

Biochemical, Metabolic, and Haematological Alterations in Epileptic Patients on Valproic Acid Therapy: A Cross-Sectional Correlation Study

Dr. Avika Mathur¹, Dr. Sunil Kumar Mathur², Dr. Deepshikha Yadav³, Dr. Pankaj Saini⁴

^{1, 2, 3, 4}Jawaharlal Nehru Medical College, Ajmer, Rajasthan, India

Abstract: *Background:* Valproic acid (VPA) shows wide interindividual variability in serum levels, leading to differences in seizure control and adverse effects. Therapeutic drug monitoring (TDM) may help optimise treatment and guide rational dose adjustment in routine clinical practice. *Objective:* To estimate serum trough VPA levels and correlate them with clinical response in epileptic patients on monotherapy. *Methods:* A prospective cross-sectional study was conducted on 100 adult epilepsy patients receiving stable sodium valproate monotherapy. Trough serum levels were measured by HPLC and correlated with seizure control and adverse drug reactions using appropriate statistical methods. *Results:* Mean serum VPA level was $72.5 \pm 23.4 \mu\text{g/mL}$. Complete seizure control was seen in 61% of patients and was associated with higher serum levels. A significant positive correlation was found between serum VPA concentration and seizure control ($r = 0.42, p = 0.002$), while dose showed no significant correlation. Adverse effects occurred in 19% of patients. *Conclusion:* Serum VPA levels correlate better with clinical response than prescribed dose. Routine TDM can support individualized therapy, improve seizure outcomes, enhance patient safety, and reduce the risk of toxicity in epilepsy management.

Keywords: Valproic acid; therapeutic drug monitoring; epilepsy; serum trough level; seizure control; HPLC; adverse drug reactions; pharmacokinetics; individualized therapy; clinical correlation; drug safety; dose optimization.

1. Introduction

Epilepsy is a common chronic neurological disorder affecting over 50 million people worldwide and is characterised by recurrent, unprovoked seizures due to abnormal neuronal discharges in the brain [1]. Long-term pharmacotherapy remains the cornerstone of epilepsy management, with antiepileptic drugs (AEDs) aimed at maintaining seizure control and improving quality of life. Among AEDs, valproic acid (VPA) is one of the most widely prescribed agents because of its broad therapeutic spectrum, effectiveness in both generalised and focal epilepsies, and comparatively low cost [2]. The mechanism of action of VPA involves enhancement of γ -aminobutyric acid

(GABA) neurotransmission, inhibition of voltage-gated sodium and calcium channels, and modulation of histone deacetylase activity, which collectively stabilize neuronal excitability [3,4]. Despite its proven efficacy, valproic acid therapy is associated with biochemical and haematological side effects, particularly during prolonged use. Reported complications include elevated hepatic enzymes, hyperammonemia, thrombocytopenia, anemia, and metabolic alterations such as dyslipidemia or weight gain [5–7]. These changes are often dose-dependent and may develop insidiously, underscoring the need for regular laboratory monitoring. Studies have shown that valproate-induced hepatotoxicity is mediated by mitochondrial dysfunction and accumulation of toxic metabolites such as 4-ene-valproate [8]. Although most cases are mild and reversible, some can progress to severe hepatic injury, especially in patients with pre-existing metabolic defects. Similarly, haematological effects such as thrombocytopenia and anemia have been frequently reported in both pediatric and adult populations, with prevalence rates ranging from 7% to 24% depending on dosage and duration of treatment [9,10]. In addition, biochemical and metabolic effects such as hyperlipidemia,

hypocalcemia, and altered thyroid function have been observed in patients on long-term therapy, reflecting broader systemic involvement of valproate beyond the liver and hematopoietic system [11,12]. Therefore, comprehensive monitoring of hepatic, renal, lipid, and haematological profiles is essential to ensure drug safety and optimize therapeutic outcomes. The present study was conducted to assess the biochemical, metabolic, and haematological alterations associated with valproic acid therapy in adult epileptic patients and to determine their correlation with serum valproate levels.

