
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 15 Issue 2, February 2026
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Cloud-Based Student Management System with

Tkinter and Firebase

G. Venkateshwarlu1, Shake Roshini2

Department of Computer Science, Siva Sivani Degree College (Autonomous), Secunderabad, Hyderabad, India

Abstract: Managing student records manually often results in mistakes, wasted effort, and the possibility of losing important information.

Many institutions still rely on paper files or spreadsheets, which are limited in terms of security and scalability. This work introduces a

cloud-enabled Student Management System developed with Python’s Tkinter library and Firebase Firestore. The application provides a

graphical interface for administrators to input and manage student details such as ID, name, course, and marks. Tkinter ensures a simple

and user-friendly front end, while Firebase offers secure, real-time cloud storage. Unlike earlier studies that mainly discussed Tkinter

concepts, this project delivers a complete implementation with source code and verified outputs. The system reduces manual workload,

improves accuracy, and ensures reliable cloud-based storage, making it suitable for small to medium educational institutions.

Keywords: Student Management System, Tkinter, Firebase, Cloud Database, Python GUI

1. Introduction

Efficient handling of student information has become a

critical requirement in modern education. Institutions must

maintain accurate records of personal details, academic

performance, and course enrollment, and be able to retrieve

them quickly when needed. Traditional approaches such as

paper files or spreadsheets are prone to duplication, errors,

and data loss, making them unsuitable for large-scale record

management.

With the advancement of software technologies, automated

student management systems have gained prominence.

Python, known for its simplicity and flexibility, is widely

adopted for such applications. Tkinter, Python’s standard GUI

library, allows developers to design windows, buttons, labels,

and input fields with minimal complexity, enabling the

creation of intuitive desktop applications.

To further enhance accessibility and security, cloud-based

databases are increasingly preferred. Firebase Firestore

provides reliable, real-time cloud storage. By integrating

Tkinter with Firebase, student information can be stored

securely and accessed efficiently. The primary goal of this

project is to design and implement a cloud-based Student

Management System that is simple, user-friendly, and capable

of overcoming the limitations of traditional methods.

2. Literature Survey

Douglas Beniz and Alexy Espindola (2017) explored the use

of Python’s Tkinter library to design graphical interfaces for

beamline operations. Their work demonstrated how widgets

such as buttons, labels, and text fields can be applied

effectively in scientific applications. However, their study

concentrated primarily on interface design and did not extend

to cloud-based storage or complete application development.

Similarly, Sonam Kumari (2023) discussed the creation of

desktop applications with Tkinter, emphasizing its cross-

platform compatibility and ease of use. While the paper

provided detailed explanations of Tkinter components, it did

not present a fully functional student management system

with integrated database support or practical output

validation.

From these studies, it is evident that most existing research

focuses on explaining Tkinter concepts in isolation. The

integration of cloud databases, end-to-end system

implementation, and demonstration of results remain largely

unexplored, leaving room for further development.

3. Research Gap

Based on the review of prior work, several gaps can be

identified:

• Cloud-based database integration has not been addressed.

• Complete system implementation is missing in most

studies.

• Source code examples are rarely provided.

• Output validation and result analysis are absent.

To bridge these gaps, the proposed project delivers a fully

functional Student Management System using Tkinter with

Firebase Firestore. The system includes implementation

details, source code, and verified outputs, ensuring both

practicality and reliability.

4. Existing System

In many schools and colleges, student information is still

maintained through paper files or basic spreadsheet tools such

as Microsoft Excel. While these methods are simple to adopt,

they quickly become inefficient when the number of records

grows. Searching for a particular student, updating details, or

keeping track of performance becomes time-consuming and

error-prone.

Moreover, these systems lack proper safeguards. Records can

be altered without authorization, misplaced, or even lost

entirely. As a result, institutions face challenges in ensuring

accuracy, security, and reliability. This highlights the need for

a digital solution that can handle large volumes of data while

maintaining integrity and accessibility.

Paper ID: SR26202155505 DOI: https://dx.doi.org/10.21275/SR26202155505 174

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 15 Issue 2, February 2026
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

5. Proposed System

The solution presented in this study is a cloud-based Student

Management System built with Python’s Tkinter library for

the interface and Firebase Firestore for the backend. The

application provides a simple graphical environment where

administrators can input student details such as ID, name,

course, and marks.

Tkinter is responsible for the front-end design, offering an

intuitive layout with labels, entry fields, and buttons. Firebase

Firestore serves as the cloud database, ensuring that student

records are stored securely and can be accessed in real time.

Input validation is included to prevent incomplete entries, and

confirmation messages are displayed to guide users during

data entry. By combining Tkinter with Firebase, the system

ensures both usability and reliability, reducing the risks

associated with manual record keeping.

6. System Design

The architecture of the Student Management System is

divided into two main layers: the graphical interface and the

cloud database. The interface is built using Tkinter, which

provides labels, input fields, and buttons arranged in a simple

layout for ease of use. This design ensures that administrators

can quickly enter student details such as ID, name, course,

and marks without confusion.

On the backend, Firebase Firestore is employed as the cloud

database. It stores student records securely and allows real-

time access from any connected device. The input design

validates that all required fields are completed before

submission, while the output design provides feedback

through confirmation or error messages. This combination of

GUI and cloud storage ensures both usability and reliability.

7. System Implementation

The system is implemented in Python, with Firebase

initialized through a service account key to establish a secure

connection to Firestore. Tkinter widgets are used to construct

the application window, including entry fields for student

details and buttons for actions.

When the administrator clicks the “Add Student” button, the

program first checks that all fields are filled. If validation

passes, the data is uploaded to the Firebase Firestore database.

