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Abstract: Next-best-action (NBA) systems are increasingly used in customer relationship management (CRM) to recommend 

personalized actions (e.g., outreach channel, offer, timing) intended to improve conversion, retention, or customer satisfaction. This paper 

presents a quantitative study design for evaluating NBA approaches on historical and experimental CRM data. We frame NBA as a policy 

learning problem, compare predictive response modeling, uplift modeling, and contextual bandits under a common set of business 

constraints, and report evaluation protocols that bridge offline metrics (AUC, expected uplift) with online outcomes (incremental 

conversion, revenue lift, and operational cost). We also discuss robustness to distribution shift, governance requirements, and practical 

deployment considerations. 
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1. Introduction 
 

CRM systems capture high-volume, multi-modal data about 

customer interactions (transactions, website events, email/call 

logs, and service tickets). As firms expand the set of possible 

actions- messages, offers, channels, and follow-up 

schedules—manual rules become difficult to optimize and 

maintain. Next-best-action systems address this challenge by 

selecting an action a ∈ A for a customer context x to maximize 

expected business value while satisfying constraints (contact 

policies, budgets, compliance). 

 

Despite widespread adoption, rigorous measurement remains 

challenging. Offline model performance often fails to 

translate to incremental lift due to selection bias, 

confounding, and feedback loops. This paper provides a 

quantitative framework for studying NBA in CRM and 

outlines a reproducible evaluation methodology. 

 

Contributions. We: 

• Formulate NBA as policy learning with explicit 

constraints and measurable utility, 

• Compare three families of approaches (response 

modeling, uplift, and contextual bandits), 

• Define offline and online evaluation protocols aligned to 

business KPIs, and 

• Document pitfalls (bias, shift, cold start) and mitigation 

strategies. 

 

2. Related Work 
 

NBA in CRM sits at the intersection of marketing analytics, 

recommender systems, causal inference for targeting, and 

sequential decision making. Traditional CRM decisioning 

often relies on rulebased strategies (segments and static 

contact policies) and supervised response models that 

estimate P(y = 1 | x,a). However, when the goal is incremental 

impact, response modeling can over-prioritize “sure things” 

(customers who would convert regardless of outreach) or 

“lost causes” (customers unlikely to convert under any 

feasible action), both of which dilute business value. 

 

Uplift modeling addresses this gap by estimating treatment 

effects, typically contrasting an action against a baseline (e.g., 

no-contact) and optimizing for incremental conversions or 

revenue [4, 42]. In practice, uplift estimation depends on 

randomization or credible identification assumptions, and 

CRM environments frequently exhibit confounding because 

actions are chosen by sales teams, existing rules, or past ML 

models. 

 

Contextual bandits and reinforcement learning generalize the 

problem to sequential interaction, enabling exploration to 

learn better policies and adapt to changing customer behavior 

[23, 36]. Yet the operational realities of CRM (delayed 

outcomes, strong constraints, risk of customer fatigue, 

compliance rules) make unconstrained exploration 

inappropriate; NBA deployments usually require 

conservative learning, extensive monitoring, and clear 

governance. 

 

3. Research Questions and Hypotheses 
 

We structure this quantitative study around the following 

research questions (RQs) and testable hypotheses (Hs). 

 

RQ1 (Incrementality): Do uplift-oriented policies produce 

higher incremental business value than response-prediction 

policies when the objective is net lift rather than response 

rate? 

H1: An uplift-based NBA policy improves incremental 

conversion relative to a response model at the same (or lower) 

contact volume. 

 

RQ2 (Offline–online alignment): Which offline evaluation 

methods best predict online lift for NBA policies trained from 

logs? 

H2: Doubly robust off-policy evaluation has higher 

correlation with online A/B outcomes than IPS alone, due to 

lower variance. 

 

RQ3 (Operational constraints): How do business 

constraints (contact frequency, channel capacity, and 

compliance exclusions) change the ranking of NBA policies? 
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H3: Constraint-aware policies outperform unconstrained 

policies when evaluated on net value after enforcement, 

because they learn to allocate scarce capacity to high-value 

opportunities. 