2. Materials and Methods

Study Design and Setting: This was a cross-sectional observational study conducted in the Department of Pharmacology in collaboration with the Department of Neurology, Jawaharlal Nehru (J.L.N.) Medical College and Associated Group of Hospitals, Ajmer, Rajasthan, India.

Study Population: A total of 100 adult epileptic patients aged between 18 and 60 years were enrolled in the study. All patients were diagnosed with epilepsy based on clinical evaluation and EEG findings and were on sodium valproate monotherapy for at least four weeks at a stable dose.

Inclusion Criteria

- Adult epileptic patients (18–60 years) on sodium valproate monotherapy
- Duration of treatment ≥ 4 weeks
- Stable dosing regimen
- Willingness to provide written informed consent

Exclusion Criteria

- Patients receiving polytherapy with other antiepileptic drugs
- History of hepatic, renal, or haematological disorders before starting therapy
- Pregnant or lactating women
- Patients with alcohol or drug abuse
- Those on hepatotoxic or nephrotoxic medications

Clinical and Demographic Assessment

For each patient, detailed demographic and clinical data were recorded in a predesigned proforma. This included: Age, gender, and body weight, Type and duration of epilepsy, Daily dose and duration of valproate therapy, Seizure control status and any reported adverse effects such as tremor, weight gain, or gastrointestinal upset

Sample Collection

Venous blood samples (5 mL) were collected from each subject 12 hours after the last dose (trough level) to ensure steady-state concentration. Samples were allowed to clot and centrifuged at 3000 rpm for 10 minutes. Serum was separated and analyzed for biochemical parameters (alanine aminotransferase [ALT], aspartate aminotransferase [AST], alkaline phosphatase [ALP], total bilirubin, urea, creatinine, cholesterol, triglycerides, HDL, and LDL) and haematological parameters (haemoglobin, total leukocyte count, and platelet count).

Statistical Analysis

Data were entered and analysed using Statistical Package for the Social Sciences (SPSS) version 25.0 (IBM Corp., Armonk, NY, USA). Quantitative variables were expressed as mean \pm standard deviation (SD), while qualitative data were presented as frequencies and percentages. The Pearson correlation coefficient (r) was calculated to evaluate relationships between serum valproic acid levels and biochemical, metabolic, and haematological parameters. A *p*-value < 0.05 was considered statistically significant.

3. Results

Table 1: Liver Function Parameters and Correlation with Serum Valproic Acid Levels (n = 100)

Parameter	Mean \pm SD	Reference Range	Correlation (r)	p-value
ALT (U/L)	35.2 \pm 10.6	10–49	0.21	0.06
AST (U/L)	33.4 \pm 9.8	10–46	0.18	0.09
ALP (U/L)	88.1 \pm 20.4	30–120	0.12	0.21
Total Bilirubin (mg/dL)	0.88 \pm 0.27	0.2–1.2	0.09	0.31

Table 2: Renal Function Parameters and Correlation with Serum Valproic Acid Levels (n = 100)

Parameter	Mean \pm SD	Reference Range	Correlation (r)	p-value
Urea (mg/dL)	27.4 \pm 6.2	10–40	0.10	0.27
Creatinine (mg/dL)	0.92 \pm 0.18	0.6–1.3	0.06	0.42

Table 3: Lipid Profile and Correlation with Serum Valproic Acid Levels (n = 100)

Parameter	Mean \pm SD	Reference Range	Correlation (r)	p-value
Total Cholesterol (mg/dL)	179.6 \pm 34.5	< 200	0.19	0.08
Triglycerides (mg/dL)	142.8 \pm 37.2	< 150	0.24	0.051
HDL (mg/dL)	42.3 \pm 8.6	40–60	-0.12	0.19
LDL (mg/dL)	106.4 \pm 27.8	< 130	0.16	0.11

Table 4: Haematological Parameters and Correlation with Serum Valproic Acid Levels (n = 100)