The application then displays a success message, while errors

trigger appropriate alerts. This process confirms that the

system is capable of storing student records in real time and

demonstrates the integration of Tkinter with cloud-based

storage.

8. Source Code

from tkinter import *

from tkinter import messagebox

import os

import firebase_admin

from firebase_admin import credentials, firestore

---------------- CHECK CURRENT WORKING

DIRECTORY ----------------

print("Python is running from:", os.getcwd())

Move your serviceAccountKey.json to this folder or use

the full path below

Paper ID: SR26202155505 DOI: https://dx.doi.org/10.21275/SR26202155505 175

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 15 Issue 2, February 2026
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

---------------- FIREBASE INITIALIZATION ---------------

-

try:

 # Option 1: If JSON is in the current working directory

 cred = credentials.Certificate("serviceAccountKey.json")

 firebase_admin.initialize_app(cred)

except FileNotFoundError:

 print("Error: serviceAccountKey.json not found. Place it

in the folder above or use full path.")

 exit()

except ValueError:

 # Firebase already initialized

 pass

db = firestore.client()

Optional: Test Firebase connection

try:

 db.collection("test").document("ok").set({"status":

"connected"})

 print("Firebase connected successfully")

except Exception as e:

 print("Firebase connection error:", e)

---------------- TKINTER WINDOW ----------------

root = Tk()

root.title("Student Management System")

root.geometry("600x400")

---------------- LABELS ----------------

Label(root, text="Student Management System",

font=("Arial", 16, "bold")).pack(pady=10)

Label(root, text="Student ID").place(x=50, y=70)

Label(root, text="Name").place(x=50, y=110)

Label(root, text="Course").place(x=50, y=150)

Label(root, text="Marks").place(x=50, y=190)

---------------- ENTRY FIELDS ----------------

id_entry = Entry(root)

name_entry = Entry(root)

course_entry = Entry(root)

marks_entry = Entry(root)

id_entry.place(x=150, y=70)

name_entry.place(x=150, y=110)

course_entry.place(x=150, y=150)

marks_entry.place(x=150, y=190)

---------------- ADD STUDENT FUNCTION ----------------

def add_student():

 sid = id_entry.get()

 name = name_entry.get()

 course = course_entry.get()

 marks = marks_entry.get()

 if sid == "" or name == "" or course == "" or marks == "":

 messagebox.showerror("Error", "All fields are

required")

 return

 try:

 db.collection("students").document(sid).set({

 "name": name,

 "course": course,

 "marks": marks

 })

 messagebox.showinfo("Success", "Student Added

Successfully")

 # Clear fields after insert

 id_entry.delete(0, END)

 name_entry.delete(0, END)

 course_entry.delete(0, END)

 marks_entry.delete(0, END)

 except Exception as e:

 messagebox.showerror("Database Error", str(e))

---------------- BUTTON ----------------

Button(root, text="Add Student", command=add_student,

width=15).place(x=200, y=240)

---------------- MAIN LOOP ----------------

root.mainloop()

9. System Testing

The application was evaluated using multiple testing

approaches to ensure reliability. Unit testing was carried out

on individual input fields and functions to confirm that each

component behaved as expected. Integration testing verified

the communication between the Tkinter interface and the

Firebase Firestore database, ensuring that data entered

through the GUI was correctly stored in the cloud. Finally,

system-level testing assessed the overall performance of the

application under normal usage conditions. The results

demonstrated that the system consistently handled student

data accurately and maintained secure connectivity with the

cloud database.

10. Result and Output

The completed Student Management System successfully

records student details in Firebase Firestore and provides

immediate feedback through the graphical interface. After

each insertion, the application displays confirmation

messages, assuring the user that the data has been stored

securely. Testing outputs confirmed that records were

available in real time and could be accessed without delay.

This outcome validates the effectiveness of combining

Tkinter with Firebase for building a practical, cloud-based

solution to manage student information.

Paper ID: SR26202155505 DOI: https://dx.doi.org/10.21275/SR26202155505 176

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 15 Issue 2, February 2026
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

11. Conclusion

The Student Management System developed with Python’s

Tkinter and Firebase Firestore offers a practical and secure

approach to handling academic records. By shifting from

manual methods to a cloud-based solution, the system reduces

human error, improves efficiency, and ensures that student

information is safely stored and easily accessible. The

graphical interface makes the application straightforward for

administrators to use, while the integration with Firebase

confirms the reliability of cloud technology in educational

contexts. Overall, the project demonstrates that combining

Tkinter with cloud services can deliver a lightweight yet

effective management tool for institutions.

Paper ID: SR26202155505 DOI: https://dx.doi.org/10.21275/SR26202155505 177

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 15 Issue 2, February 2026
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

12. Future Enhancement

Looking ahead, the system can be expanded with additional

features to further support institutional needs. Potential

improvements include search and delete options, attendance

tracking, automated grade report generation, and secure user

authentication. Parent portals and mobile application support

could also be introduced to improve accessibility. Beyond

these, advanced cloud features such as analytics and

dashboards may be integrated to provide deeper insights into

student performance. These enhancements would transform

the system into a comprehensive platform for managing

academic data.

References

[1] Beniz, D., & Espindola, A. (2017). Using Tkinter in

Python to create GUI applications.

[2] Kumari, S. (2023). Empowering desktop applications

with Tkinter.

[3] Google. (n.d.). Firebase Firestore documentation.

Retrieved February 2, 2026, from

https://firebase.google.com/docs/firestore

[4] Python Software Foundation. (n.d.). Tkinter

documentation. Retrieved February 2, 2026, from

https://docs.python.org/3/library/tkinter.html

Paper ID: SR26202155505 DOI: https://dx.doi.org/10.21275/SR26202155505 178

http://www.ijsr.net/