 

RQ4 (Heterogeneous effects): Are gains concentrated in 

specific segments (e.g., tenure, engagement, or prior purchase 

history)? 

H4: NBA lift is heterogeneous, with larger incremental gains 

among mid-engagement customers than among highly 

engaged or fully inactive customers. 

 

4. Problem Formulation 
 

Let x denote a customer state (features at decision time), a ∈ 

A an action (e.g., no-contact, email, call, offer type), and y an 

outcome (e.g., purchase within 14 days). Let c(a) be the cost 

of action a and v(y) a value function mapping outcomes to 

revenue or utility. 

 

An NBA policy π(a | x) selects actions to maximize expected 

net value: 

  s.t. E[gk(x,a)] 

≤ 0 (k = 1,...,K), 

where constraints gk represent business rules such as contact 

frequency limits, channel capacity, or fairness constraints. 

 

Outcomes and time windows 

We consider binary outcomes (conversion, churn) and 

continuous outcomes (revenue, handle time). Time-to-event 

settings are handled by defining fixed horizons (e.g., 7/14/30 

days) or survival models. 

 

5. Data and Experimental Setting 
 

5.1 Data sources 

 

A typical CRM dataset includes: 

• Customer profile and firmographics/demographics, 

• Historical touchpoints (emails, calls, ads) with 

timestamps, 

• Product usage or transaction history, 

• Service interactions (tickets, dispositions), and 

• Action logs indicating what was offered and through 

which channel. 

 

5.2 Unit of analysis and labeling 

 

We construct decision points at times when an action is 

available (e.g., daily eligibility). Features xt are computed 

using only information available at time t. Labels are derived 

from outcomes within a horizon H (e.g., yt = 1 if purchase 

occurs within H days). 

 

5.3 Train/test split 

 

To avoid leakage and approximate deployment conditions, we 

use a temporal split: train on earlier periods, validate on a 

subsequent period, and test on the most recent period. 

 

6. Study Design and Identification Strategy 
 

6.1 Study overview 

 

We propose a two-stage quantitative evaluation: 

1) Offline screening and policy evaluation using 

historical logs to compare candidate policies and estimate 

expected net value. 

2) Online randomized evaluation (A/B or multi-arm) to 

measure incremental lift and validate offline estimates. 

 

The offline stage provides fast iteration but cannot, by itself, 

guarantee causal impact; the online stage is the primary 

source of causal evidence. 

 

6.2 Decision points and units of randomization 

 

NBA decisions often occur repeatedly for the same customer. 

Two common randomization units are: 

• Customer-level randomization: each customer is 

assigned to control or treatment for the entire experiment 

window. This reduces interference and simplifies 

inference, but requires sufficient customer volume. 

• Decision-point randomization: each eligible opportunity 

is randomized. This increases sample size but may induce 

interference if treatment changes subsequent eligibility or 

customer state. 

 

In this paper we recommend customer-level randomization 

when possible, and otherwise clustering standard errors at the 

customer level. 

 

6.3 Confounding and propensities in offline logs 

 

When offline evaluation relies on logged decisions, we 

estimate behavior propensities ˆb(a | x) using multi-class 

classification (e.g., multinomial logistic regression or 

gradient-boosted trees). To improve overlap, we can restrict 

analysis to contexts where multiple actions were historically 

taken (common-support filtering) and to actions with 

sufficient sample size. 

 

6.4 Assumptions 

 

Offline causal estimation requires: 

• Consistency: observed outcomes correspond to the action 

actually taken. 

• Positivity/overlap: b(a | x) > 0 for actions we want to 

evaluate. 

• Conditional ignorability (observational only): given 

measured x, the action assignment is as-if random. 

 

These assumptions should be discussed explicitly in any 

empirical application, along with evidence for overlap and 

sensitivity analyses. 

 

7. Methodology 
 

We compare three NBA modeling families. 
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7.1 Feature engineering 

 

We construct features that reflect (i) customer state, (ii) 

historical engagement, and (iii) action feasibility. 

