequence ��∗(5) ($ = 1, 2, … , � + C); ∗ - indicates possible distortions. 

If 0 ≤ �∗(5) < 	�(5), then it is decided that the accepted 

cryptogram sequence ��∗(5), … , ��∗(5), … , ��@A∗ (5) doesn't 

contain detectable errors. If not, the error with the maximum 

multipleness determined by the code detecting abilities is de-

tected [11, 12]. 

LBC metric corresponds to the Hamming metric. Code 

word norm (or weight) 5 = (5�, 5�, … , 5�) is a number of 

non-nil symbols. 

Code distance between words 5 = (5�, 5�, … , 5�) and L = (L� , L�, … , L�) of linear binary code over GF(2) is equal 

to the weight of their difference. 

Minimum LBC code distance is the minimum distance of all 

possible pairwise distances between the code words and it is 

equal to Mmin. 
We understand one bit cryptogram distortion under a single 

error in the LBC metric ��(5). Accordingly, multiple Q error is 

defined as an arbitrary distortion Q of bit cryptogram ��(5). 
Example of n-channel CS with one redundant channel is 

shown in Fig. 1. 

Thus, the redundancy introduced in the form of redundant 

cryptograms secures CS's properties to control MPC code 

word errors (number of distorted cryptograms) and correct 

errors in a certain cryptogram (number of distorted bits). 

3. Algorithm of expansion of system of the ba-

ses MPC 

MPC expansion is one of the main operations executed in the 

given CS. An extension algorithm of modular code that op-

erates in the ℤ� ring is suggested in [6]. 

Let us consider this algorithm with regard to our CS. It 

consists in solving simultaneous congruences (6). According 

to the Chinese Remainder Theorem for polynomials [9, 10], 

the solution of simultaneous congruences (6) corresponds to 

the expression 

 

�(5) =R ��(5)S�(5) − CT(5)�(5)�
�K� , 																										(7) 

 

where S�(5) = ��(5)��(5) – polynomial orthogonal bases, 

��(5) = V(W)
)X(W) , �(5) = ∏ ��(5)��K� , CT(5) – rank �(5), 

��(5) = ��*�(5)	mod	��(5) for $ = 1, 2,… , �. 

It is natural to assume that the definition of CT(5) will be 

made directly during the expansion operation execution. 
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Figure 1. CS with detection of single errors

Then 

 

CT(5) = Quotient ]��(5)��(5)��(5) ^,																																					(8)	 
 

where Quotient ;TX(W)�X(W))X(W) < – the least integer from the divi-

sion of ��(5)��(5) on the basis of ��(5), for $ = 1, 2, … , �. 

To obtain ��@�(5) equation (7) taking into account (8) 

will look like 

 

��@�(5) = ��(5) �̀(5)	mod ��@�(5) +
+��(5) �̀(5)	mod ��@�(5) +⋯
…+��(5)`�(5)	mod ��@�(5) −
−CT(5)a(5)	mod ��@�(5),

  

 

where �̀(5) = S�(5)	mod ��@�(5), 
μ(5) = �(5)	mod ��@�(5), for $ = 1, 2, … , �. 

Let’s perform 

 

 

c�(5) = ��(5) �̀(5)	mod ��@�(5) =
= d)*�(�) 5)*� + d)*�(�) 5)*� + d)*e(�) 5)*e +⋯+ d+(�),
c�(5) = ��(5) �̀(5)	mod	��@�(5) =
= d)*�(�) 5)*� + d)*�(�) 5)*� + d)*e(�) 5)*e +⋯+ d+(�),⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
c�(5) = ��(5)`�(5)	mod ��@�(5) =
= d)*�(�) 5)*� + d)*�(�) 5)*� + d)*e(�) 5)*e +⋯+ d+(�),

 

 
f(5) = CT(5)a(5)	mod	��@�(5) =
= g)*�5)*� + g)*�5)*� + g)*�5)*� +⋯+ g+. 

 

 Let’s imagine polynomials c�(5)	($ = 1, 2, … , �) and 

f(5) as a sequence of binary coefficients: 

 

 

h�(5) = 'd)*�(�) d)*�(�) d)*e(�) 	⋯ d+(�),,
h�(5) = 'd)*�(�) d)*�(�) d)*e(�) 	⋯ d+(�),,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
h�(5) = 'd)*�(�) d)*�(�) d)*e(�) 	⋯ d+(�),,
i(5) = Eg)*� g)*� g)*e 	⋯ g+F.