Parameter	Mean \pm SD	Reference Range	Correlation (r)	p-value
Hemoglobin (g/dL)	12.8 \pm 1.6	12–16	0.07	0.39
Total Leukocyte Count (cells/mm ³)	7340 \pm 1450	4000–11000	0.05	0.44
Platelet Count ($\times 10^5/\text{mm}^3$)	2.52 \pm 0.73	1.5–4.5	-0.22	0.04

4. Discussion

The present study evaluated biochemical, metabolic, and haematological alterations in epileptic patients treated with valproic acid monotherapy. Most participants showed normal hepatic, renal, and hematologic profiles, with mild and reversible changes in liver enzymes, lipid profile, and platelet count. These findings are consistent with a large body of evidence emphasizing that sodium valproate, while effective and generally safe, may cause subclinical biochemical variations that require regular monitoring.

Mild, clinically insignificant elevations of ALT and AST were observed, while bilirubin and alkaline phosphatase remained within normal limits.

These results agree with Tolou-Ghamari and Palizban (2015), who reviewed over 40 clinical studies and found that valproate commonly causes minor hepatic enzyme elevations through glucuronide conjugation and mitochondrial β -oxidation, but rarely leads to hepatotoxicity when used within therapeutic limits (13). Similarly, Evreinov (2024) reported that valproate-treated epileptic children did not show clinically significant liver enzyme elevation, confirming that hepatotoxicity is uncommon when monitored appropriately (14). A long-term pharmacokinetic study by Li et al. (2024) identified that increased levels of 4-ene-valproate, a metabolite, correlate with hepatotoxicity risk, suggesting that monitoring of metabolite ratios may enhance safety (15). No abnormalities were observed in serum urea or creatinine in this study. Valproate is mainly metabolized hepatically, explaining its limited nephrotoxicity. This observation supports findings by Vlasov (2018), who reported that valproate has minimal renal impact compared with carbamazepine and phenytoin in monotherapy (16). Cases of renal tubular dysfunction are rare and reversible, indicating that valproate remains safe for patients with normal baseline renal function.

A weak inverse correlation between serum valproate concentration and platelet count was found, indicating a mild dose-dependent thrombocytopenic effect.

Naydenov and Mindov (2023) reported thrombocytopenia in 7% and mild anemia in 16% of adults treated with valproate for over one year (17). Putri et al. (2019) observed similar findings in pediatric epileptic patients, noting that thrombocytopenia and anemia often appeared after 12 months of therapy, particularly at doses above 25–30 mg/kg/day (18). These consistent findings emphasize the importance of periodic complete blood count evaluation during valproate therapy.

A mild increase in serum triglycerides and cholesterol levels was observed, with a slight decline in HDL. These metabolic alterations, though not statistically significant, may indicate early dyslipidemia. Liang et al. (2024) demonstrated that baseline AST, BMI, albumin, and direct bilirubin levels could predict valproate-induced dyslipidemia in epileptic children, highlighting a potential role for individualized risk screening (19). Verrotti et al. (2011) found that valproate-induced weight gain and lipid changes result from insulin resistance and enhanced hepatic lipid synthesis, particularly in women (20). Our results are consistent with these studies, suggesting mild metabolic changes that warrant observation in long-term therapy.

Although ammonia levels were not part of this study, previous evidence from Sidiartha et al. (2020) found significant hyperammonemia among children receiving valproate for more than two years, suggesting the need for monitoring in long-term users (21). Additionally, Rahimdel et al. (2016) reported subtle biochemical and bone mineral changes in patients on chronic valproate, indicating effects on calcium and alkaline phosphatase metabolism that may contribute to altered bone density (22). At the molecular level, Rakitin et al. (2015) demonstrated minimal changes in peripheral gene expression after three months of valproate therapy, confirming the absence of widespread toxic genomic activation at therapeutic doses (23). Furthermore, Banawalikar et al. (2021) showed that polymorphisms in the UGT1A6 gene did not significantly influence valproate efficacy or biochemical toxicity, supporting predictable pharmacokinetics in most patients (24).