Representative features include recency/frequency/monetary 

(RFM) summaries, channel preferences (historical 

open/click/answer rates), product usage intensity, time since 

last contact, time-of-day/day-of-week indicators, and service 

status (open ticket, recent dissatisfaction). To prevent leakage, 

we compute each feature using only information available 

strictly prior to the decision time. 

 

To handle multi-modal CRM data, unstructured text (call 

notes, ticket descriptions) can be transformed into numeric 

features via TF–IDF, topic models, or embedding vectors. In 

regulated settings, text features should be filtered/redacted to 

remove sensitive attributes. 

 

7.2 Action constraints and guardrails 

 

NBA policies operate under constraints that materially affect 

both feasibility and performance. We model three common 

constraint classes: 

• Frequency constraints: e.g., at most one proactive 

outreach per customer per d days. 

• Capacity constraints: e.g., outbound call capacity per 

day or per team. 

• Eligibility constraints: e.g., channel availability, consent 

status, or compliance exclusions. 

 

We enforce constraints by restricting A(x) at decision time and 

(when relevant) by solving a daily allocation problem that 

maps per-customer action scores to a feasible plan. A common 

approach ranks customers by incremental net value and 

allocates limited capacity until budgets are exhausted. 

 

7.3 Predictive response modeling (baseline) 

 

A common baseline estimates ̂ p(y = 1 | x,a) using a supervised 

model (e.g., logistic regression, gradient-boosted trees). 

Actions are chosen by maximizing estimated expected value: 

aˆ(x) = argmax pˆ(y = 1 | x,a)V − c(a), a∈A 

where V is the average value of conversion (or a per-customer 

value estimate). 

 

7.4 Uplift modeling (causal targeting) 

 

Rather than predicting response, uplift modeling estimates 

incremental impact: 

τa(x) = E[y | x,do(a)] − E[y | x,do(a0)], 

relative to a baseline action a0 (e.g., no-contact). Actions are 

chosen by maximizing incremental net value τa(x)V − c(a). 

When randomized experiments are available, uplift can be 

estimated via treatment-control comparisons; otherwise, 

causal adjustment (propensity scores, doubly robust learners) 

is required. 

 

7.5 Contextual bandits (online policy learning) 

 

In sequential settings with immediate feedback, we treat NBA 

as a contextual bandit where the system explores actions to 

learn the best policy. We consider: 

• ϵ-greedy exploration with a value model, 

• Thompson sampling with Bayesian generalized linear 

models, and 

• upper confidence bound (UCB) policies with uncertainty 

estimates. 

 

7.5.1 Reward design in CRM 

CRM rewards are often delayed (e.g., purchase occurs days 

after an outreach). A practical approach is to use proxy 

rewards available quickly (opens, clicks, call connection) for 

short feedback loops, while periodically reconciling policies 

against longer-horizon outcomes. Another approach is to 

define intermediate rewards and use credit assignment rules 

(e.g., last-touch or time-decayed attribution) with the caveat 

that attribution is not causal. 

 

7.5.2 Safe exploration 

We implement exploration subject to guardrails: 

• Cap exploration probability (e.g., ϵ ≤ 0.05), 

• Restrict exploration to actions known to be 

safe/compliant, 

• Exclude customers with high risk (e.g., recent 

complaints), and 

• Enforce business constraints before sampling an 

exploratory action. 

 

7.5.3 Batch updates and monitoring 

Rather than fully online updates, many CRM teams use 

batched learning (daily/weekly). Logged exploration data are 

appended to training data, and the policy is re-fit on a 

schedule. Monitoring focuses on (i) KPI drift, (ii) action 

distribution changes, (iii) constraint utilization, and (iv) 

guardrail breaches. 

 

Bandit policies optimize cumulative reward while controlling 

risk via constrained exploration, guardrails, and off-policy 

evaluation. 

 

8. Implementation and Deployment 

Considerations 
 

8.1 Scoring architecture 

 

A typical NBA system separates model scoring from 

allocation. First, models compute percustomer action scores 

(predicted response, uplift, or expected value) for all feasible 

actions. Second, a business-layer allocator selects actions 

subject to global constraints (capacity, budgets) and 

customer-level constraints (frequency, eligibility). 

