International Journal of Science and Research (IJSR)
ISSN: 2319-7064
Impact Factor 2024: 7.101

A Numerical Analysis of Non-Newtonian Power-
Law Fluid Flow 1n a Lid-Driven Cavity with
Variable Lid Motion

Mayank K Patel', Dr. Mohini B. Desai’

'Department of Mathematics, Shree Swaminarayan Science College, Swaminarayan University, Kalol, Gujrat, India
Email: mk.mithal 995 [at]gmail.com

?Department of Mathematics, Shree Swaminarayan Science College, Swaminarayan University, Kalol, Gujrat, India
Email: mohinidesail218[at]swaminarayanuniversity.ac.in

Abstract: The Numerical Study of flow behaviour in a two- dimensional square lid- driven cavity containing power- law fluids. The work
aims to investigate the influence of the variation of the moving length of the top lid on the fluid flow behaviour, velocity profiles and vortex
creation. The power- law fluid model is employed to simulate non- Newtonian fluids with power-law indices varying from shear- thinning
(n < 1) to shear- thickening (n > 1) fluids. The finite volume method with a staggered grid arrangement and the simple algorithm for
the pressure- velocity coupling technique is employed to solve the governing equations. The results show that a decrease in the moving
length of the top lid results in localized flow perturbations with substantial influences on the primary vortex intensity and secondary vortex
formation. The flow penetration inside the cavity is deeper for shear- thinning fluids with a smaller moving length, while resistance to
flow is higher for shear- thickening fluids. The Reynolds number is held constant at Re = 100 for all computations to demonstrate the

dominance of viscous forces.
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1. Introduction

The lid-driven cavity flow is a test problem in computational
fluid dynamics (CFD), commonly employed as a benchmark
for the validation of numerical solutions for incompressible
viscous flows. In the standard problem, a square cavity with
a moving top lid is considered, which causes recirculation
inside the cavity. This problem has been widely investigated
for Newtonian fluids [1,2], but there has been a growing
interest in non-Newtonian fluids because of their importance
in various industries like polymers, food and biomedical
application.

Power-law fluids, also known as Ostwald-de Waele fluids,
have viscosities that depend on the shear rate, given by the
relationn = K = Y"1, where K is the consistency index, Y is
the shear rate and n is the power-law index.

For n = 1, the fluid is Newtonian;
n < 1 indicates shear-thinning,
n > 1 indicates Shear-thickening behaviour.

Most studies on lid-driven cavities assume the entire top lid
moves [3 — 5]. However, practical scenarios, such as partial
agitation in mixers or localized shear in rheological devices,
involve only a portion of the lid moving. This paper
investigates the effect of varying moving lengths (L_m/L,
where L is the cavity side length) of the top lid on the Power-
law fluid flow. The moving lengths are taken as
0.25L,0.50L,0.75L,and 1.00L on the top lid. The
simulations are carried out for Re = 100, with n varying from
0.5 to 1.5.

The objectives are:
o To analyse the streamline patterns and vortex structures.

o To evaluate velocity profiles along cavity centrelines.
e To assess the impact of non-Newtonian index on flow
behaviour under partial lid motion.

2. Numerical Method

Governing equations for fluid flow represent mathematical
expressions of fundamental physical principles: conservation
of mass (Continuity), momentum (F = ma) and energy.
These are commonly expressed as the Navier-Stokes
equation, which can be in differential form for point-by-point
analysis or integral form for a control volume.

The Governing equation for incompressible, steady, viscous,
laminar and generalized non-Newtonian flow in the two-
dimensional rectangular cavity.

1) Continuity Equation
Vo (pug) =0

This equation represents the conservation of mass.

For an incompressible fluid, the density (p) is constant, so the
equation simplifies to the divergence of velocity being zero:
V.u=0.

2) Momentum Equation
Ve - (Uqtp) = —VoP + Vg . Tag S

This equation represents Newton’s second law for a fluid
element (Conservation of momentum). The terms represent
from left to right: Convective inertia forces, Pressure forces,
Viscous forces.
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3) Constitutive Relation for non-Newtonian Fluids

To solve the system, a constitutive equation is required to

relate the shear stress tensor (Ta ﬁ) to the fluid motion. For a

generalized non-Newtonian fluid, this is typically given by
Tap = H (G2)) Socﬁ

u (ly]) is the apparent viscosity, which is a function of the

shear rate (|y]).