Nugroho et al. (2008) showed that valproate monotherapy achieved higher remission rates and fewer side effects compared to phenytoin and carbamazepine in pediatric epilepsy (25).

Eshiet et al. (2020) noted that despite these benefits, clinical monitoring of hepatic and hematologic parameters remains suboptimal in practice, reinforcing the value of therapeutic monitoring (26).

References

- [1] **Romoli M, Mazzocchetti P, d'Alonzo R, et al.** Valproic Acid and Epilepsy: From Molecular Mechanisms to Clinical Evidences. *Curr Neuropharmacol.* 2019;17(10):926–946. doi:10.2174/1570159X1766181227165722. Available from: <https://pubmed.ncbi.nlm.nih.gov/30592252/> (PubMed)
- [2] **Tolou-Ghamari Z, Palizban A.** Review of Sodium Valproate Clinical and Biochemical Properties. *Zahedan J Res Med Sci.* 2015;17(8): e2207. doi:10.17795/zjrms-2207. Available from: <https://brieflands.com/journals/zjrms/articles/2207> (Brieflands)
- [3] **Chateauvieux S, Morceau F, Dicato M, Diederich M.** Molecular and Therapeutic Potential and Toxicity of Valproic Acid. *J Biomed Biotechnol.* 2010; 2010: 479364. doi:10.1155/2010/479364. Available from: <https://pubmed.ncbi.nlm.nih.gov/20480099/>
- [4] **Löscher W.** Basic pharmacology of valproate: a review after 35 years of clinical use. *CNS Drugs.* 2002;16(10):669–694. doi:10.2165/00023210-200216100-00003. Available from: <https://pubmed.ncbi.nlm.nih.gov/12373158/>
- [5] **Chen Z, Wang X, Wang H, et al.** Simultaneous determination of valproic acid and 2-propyl-4-pentenoic acid for prediction of clinical adverse effects. *Seizure.* 2012; 21:110–117. doi:10.1016/j.seizure.2011.10.022. Available from: <https://pubmed.ncbi.nlm.nih.gov/22197443/>
- [6] **Tseng YL, Huang CR, Lin CH, Lu YT, Lu CH, Chen NC, Chang CC, Chang WN, Chuang YC.** Risk factors of hyperammonemia in patients with epilepsy under valproic acid therapy. *Medicine (Baltimore).* 2014 Sep;93(11):e66. doi: 10.1097/MD.000000000000066. PMID: 25192484; PMCID: PMC4616274.
- [7] **Kanwal A, Hassan S, Anjum Z, et al.** Frequency of Valproic Acid Induced Thrombocytopenia in Epileptic Patients. *Prof Med J.* 2020;27(6):1287–1292.
- [8] **Li R-T, Chen Z-Y, Tang S-Y, et al.** Association of Valproic Acid and Its Main Metabolites' Plasma Concentrations with Clinical Outcomes Among Epilepsy Patients. *Drug Metab Dispos.* 2024; 52: 210–217. doi:10.1124/dmd.124.013135. Available from: <https://dmd.aspetjournals.org/content/52/3/210> (dmd.aspetjournals.org)
- [9] **Newale, Sanket; Bachani, Deepak S.** Demographic characteristics of epilepsy patients and antiepileptic drug utilization in adult patients: Results of a cross-sectional survey. *Neurology India* 64(6):p 1180-1186, November–December 2016. | DOI: 10.4103/0028-3886.193806
- [10] **Evreinov V.** Hematological, Biochemical, Coagulation Profiles of Patients with Epilepsy on Valproic Acid Therapy. *Messenger Anesthesiol Resuscit.* 2024;21(1):17–23.
- [11] **Praticò A, Pavone P, Scuderi M, et al.** Symptomatic Hypocalcemia in an Epileptic Child Treated with Valproic Acid Plus Lamotrigine. *Cases J.* 2009; 2: 7394. doi:10.4076/1757-1626-2-7394. Available from: <https://pubmed.ncbi.nlm.nih.gov/19930681/>
- [12] **Bachmann C, et al.** Altered Lipid and Metabolic Profiles in Patients Under Valproate Therapy. *Clin Neuropharmacol.* 2016; 39: 120–127. doi:10.1097/WNF.0000000000000130.
- [13] **Tolou-Ghamari Z, Palizban A.** Review of sodium valproate clinical and biochemical properties. *Zahedan J Res Med Sci.* 2015; 17: 2207. Available from: <https://brieflands.com/journals/zjrms/articles/2207> (Brieflands)
- [14] **Evreinov V.** Hematological, biochemical, coagulation profiles of patients with cerebral palsy and epilepsy on