 

In practice, scoring is executed in batch (e.g., nightly) for 

large populations and in near-real time for inbound contexts 

(e.g., when a customer calls or visits a website). The study 

should document latency requirements, feature availability at 

decision time, and any differences between training features 

and serving features. 

 

8.2 Data quality checks 

 

Before training and before each experimental analysis 

window, we recommend automated checks: 

• Missingness and out-of-range validation for key features, 

• Timestamp consistency (action time precedes outcome 

window), 
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• Duplicate decision points and action logging 

completeness, and 

• Stability checks (feature drift and action-mix drift). 

 

8.3 Model retraining and versioning 

 

For quantitative studies, model versions should be frozen 

during an online test unless the test explicitly evaluates 

adaptive policies. Each policy version should be uniquely 

identified and logged, enabling reproducible reconstruction of 

who received what action and why. 

 

8.4 Human-in-the-loop workflows 

 

In many CRM organizations, agents can override NBA 

recommendations. Overrides should be logged as a separate 

event, including the recommended action, the executed 

action, and (if available) an override reason code. 

Quantitatively, override behavior can be analyzed as (i) a 

compliance metric for adoption, and (ii) a signal for model 

improvement (e.g., systematic overrides in certain segments). 

 

9. Evaluation 
 

9.1 Offline evaluation 

 

Offline metrics include: 

• Predictive quality for ˆp(y | x,a) (AUC, log loss), 

• Uplift quality (Qini/AUUC) when randomized data exist, 

and 

• Policy value estimated by off-policy evaluation (OPE). 

 

9.2 Off-policy evaluation 

 

Given logged data (xi,ai,yi) from a behavior policy b(a | x), we 

estimate the value of a candidate policy π using inverse 

propensity scoring (IPS): 

, 

where ri = v(yi) − c(ai). 

 

9.2.1 Propensity estimation 

In observational logs, b(a | x) is unknown. We estimate ˆb(a | 

x) from the same feature space used for NBA using a multi-

class model. Diagnostics include calibration of ˆb, distribution 

of inverse weights 1/ˆb(ai | xi), and overlap plots by segment. 

To avoid extreme variance, we apply weight clipping (e.g., 

cap 1/ˆb at a percentile) and report sensitivity to clipping 

thresholds. 

 

9.2.2 Self-normalized IPS 

To reduce variance, self-normalized IPS uses normalized 

weights: 

VˆSNIPS . 

 

9.2.3 Doubly robust (DR) estimation 

Let ˆq(x,a) = E[r | x,a] be an outcome model. The doubly 

robust estimator is: 

 

 
 

DR is consistent if either the propensity model ˆb or the 

outcome model ˆq is correctly specified, and it often provides 

better offline–online alignment in CRM settings where purely 

IPS estimates are noisy. 

 

9.2.4 Uncertainty estimation 

We estimate confidence intervals for OPE using bootstrap 

resampling at the customer level to respect repeated decision 

points. We report both point estimates and uncertainty 

intervals for VˆIPS, VˆSNIPS, and VˆDR. 

 

9.3 Online evaluation (A/B testing) 

 

The primary endpoint is incremental lift in a business KPI 

(e.g., conversion or revenue) relative to a control policy. We 

report: 

• Absolute and relative lift with confidence intervals, 

• Contact volume and channel mix (operational impact), 

and 

• Secondary outcomes such as unsubscribe rate or 

complaints. 

 

9.4 Statistical analysis 

 

For binary outcomes, we estimate treatment effects using 

difference-in-means for conversion rates and confirm with 

logistic regression controlling for pre-treatment covariates 

(primarily to improve precision rather than for identification 

under randomization). For continuous outcomes (e.g., 

revenue), we report mean differences and robust standard 

errors. 

 

Because customers can appear at multiple decision points, we 

avoid overstating significance by clustering standard errors at 

the customer level (or the account level in B2B settings). We 

report 95% confidence intervals and two-sided p-values. 

