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Abstract: The Numerical Study of flow behaviour in a two- dimensional square lid- driven cavity containing power- law fluids. The work 

aims to investigate the influence of the variation of the moving length of the top lid on the fluid flow behaviour, velocity profiles and vortex 

creation. The power- law fluid model is employed to simulate non- Newtonian fluids with power-law indices varying from shear- thinning 

(𝒏 < 𝟏) to shear- thickening (𝒏 > 𝟏) fluids. The finite volume method with a staggered grid arrangement and the simple algorithm for 

the pressure- velocity coupling technique is employed to solve the governing equations. The results show that a decrease in the moving 

length of the top lid results in localized flow perturbations with substantial influences on the primary vortex intensity and secondary vortex 

formation. The flow penetration inside the cavity is deeper for shear- thinning fluids with a smaller moving length, while resistance to 

flow is higher for shear- thickening fluids. The Reynolds number is held constant at 𝑹𝒆 = 𝟏𝟎𝟎 for all computations to demonstrate the 

dominance of viscous forces. 
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1. Introduction 
 

The lid-driven cavity flow is a test problem in computational 

fluid dynamics (CFD), commonly employed as a benchmark 

for the validation of numerical solutions for incompressible 

viscous flows. In the standard problem, a square cavity with 

a moving top lid is considered, which causes recirculation 

inside the cavity. This problem has been widely investigated 

for Newtonian fluids [1,2], but there has been a growing 

interest in non-Newtonian fluids because of their importance 

in various industries like polymers, food and biomedical 

application. 

 

Power-law fluids, also known as Ostwald-de Waele fluids, 

have viscosities that depend on the shear rate, given by the 

relation 𝜂 = 𝐾 ∗ 𝑌𝑛−1, where 𝐾 is the consistency index, 𝑌 is 

the shear rate and 𝑛 is the power-law index.  

 

For 𝑛 = 1, the fluid is Newtonian;   

𝑛 < 1 indicates shear-thinning, 

𝑛 > 1 indicates Shear-thickening behaviour. 

 

Most studies on lid-driven cavities assume the entire top lid 

moves [3 − 5]. However, practical scenarios, such as partial 

agitation in mixers or localized shear in rheological devices, 

involve only a portion of the lid moving. This paper 

investigates the effect of varying moving lengths (𝐿_𝑚/𝐿, 

where 𝐿 is the cavity side length) of the top lid on the Power-

law fluid flow. The moving lengths are taken as 

0.25𝐿, 0.50𝐿, 0.75𝐿, and 1.00𝐿 on the top lid. The 

simulations are carried out for Re = 100, with 𝑛 varying from 

0.5 to 1.5. 
 

The objectives are: 

• To analyse the streamline patterns and vortex structures. 

• To evaluate velocity profiles along cavity centrelines.  

• To assess the impact of non-Newtonian index on flow 

behaviour under partial lid motion.  

 

2. Numerical Method  
 

Governing equations for fluid flow represent mathematical 

expressions of fundamental physical principles: conservation 

of mass (Continuity), momentum (𝐹 = 𝑚𝑎) and energy. 

These are commonly expressed as the Navier-Stokes 

equation, which can be in differential form for point-by-point 

analysis or integral form for a control volume. 

 

The Governing equation for incompressible, steady, viscous, 

laminar and generalized non-Newtonian flow in the two-

dimensional rectangular cavity. 

 

1) Continuity Equation 

∇𝛼 . (𝜌𝑢𝛼) = 0                                      … … … 1  

 

This equation represents the conservation of mass. 

 

For an incompressible fluid, the density (𝜌) is constant, so the 

equation simplifies to the divergence of velocity being zero: 

∇ . 𝑢 = 0. 
 