valproic acid therapy. *Messenger Anesthesiol Resuscit.* 2024;21(1):17–23.

[15] **Li R-T, Chen Z-Y, Tang S-Y, et al.** Association of valproic acid and its main metabolites' plasma concentrations with clinical outcomes among epilepsy patients. *Drug Metab Dispos.* 2024;52:210–217. Available from: <https://dmd.aspetjournals.org/content/52/3/210> (dmd.aspetjournals.org)

[16] **Vlasov P.** Use of valproate and carbamazepine in the therapy of epilepsy: comparative analysis of effectiveness and safety. *Epilepsy Behav.* 2018; 85:45–52. doi:10.1016/j.yebeh.2018.04.041.

[17] **Naydenov C, Mindov IS.** The hematology profiles of adults affiliated with epilepsy after receiving valproic acid therapy. *Open Access Maced J Med Sci.* 2023; 11: 11617. Available from: (same as #9).

[18] **Putri Y, Mahalini DS, Suwarba I.** The hematology profiles of children affiliated with epilepsy after receiving valproic acid therapy. *Int Res J Med Med Sci.* 2019;7(3):55–60.

[19] **Liang Z, Lin Z, Zhao X, et al.** Pretreatment risk predictors of valproic acid-induced dyslipidemia in children with epilepsy. *Epilepsy Res.* 2024; 206:107320. doi:10.1016/j.epilepsyres.2024.107320.

[20] **Verrotti A, D'Egidio C, Agostinelli S, Parisi P, Chiarelli F.** Weight gain following treatment with valproic acid: pathogenetic mechanisms and clinical implications. *Obes Rev.* 2011;12(5):e32–43. doi:10.1111/j.1467-789X.2010.00753.x.

[21] **Sidiartha I, Suwarba I, Wati D, Subanada IB.** High blood ammonia levels associated with long-term valproic acid therapy in epileptic children. *Med Clin Basic Sci.* 2020;4(2):83–89. (Same as #6)

[22] **Rahimdel A, Dehghan A, Ghaffarpasand F, et al.** Relationship between bone density and biochemical markers of bone metabolism in epileptic patients receiving long-term antiepileptic drugs. *Iran J Med Sci.* 2016;41(6):497–503.

[23] **Rakitin A, Koks S, Reimann E, et al.** Changes in the peripheral blood gene expression profile induced by valproic acid monotherapy in patients with epilepsy. *Pharmacogenomics J.* 2015;15(4):387–394. doi:10.1038/tpj.2014.72.

[24] **Banawalikar NN, Adiga M, Saha N, et al.** Association of UGT1A6 gene polymorphism with clinical efficacy and tolerability of valproic acid therapy in epilepsy. *Indian J Pharmacol.* 2021;53(2):119–124. doi:10.4103/ijp.IJP_903_20.

[25] **Nugroho M, Herini ES, Rini EA, Prasetyo A.** Comparison of monotherapy effect of phenytoin, carbamazepine and valproic acid in epileptic patients. *Paediatr Indones.* 2008;48(6):345–351.

[26] **Eshiet UI, Ubaka CM, Okonta JM, et al.** Infrequent monitoring of the effects of valproate and carbamazepine among epileptic patients in a Nigerian tertiary hospital. *Ther Clin Risk Manag.* 2020;16:595–602. doi:10.2147/TCRM.S269515.