 

9.5 Power and minimum detectable effect 

 

Before running online experiments, we compute the minimum 

detectable effect (MDE) under expected baseline rates and 

sample sizes. For a baseline conversion rate p0 and a target 

absolute lift ∆, approximate sample size per arm is: 

, 

with α = 0.05 and power 1 − β = 0.8 as defaults. In practice, 

we adjust for repeated decision points, interference risk, and 

anticipated traffic variability. 

 

9.6 Heterogeneity and robustness checks 

 

We analyze heterogeneous treatment effects by pre-specified 

segments (e.g., tenure, engagement, prior purchases, region) 

and by action type/channel. To reduce false discoveries, we 
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limit the number of subgroup analyses or apply multiple-

testing corrections. 

 

Robustness checks include: 

• Evaluating lift stability over time (early vs late experiment 

windows), 

• Monitoring changes in action distribution (to detect 

unintended policy shifts), and 

• Sensitivity to constraint parameters (capacity and 

frequency thresholds). 

 

10. Results (Template) 
 

This section provides a quantitative reporting template. In a 

completed paper, replace placeholders (—) with measured 

values from the offline evaluation and online experiments. 

 

We recommend reporting results in three layers: (i) 

descriptive statistics and data quality checks, (ii) offline 

model and policy evaluation, and (iii) online experimental lift 

with uncertainty. 

 

10.1 Dataset summary 

 

Table 1: Dataset and experimental summary (fill in) 
Metric Value Notes 

Customers — unique customers in test period 

Decision points — customer-days (or opportunities) 

Actions — size of A 

Baseline conversion — under control policy 

 

10.2 Policy comparison 

 

Table 2: Offline and online performance comparison (fill 

in). 

Policy 
OPE 

value 

Conversion 

lift 

Revenue 

lift 

Cost 

change 

Response model — — — — 

Uplift model — — — — 

Contextual bandit — — — — 

 

11. Discussion 
 

This section interprets results in the context of the research 

questions and highlights practical implications for CRM 

organizations. 

 

11.1 Why response prediction is not enough 

 

A high-performing response model can still fail as an NBA 

engine because it optimizes the probability of response, not 

incremental impact. When outreach is costly (agent time, 

incentives, customer fatigue), contacting customers who 

would respond without intervention yields limited marginal 

value. This mismatch is especially pronounced when 

historical actions were targeted toward high intent customers, 

leading to optimistic response estimates for actions that were 

rarely offered to low-intent customers. 

 

11.2 When uplift modeling works best 

 

Uplift modeling is most effective when (i) there is genuine 

treatment heterogeneity, (ii) the organization can sustain 

randomized holdouts or can credibly estimate propensities, 

and (iii) outcomes occur within a measurable horizon. In 

many CRM contexts, uplift gains are driven by better 

allocation: the policy learns to avoid negative-uplift 

customers (those made worse off by outreach) and to focus 

scarce capacity on customers for whom outreach changes 

behavior. 

 

11.3 Bandits: benefits and operational risks 

 

Contextual bandits can outperform static models when 

customer behavior shifts and when feedback is sufficiently 

rapid to support learning. However, bandit exploration 

introduces operational risk: an exploratory action can increase 

complaints, worsen churn, or violate informal expectations of 

the sales/service organization. 

 

We therefore recommend conservative bandit designs: 

• Constrained exploration (small exploration probabilities, 

action caps), 

• Safe fallback policies for low-confidence contexts, 

• Continuous monitoring of guardrail metrics (unsubscribe, 

complaints, chargebacks), and 

• Periodic re-training with logged exploration data. 

 

11.4 Robustness and distribution shift 

 

CRM environments experience drift due to seasonality, new 

campaigns, competitor actions, and evolving product 

offerings. NBA policies should be validated under shift by: 

• Evaluating calibration and lift by time slice, 

• Stress-testing on “shock” periods (e.g., major promotion 

weeks), and 

• Monitoring the policy’s action mix and constraint 

utilization. 

 

11.5 Governance, privacy, and compliance 

 

NBA decisions can affect customers materially, particularly in 

financial services, healthcare, or regulated communications. 