2) Momentum Equation  

∇𝛽𝛼  . (𝑢𝛼𝑢𝛽) = −∇𝛼𝑃 + ∇𝛽 . 𝜏𝛼𝛽                       … … … 2 

 

This equation represents Newton’s second law for a fluid 

element (Conservation of momentum). The terms represent 

from left to right: Convective inertia forces, Pressure forces, 

Viscous forces. 
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3) Constitutive Relation for non-Newtonian Fluids 

To solve the system, a constitutive equation is required to 

relate the shear stress tensor (𝜏𝛼𝛽) to the fluid motion. For a 

generalized non-Newtonian fluid, this is typically given by  

𝜏𝛼𝛽 = 𝜇 (|𝛾̇|) 𝑆𝛼𝛽                                   … … … 3 

𝜇 (|𝛾̇|) is the apparent viscosity, which is a function of the 

shear rate (|𝛾̇|). 
𝑆𝛼𝛽  is the shear rate tensor, defined as:  

𝑆𝛼𝛽 =
1

2
 (∇𝛼𝑢𝛽 + ∇𝛽𝑢𝛼)                … … … 4 

 

The dependency of viscosity on shear rate distinguishes non-

Newtonian fluids (like paint or blood) from Newtonian fluids 

(like water or air), where viscosity is constant. 

 

2.1 Power-law Model 

 

The power-law model of a non-Newtonian fluid, outlining 

how to determine apparent viscosity (𝜇).  𝜇 (|𝛾̇|) = 𝑚|𝛾̇|𝑛−1 

where 𝑚 and 𝑛 are proportionality constant and power-law 

index, respectively. 

 

The proportionality constant 𝑚 is derived from the Reynolds 

number (Re): 𝑚 =
𝑈2−𝑛𝐿𝑛

𝑅𝑒
, The shear rate is calculated from 

the second invariant of the strain rate tensor (𝐷Π):  

𝛾̇ = 2√𝐷Π, 𝐷Π = ∑ ∑ 𝑆𝛼𝛽𝑆𝛼𝛽

𝑙

𝛼,𝛽=1

 

2

𝑙=1

𝑖𝑛 2𝐷 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠 

 

The final simplified expression for apparent viscosity in your 

model is  

𝜇(|𝛾̇|) = (
𝑈2−𝑛𝐿𝑛

𝑅𝑒
) (2√𝐷Π)

𝑛−1
                  … … … 5 

 

2.2 Boundary Conditions 

 

Appropriate boundary conditions are imposed to accurately 

model the lid-driven cavity configuration. 

 

a) Top Moving Lid 

The velocity boundary condition on the top wall is defined as: 

𝑢 = {
1,     |𝑥 − 0.5| ≤

𝐿𝑚

2𝐿

0,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒       
  and 𝑣 = 0 

Where 𝐿𝑚 denotes the length of the moving portion of the lid. 

 

Only a portion of the top wall moves with a constant velocity, 

while the remaining part remains stationary. This 

configuration represents a partially lid=driven cavity, which 

is relevant to several practical flow application. 

 

b) Bottom, left and right walls 

No-Slip Condition (𝑢 = 0, 𝑣 = 0): this signifies that at the 

bottom, left and right walls the fluid particles adhere to the 

solid boundary. Because the wall are stationary, the fluid 

velocity tangential to the wall (𝑢) and normal to the wall (𝑣) 

is zero, ensuring no relative motion between the fluid and the 

solid surface. 

 

c) Velocity Components 

𝑢 ∶ Tangential (parallel) velocity component. 

𝑣 ∶ Normal (perpendicular) velocity component. 

This is a Dirichlet boundary condition commonly used to 

model viscous, Newtonian fluid behaviours at solid-fluid 

interfaces. 

 

2.3 Numerical Method 

 

The governing equations are solved numerically using the 

Finite Volume Method (FVM) which ensures strict 

conservation of mass and momentum. 

 

a) Grid Arrangement 

• A uniform staggered grid arrangement is employed 

consisting of 128 × 128 control volumes. 

• Reason for using a staggered grid: this arrangement avoids 

pressure-velocity decoupling and eliminates the 

checkerboard pressure problem commonly encountered in 

collocated grids. 