Sap is the shear rate tensor, defined as:

_ 1
wp ==
S B ) (Vauﬁ + Vﬁua)

The dependency of viscosity on shear rate distinguishes non-
Newtonian fluids (like paint or blood) from Newtonian fluids
(like water or air), where viscosity is constant.

2.1 Power-law Model

The power-law model of a non-Newtonian fluid, outlining
how to determine apparent viscosity (u). u (|y]) = m|y|*?!
where m and n are proportionality constant and power-law
index, respectively.

The proportionality constant m is derived from the Reynolds

2-nn
number (Re): m = %, The shear rate is calculated from

the second invariant of the strain rate tensor (Dp):

2 1
y = 2/Dp, Dy = Z Z SapSap n 2D Simulations

=1 a,f=1

The final simplified expression for apparent viscosity in your
model is

UZ—nLn

udyl) = (

o) @)

2.2 Boundary Conditions

Appropriate boundary conditions are imposed to accurately
model the lid-driven cavity configuration.

a) Top Moving Lid
The velocity boundary condition on the top wall is defined as:

{1, Ix — 0.5 < im
u=
01

2L andv =0
otherwise

Where L, denotes the length of the moving portion of the lid.
Only a portion of the top wall moves with a constant velocity,
while the remaining part remains stationary. This
configuration represents a partially lid=driven cavity, which
is relevant to several practical flow application.

b) Bottom, left and right walls

No-Slip Condition (u = 0,v = 0): this signifies that at the
bottom, left and right walls the fluid particles adhere to the
solid boundary. Because the wall are stationary, the fluid
velocity tangential to the wall () and normal to the wall (v)
is zero, ensuring no relative motion between the fluid and the
solid surface.

¢) Velocity Components
u : Tangential (parallel) velocity component.
v : Normal (perpendicular) velocity component.

This is a Dirichlet boundary condition commonly used to
model viscous, Newtonian fluid behaviours at solid-fluid
interfaces.

2.3 Numerical Method

The governing equations are solved numerically using the
Finite Volume Method (FVM) which ensures strict
conservation of mass and momentum.

a) Grid Arrangement

e A uniform staggered grid arrangement is employed
consisting of 128 X 128 control volumes.

o Reason for using a staggered grid: this arrangement avoids
pressure-velocity decoupling and eliminates the
checkerboard pressure problem commonly encountered in
collocated grids.

b) Discretization Schemes

e Convective Terms: The QUICK (Quadratic Upstream
Interpolation for Convective Kinematics) Scheme is a
third-order accurate method for convection that uses a
quadratic interpolation function based on two upstream
nodes and one downstream node. This approach helps to
reduce numerical diffusion compared to first-order
upwind schemes.

o Diffusive Terms: central differencing is a second-order
accurate scheme used to approximate diffusive terms in
partial differential equations. It is based on Talyor series
expansions around a central node and is known for its
accuracy and stability when applied to diffusion terms.

Term Schemes Used Reason
. High accuracy, low
Convection QUICK numerical diffusion
Diffusion Central difference Second-order accurate
Pressure Linear interpolation Stability

¢) Pressure- Velocity Coupling

The pressure- velocity coupling is handled using the SIMPLE
(Semi-Implicit Method for Pressure-Linked Equations)
algorithm.

Algorithm Steps:

« [Initialize the pressure field

e Solve the momentum equation

o Compute pressure correction

o Update pressure and velocity fields
e Repeat until convergence

d) Treatment of Non-Newtonian Viscosity

The variables in the power-law viscosity formula 1., =

K|y |*~?! are defined as follows:

e m41 18 the updated apparent viscosity at the next iteration
(k + 1), typically measured in pascal seconds (Pa . s).

o Kis the consistency index (or coefficient), which has units
of Pa .s™. It is numerically equal to the viscosity at a shear
rate of 1571,

o |y is the magnitude of the local shear rate (or strain rate)
at the current iteration (k), with units of inverse seconds
s7L
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e nisthe flow behaviour index (or power-law index), which
is a dimensionless parameter that indicates how the
viscosity changes with shear rate.