 

 

We obtain 

 

��@�(5) = 5)*� ;g)*�⨁kd)*�(�) ⨁…⨁d)*�(�) l< +
+5)*� ;g)*�⨁kd)*�(�) ⨁…⨁d)*�(�) l< +
+5)*e ;g)*e⨁kd)*e(�) ⨁…⨁d)*e(�) l< +	…
…+ ;g+⨁kd+(�)⨁…⨁d+(�)l< 	mod	��@�(5) =

=R 5-
)*�

-K+
;kg-⨁d-(�)l⨁…⨁kg-⨁d-(�)l< 	mod	��@�(5).

 

 

 According to the Chinese Remainder Theorem for poly-

nomials, the above transformations allow us without direct 

determination of �(5) to get the final equation in order to 

calculate ��@�(5). 

4. Noise stability estimation CS 

The need to assess the reliability of data transmission ap-

pears due to the ability of CS to detect and correct mistakes. 

To solve the problem, let us calculate the reliability of data 

transmission through the communication channel for the 
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proposed multichannel CS and prototype CS that utilizes lin-

ear codes. 

Under reliability we understand degree of conformity be-

tween cryptograms received and cryptograms transferred. 

Numerically, the reliability of data transmission will be char-

acterized as a probability of guaranteed error detection in 

cryptograms on the receiving side of the CS. 

Let us introduce a presumption: errors of multiplicity q in 

the transmitted sequence of cryptograms ��(5), … , ��(5), … , ��@A(5) occur independently of each 

other and their distribution obeys the binomial law: 

 

 m(H) =R ;�H<�
nK� 4n(1 − 4)�*n.  

 

In order to assess the extent of the destructive effect on the 

transmitted sequence of cryptograms ��(5), … , ��(5), … , ��@A(5), it is necessary to know the value 

of 4 of probability of erroneous cryptogram ��(5) reception. m 

of probability of erroneous cryptogram ��(5) reception is con-

stant and is calculated if the pattern of distortions caused by the 

actions of a cryptanalyst is known. 

Actions of a cryptanalyst on a cryptogram ��(5) are analyti-

cal, so the effects of such actions are unpredictable and random 

for the receiving side. Let us introduce a presumption: distor-

tions caused by actions of a cryptanalyst on the cryptogram ��(5) are equiprobable. 

Let 4oA  be the possibility of distortion of the crypto-

gram's ��(5) bit caused by the actions of cryptanalyst. 

Based on the presumptions and considering Mmin let's de-

termine the possibility of distortion of the cryptogram ��(5) for the CS prototype, caused by the actions of a 

cryptanalyst: 

 

 4oA� = 2*p4oAR ;ℎQ< ,
p
rK�@�   

 

where ∑ ;ℎQ<prK�@�  – the total amount of distortions in the 

cryptogram ��(5) that cannot be determined by this meth-

od of control; $ + 1 ≤ Q ≤ ℎ – multiplicity of errors that 

cannot be determined by this method of control; ℎ – cryp-

togram's block length; 2p – the total amount of possible 

distortions. 

For multichannel CS, the possibility of distortions of the 

cryptogram ��(5) caused by actions of a cryptanalyst, 

equals: 

 

 4oA� = 2*p4oAR ;ℎQ< = 4oA ,
r
�K�   

 

as CS controls errors of any multiplicity within a single cryp-

togram ��(5). 
In that case the possibility of guaranteed detection of er-

rors for CS prototype using linear code is equal: 

 

 mtA� =R ;�H<�
nK� 4oA�n (1 − 4oA�)�*n .  

 

For the given CS, the possibility of guaranteed detection 

of errors equals 

 

 mtA� =R ]uH^
vwxy*�
nK+ 4oA�n (1 − 4oA�)z*n ,  

 

where u = � + C. 
Dependence mtA� , mtA�  and benefit mtA� − mtA�  from the 

redundancy coefficient (linear – in the first case and mod-

ular – in the second case) of the used code with considera-

tion of the limits 4oA = 1,5 × 10*�, u = 12, are shown on 

the picture 2. Here }A = 1 − �
z  – redundancy coefficient. 
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Figure 2. Dependence of the guaranteed detectable errors 

from the redundancy coefficient 

 

Therefore, this article proposes an interference-stable CS 

operated in the ring of polynomials	GF(2) oriented for use in 

the contemporary and prospective multiuser encoding com-

munication channels. A distinctive feature of the proposed 

CS is a complete invariance to the multiplicity of message 

errors in encrypted communication channels with a limited 

number of individual users. In addition to the increase of the 

interference stability, the increase of the imitation resistance 

of CS is achieved, too. Also a significant advantage is that 

the proposed CS is based on the existing single-channel CS. 

If the initial CS is certified, then the issue of certification of 

the proposed CS can be solved with consideration of re-

striction imposed on the process of obtaining the keys and 

compliance of operating. 
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