 

b) Discretization Schemes 

• Convective Terms: The QUICK (Quadratic Upstream 

Interpolation for Convective Kinematics) Scheme is a 

third-order accurate method for convection that uses a 

quadratic interpolation function based on two upstream 

nodes and one downstream node. This approach helps to 

reduce numerical diffusion compared to first-order 

upwind schemes. 

• Diffusive Terms: central differencing is a second-order 

accurate scheme used to approximate diffusive terms in 

partial differential equations. It is based on Talyor series 

expansions around a central node and is known for its 

accuracy and stability when applied to diffusion terms. 

 
Term Schemes Used Reason 

Convection QUICK 
High accuracy, low 

numerical diffusion 

Diffusion Central difference Second-order accurate 

Pressure Linear interpolation Stability 

 

c) Pressure- Velocity Coupling  

The pressure- velocity coupling is handled using the SIMPLE 

(Semi-Implicit Method for Pressure-Linked Equations) 

algorithm. 

 

Algorithm Steps: 

• Initialize the pressure field 

• Solve the momentum equation 

• Compute pressure correction 

• Update pressure and velocity fields 

• Repeat until convergence 

 

d) Treatment of Non-Newtonian Viscosity 

The variables in the power-law viscosity formula 𝜂𝑘+1 =
𝐾|𝛾̇𝑘|𝑛−1 are defined as follows: 

• 𝜂𝑘+1 is the updated apparent viscosity at the next iteration 

(𝑘 + 1), typically measured in pascal seconds (𝑃𝑎 . 𝑠). 
• K is the consistency index (or coefficient), which has units 

of 𝑃𝑎 . 𝑠𝑛. It is numerically equal to the viscosity at a shear 

rate of 1 𝑠−1. 
• |𝛾̇𝑘| is the magnitude of the local shear rate (or strain rate) 

at the current iteration (𝑘), with units of inverse seconds 

𝑠−1. 
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• 𝑛 is the flow behaviour index (or power-law index), which 

is a dimensionless parameter that indicates how the 

viscosity changes with shear rate. 

If  𝑛 < 1, the fluid is shear-thinning (pseudoplastic), 

meaning its viscosity decreases with increasing shear rate 

(e.g. ketchup, blood). 

If 𝑛 > 1, the fluid is shear-thickening (dilatant) and its 

viscosity increases with increasing shear rate (e.g. Corn 

flour suspensions). 

If 𝑛 = 1, the fluid is Newtonian, and the viscosity is 

constant (𝐾 becomes the constant viscosity, 𝜂 = 𝐾). 
 

e) Convergence Criterion 

The convergence of the numerical solution is monitored using 

the velocity residual 𝐶𝐶, defined by the formula: 

𝐶𝐶 = ∑
|𝑢𝑘+1 − 𝑢𝑘|

|𝑢𝑘+1|
𝑥,𝑦

                                        … … … 6 

Converged State: the solution is considered converged when 

the velocity residual 𝐶𝐶 < 10−8. 
 

Purpose: This strict criterion ensures highly accurate, steady-

state solution. 

 

The formula measures the relative change in the velocity 𝑢 

between successive iterations (𝑘 𝑎𝑛𝑑 𝑘 + 1) summed across 

the domain (𝑥, 𝑦). 

 

3. Results and Discussion  
 

3.1 Streamline Patterns 

 

Here is a summary of the streamline patterns in the cavity 

flow, categorized by lid motion (𝐿𝑚/𝐿) and fluid behaviour 

(𝑛): 

 

a) Full Lid Motion (𝑳𝒎/𝑳 = 𝟏. 𝟎) 

Newtonian (𝒏 = 𝟏. 𝟎): produces the “Ghia benchmark” 

pattern featuring a primary vortex at the centre and secondary 

vortices in the corners. 

Shear – thinning (𝒏 = 𝟎. 𝟓): Exhibits classic cavity flow 

with dense streamlines near the lid due to reduced viscosity. 

Shear – thickening (𝒏 = 𝟏. 𝟓): show dampened, standard 

cavity flow with corners. 

 

b) Partial Lid Motion (𝑳𝒎/𝑳 < 𝟏. 𝟎) 

As the moving segment (𝐿𝑚/𝐿) decreases, the primary vortex 

shifts toward the top and its strength diminishes. 