If n<1, the fluid is shear-thinning (pseudoplastic),
meaning its viscosity decreases with increasing shear rate
(e.g. ketchup, blood).

If n > 1, the fluid is shear-thickening (dilatant) and its
viscosity increases with increasing shear rate (e.g. Corn
flour suspensions).

If n =1, the fluid is Newtonian, and the viscosity is
constant (K becomes the constant viscosity, n = K).

e) Convergence Criterion
The convergence of the numerical solution is monitored using

the velocity residual CC, defined by the formula:
k+1 _

lu u’|
CC:ZW ......... 6
X,y

Converged State: the solution is considered converged when
the velocity residual CC < 1078,

Purpose: This strict criterion ensures highly accurate, steady-
state solution.

The formula measures the relative change in the velocity u
between successive iterations (k and k + 1) summed across
the domain (x, y).

3. Results and Discussion
3.1 Streamline Patterns

Here is a summary of the streamline patterns in the cavity
flow, categorized by lid motion (L,,/L) and fluid behaviour

(n):

a) Full Lid Motion (L,,/L = 1.0)

Newtonian (n = 1.0): produces the “Ghia benchmark”
pattern featuring a primary vortex at the centre and secondary
vortices in the corners.

Shear — thinning (n = 0.5): Exhibits classic cavity flow
with dense streamlines near the lid due to reduced viscosity.
Shear — thickening (n = 1.5): show dampened, standard
cavity flow with corners.

b) Partial Lid Motion (L,,/L < 1.0)

As the moving segment (L,,, /L) decreases, the primary vortex
shifts toward the top and its strength diminishes.

AtL,/L = 0.25: The flow is confined to the top (Localized
top eddy), with weak circulation below for all fluid types.
Intermediate L,,/L (0.5 — 0.75): Shear — Thinning fluids
(n = 0.5) display dual or stronger vortices, while shear —
thickening fluids (n = 1.5) show broad, weak or minimal
flow penetration.

¢) Fluid Behaviour Effects

Shear — thinning (n = 0.5): Higher velocities near the lid
due to lower viscosity.

Shear — thickening (n = 1.5): Reduced strength and
broader, weaker vortices.

Steaniies forRe = 100, Noving R =1

] [H 0

Figure 1: Streamline for Re = 100, Moving Ratio = 1
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Figure 2: u — Veloéity along x = 0.5
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Figure 3: v —velocity along y = 0.5
3.2 Velocity Profiles

The velocity distributions along the vertical centreline (x =
0.5) and the horizontal centreline (y = 0.5) are examined to
quantify the influence of the moving — lid length ratio (L,,/L)
and the power — law index (n) on momentum transport within
the cavity. The horizontal velocity component u is plotted
along the vertical centreline, while the vertical velocity
component v is evaluated along the horizontal centreline.
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a) Effect of Moving Lid Length
For full lid motion (L,,/L = 1.0), the u —velocity profile
exhibits a pronounced peak near the upper region of the
cavity, corresponding to the strong shear generated by the
moving lid. The velocity decreases smoothly toward the
cavity centre and becomes negative in the lower half,
indicating the return flow associated with the primary
recirculation vortex. Typical values show

u(y =09) = 0.8,u(y =05 = —0.1)
Which are consistent with classical lid — driven cavity
behaviour.

As the moving lid length decreases, the peak u —velocity
shifts closer to the lid and its magnitude reduces significantly.
For example, at L,,/L = 0.5, the maximum horizontal
velocity drops too approximately

Umax = 0.4 aty = 0.95

Indicating weakened momentum penetration into the cavity
interior. This trend becomes more pronounced for L, /L =
0.25, where the velocity decays rapidly away from the lid and
remains nearly zero in the lower region.