Minimum governance controls include: 

• Documented feature sets and exclusion of sensitive 

attributes where required, 

• Audit logs capturing (customer context hash, policy 

version, selected action, constraints applied), 

• Human override pathways with measurement of override 

rates, and 

• Privacy-by-design practices (data minimization, retention 

limits, access controls). 

 

From a research standpoint, these controls improve 

measurement: they stabilize the decision process and make it 

possible to attribute observed changes to the NBA policy 

rather than to undocumented rule changes. 

 

12. Ethical Considerations 
 

NBA systems influence how customers are contacted and 

which offers they receive. Quantitative improvements in 

conversion or revenue should therefore be weighed against 

customer well-being and organizational obligations. 

• Privacy: CRM data can be sensitive. Studies should 

document data minimization practices, access controls, 
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and how personally identifiable information (PII) is 

handled in feature engineering (especially for text). 

• Fairness and disparate impact: Even when sensitive 

attributes are excluded, proxy variables can induce 

disparate impact across protected groups. We recommend 

reporting performance and lift (where legally permissible) 

across relevant subgroups and considering constraints or 

post-processing to reduce harmful disparities. 

• Customer fatigue and manipulation risk: Aggressive 

optimization may increase contact frequency or exploit 

behavioral vulnerabilities. Guardrails (complaints, opt-

outs, frequency caps) should be treated as first-class 

outcomes. 

• Transparency and accountability: Stakeholders should 

be able to audit what actions were recommended and why. 

In practice, this means logging policy versions, key 

features used, and constraint enforcement. 

 

13. Limitations 
 

Several limitations should be considered when interpreting 

quantitative findings. 

• Identification limits in observational settings. If the 

study relies primarily on non-random logs, causal 

conclusions require conditional ignorability and overlap. 

In practice, many important confounders are unobserved 

(agent skill, customer urgency, unlogged outreach), and 

overlap may be weak for rarely used actions. 

• Delayed and multi-touch outcomes. Conversions and 

churn are influenced by multiple touches across channels. 

A single-decision-point label may under-attribute long-run 

effects or misattribute credit when multiple campaigns 

overlap. 

• Interference and spillovers. Customers may be exposed 

to multiple actions over time; if randomization is not at the 

customer level, one policy’s actions can affect later 

outcomes. Similarly, agent learning or operational 

changes during the experiment can introduce spillovers. 

• Measurement and logging quality. NBA evaluation is 

only as good as the action logs. Missing actions, 

inconsistent timestamps, or changes in eligibility logic can 

create artifacts that look like lift. A thorough data audit is 

essential. 

• Generalizability. Results may not generalize across 

industries, customer bases, or time periods. We therefore 

recommend reporting results by segment and repeating 

experiments across at least two business cycles. 

 

14. Conclusion 
 

This paper presented a quantitative study framework for next-

best-action systems in CRM, emphasizing that NBA is 

fundamentally a policy evaluation and optimization problem 

rather than a standard prediction task. We articulated research 

questions around incrementality, offline–online alignment, 

constraints, and heterogeneity, and we outlined 

methodological choices spanning supervised response 

models, uplift modeling, and contextual bandits. 

 

For practitioners, the central lesson is that measured business 

value depends on (i) credible causal estimation (via 

randomization or strong observational methods), (ii) 

constraint-aware action selection aligned to net value, and (iii) 

rigorous experimentation with guardrails. For researchers, the 

most important open challenges include reliably estimating 

effects under weak overlap, evaluating long-horizon 

outcomes, and designing safe learning systems that respect 

CRM constraints while adapting to drift. 

 

Appendix: Reproducibility Checklist (Template) 

• Define the decision point, eligibility rules, and action set 

A(x). 

• Specify the outcome horizon H and the reward r = v(y) − 

c(a). 

• Document features, leakage prevention, and missing-data 

handling. 

• Describe the behavior policy and how propensities ˆb(a | 

x) were estimated. 

• Report offline metrics (AUC/log loss, AUUC/Qini, OPE 

estimates) with uncertainty. 

• Report online experiment design (randomization unit, 

sample size, MDE/power, guardrails). 

• Provide segment-level results and pre-specified subgroup 

analyses. 

• Document governance: policy versioning, audit logs, and 

override rates. 
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