At 𝑳𝒎/𝑳 = 𝟎. 𝟐𝟓 :  The flow is confined to the top (Localized 

top eddy), with weak circulation below for all fluid types. 

Intermediate 𝑳𝒎/𝑳 (𝟎. 𝟓 − 𝟎. 𝟕𝟓): Shear – Thinning fluids 

(𝑛 = 0.5) display dual or stronger vortices, while shear – 

thickening fluids (𝑛 = 1.5) show broad, weak or minimal 

flow penetration. 

 

c) Fluid Behaviour Effects 

Shear – thinning (𝒏 = 𝟎. 𝟓): Higher velocities near the lid 

due to lower viscosity. 

Shear – thickening (𝒏 = 𝟏. 𝟓): Reduced strength and 

broader, weaker vortices.  

 
Figure 1: Streamline for 𝑅𝑒 = 100, Moving Ratio = 1 

 

 
Figure 2: 𝑢 – velocity along 𝑥 = 0.5 

 

 
Figure 3: 𝑣 −velocity along 𝑦 = 0.5 

 

3.2 Velocity Profiles 

 

The velocity distributions along the vertical centreline (𝑥 =
0.5) and the horizontal centreline (𝑦 = 0.5) are examined to 

quantify the influence of the moving – lid length ratio (𝐿𝑚/𝐿) 

and the power – law index (𝑛) on momentum transport within 

the cavity. The horizontal velocity component 𝑢 is plotted 

along the vertical centreline, while the vertical velocity 

component 𝑣 is evaluated along the horizontal centreline.  
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a) Effect of Moving Lid Length 

For full lid motion (𝐿𝑚/𝐿 = 1.0), the 𝑢 −velocity profile 

exhibits a pronounced peak near the upper region of the 

cavity, corresponding to the strong shear generated by the 

moving lid. The velocity decreases smoothly toward the 

cavity centre and becomes negative in the lower half, 

indicating the return flow associated with the primary 

recirculation vortex. Typical values show  

𝑢(𝑦 = 0.9) ≈ 0.8, 𝑢(𝑦 = 0.5 ≈ −0.1) 

Which are consistent with classical lid – driven cavity 

behaviour. 

 

As the moving lid length decreases, the peak 𝑢 −velocity 

shifts closer to the lid and its magnitude reduces significantly. 

For example, at 𝐿𝑚/𝐿 = 0.5, the maximum horizontal 

velocity drops too approximately 

𝑢𝑚𝑎𝑥 ≈ 0.4 at 𝑦 ≈ 0.95 

 

Indicating weakened momentum penetration into the cavity 

interior. This trend becomes more pronounced for 𝐿𝑚/𝐿 =
0.25, where the velocity decays rapidly away from the lid and 

remains nearly zero in the lower region. 

 

Similarly, the vertical velocity component 𝑣 along the 

horizontal centreline vortex strength. 

 

b) Effect of Power – Law Index 

The influence of fluid rheology is evident in the velocity 

gradients near the moving lid: 

• Shear- Thinning Fluids (𝒏 < 𝟏) exhibit steeper velocity 

gradients and higher near – lid velocities due to reduced 

apparent viscosity under shear. For 𝑛 = 0.5 the horizontal 

velocity near the lid is approximately 20% higher than 

that of the Newtonian case under identical flow 

conditions. 

• Newtonian Fluids (𝒏 = 𝟏) serve as a reference, 

displaying smooth and symmetric velocity profiles that 

agree with benchmark cavity flow solutions. 

• Shear- Thickening fluids (𝒏 > 𝟏) Show flatter velocity 

profiles and reduced peak magnitudes, as increased 

viscosity suppresses shear – induced motion. 