Similarly, the vertical velocity component v along the
horizontal centreline vortex strength.

b) Effect of Power — Law Index

The influence of fluid rheology is evident in the velocity

gradients near the moving lid:

e Shear- Thinning Fluids (n < 1) exhibit steeper velocity
gradients and higher near — lid velocities due to reduced
apparent viscosity under shear. For n = 0.5 the horizontal
velocity near the lid is approximately 20% higher than
that of the Newtonian case under identical flow
conditions.

e Newtonian Fluids (n =1) serve as a reference,
displaying smooth and symmetric velocity profiles that
agree with benchmark cavity flow solutions.

e Shear- Thickening fluids (n > 1) Show flatter velocity
profiles and reduced peak magnitudes, as increased
viscosity suppresses shear — induced motion.

walong k=08 | n=1, Lyl =08
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Figure 4: u alongx = 0.5,n=1,L,,/L = 0.5
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Figure 5: v alongy =05,n=1,L,,/L = 0.5
3.3 Vortex Centre Location and Strength

The location and strength of the primary recirculation vortex
provide an important quantitative measure of flow
development within the lid — driven cavity. In the present
study, the cavity geometry and lid motion are symmetric
about the vertical centreline; therefore, the primary vortex
remains centred in the horizontal direction for all cases
considered. No lateral shift of the vortex core is observed,
unlike asymmetric lid — driven configurations reported in the
literature.

a) Vortex centre behaviour

For all values of the moving lid length ratio (L,,/L) and
power — law index (n), the primary vortex centre is located
close to the geometric centre of the cavity when full lid
motion is applied. As L,,/L decreases, the vortex centre
gradually shifts upward the moving lid, indication reduced
momentum penetration into the lower cavity region. This
upward migration is more pronounced for shear — thickening
fluids due to increased resistance to flow motion.

b) Vertex Strength

The vortex strength is quantified using the maximum absolute
value of the stream function, |Y|,,4x, Which represents the
intensity of circulation within the cavity. The stream function
values are normalized for comparison.

Two clear trends are observed:

o Effect of Moving Lid Length
For a fixed power — law index, the vortex strength
increases monotonically with increasing L,,/L. A shorter
moving lid significantly weakens the primary vortex, as
the reduced shear input limits momentum transfer into the
cavity interior.

o Effect of Power — Law Index
For a fixed L,,/L, increasing the power — law index n
leads to a systematic reduction in vortex strength. Shear —
thinning (n = 0.5) generate the strongest circulation due
to reduced effective viscosity, whereas shear — thickening
fluids (n = 1.5) exhibit damped vortex motion.

Normalized Primary Vortex Strength (|Y],,.04)
n | L,/L=025] L,/L=050] L,/L =075 | L,/L =100
0.5 0.012 0.045 0.078 0.102
1.0 0.008 0.032 0.065 0.090
1.5 0.005 0.020 0.48 0.075
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4. Conclusion

The present numerical investigation examined the influence
of the moving length of the top lid on the flow characteristics
of a lid- driven cavity filled with power — law non-Newtonian
fluids. The study clearly demonstrates that the extent of lid
motion plays a dominant role in governing flow structure,
vortex formation and momentum transport within the cavity.

Reducing the moving lid length significantly confines the
flow to the upper region of the cavity, leading to localized
circulation and a substantial reduction in primary vortex
strength. As the moving lid length decreases, momentum
penetration into the lower cavity region weakens, resulting in
diminished velocity magnitudes and suppressed secondary
vortical structures.

The effect of fluid rheology is found to strongly interact with
the lid motion. Shear- thinning fluids (n < 1) exhibit
enhanced near- lid velocities and stronger vortices due to
reduced apparent viscosity under shear, thereby increasing the
mixing potential, particularly in partial lid- driven
configurations. In contrast, shear- thickening fluids (n > 1)
resist deformation and suppress circulation intensity, leading
to dampened flow responses even at larger lid lengths.

Overall, the results highlight that moving lid length ratio and
power- law index are key parameters in controlling cavity
flow in confined geometries such as polymer processing,
coating flows and microfluidic mixing.

Future work may extend the present study to include transient
flow behaviours, higher Reynolds number regimes and three-
dimensional cavity configurations to better capture complex
flow physics encountered in real engineering systems.
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