 

 
Figure 4: 𝑢 along 𝑥 = 0.5, 𝑛 = 1, 𝐿𝑚/𝐿 = 0.5 

 

 
Figure 5: 𝑣 along 𝑦 = 0.5, 𝑛 = 1, 𝐿𝑚/𝐿 = 0.5 

 

3.3 Vortex Centre Location and Strength  

 

The location and strength of the primary recirculation vortex 

provide an important quantitative measure of flow 

development within the lid – driven cavity. In the present 

study, the cavity geometry and lid motion are symmetric 

about the vertical centreline; therefore, the primary vortex 

remains centred in the horizontal direction for all cases 

considered. No lateral shift of the vortex core is observed, 

unlike asymmetric lid – driven configurations reported in the 

literature. 

 

a) Vortex centre behaviour 

For all values of the moving lid length ratio (𝐿𝑚/𝐿) and 

power – law index (𝑛), the primary vortex centre is located 

close to the geometric centre of the cavity when full lid 

motion is applied. As 𝐿𝑚/𝐿 decreases, the vortex centre 

gradually shifts upward the moving lid, indication reduced 

momentum penetration into the lower cavity region. This 

upward migration is more pronounced for shear – thickening 

fluids due to increased resistance to flow motion. 

 

b) Vertex Strength  

The vortex strength is quantified using the maximum absolute 

value of the stream function, |𝜓|𝑚𝑎𝑥 , which represents the 

intensity of circulation within the cavity. The stream function 

values are normalized for comparison. 

 

Two clear trends are observed: 

• Effect of Moving Lid Length 

For a fixed power – law index, the vortex strength 

increases monotonically with increasing 𝐿𝑚/𝐿. A shorter 

moving lid significantly weakens the primary vortex, as 

the reduced shear input limits momentum transfer into the 

cavity interior. 

• Effect of Power – Law Index 

For a fixed 𝐿𝑚/𝐿, increasing the power – law index 𝑛 

leads to a systematic reduction in vortex strength. Shear – 

thinning (𝑛 = 0.5) generate the strongest circulation due 

to reduced effective viscosity, whereas shear – thickening 

fluids (𝑛 = 1.5) exhibit damped vortex motion. 

 

Normalized Primary Vortex Strength (|𝝍|𝒎𝒂𝒙) 

𝑛 𝐿𝑚/𝐿 = 0.25 𝐿𝑚/𝐿 = 0.50 𝐿𝑚/𝐿 = 0.75 𝐿𝑚/𝐿 = 1.00 

0.5 0.012 0.045 0.078 0.102 

1.0 0.008 0.032 0.065 0.090 

1.5 0.005 0.020 0.48 0.075 
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Figure 6: Variation of Primary Vortex Strength with Moving Lid Length 

 

4. Conclusion 
 

The present numerical investigation examined the influence 

of the moving length of the top lid on the flow characteristics 

of a lid- driven cavity filled with power – law non-Newtonian 

fluids. The study clearly demonstrates that the extent of lid 

motion plays a dominant role in governing flow structure, 

vortex formation and momentum transport within the cavity. 

 

Reducing the moving lid length significantly confines the 

flow to the upper region of the cavity, leading to localized 

circulation and a substantial reduction in primary vortex 

strength. As the moving lid length decreases, momentum 

penetration into the lower cavity region weakens, resulting in 

diminished velocity magnitudes and suppressed secondary 

vortical structures. 

 

The effect of fluid rheology is found to strongly interact with 

the lid motion. Shear- thinning fluids (𝑛 < 1) exhibit 

enhanced near- lid velocities and stronger vortices due to 

reduced apparent viscosity under shear, thereby increasing the 

mixing potential, particularly in partial lid- driven 

configurations. In contrast, shear- thickening fluids (𝑛 > 1) 

resist deformation and suppress circulation intensity, leading 

to dampened flow responses even at larger lid lengths. 

 

Overall, the results highlight that moving lid length ratio and 

power- law index are key parameters in controlling cavity 

flow in confined geometries such as polymer processing, 

coating flows and microfluidic mixing. 

 

Future work may extend the present study to include transient 

flow behaviours, higher Reynolds number regimes and three- 

dimensional cavity configurations to better capture complex 

flow physics encountered in real engineering systems.    
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