International Journal of Science and Research (IJSR)
ISSN: 2319-7064
Impact Factor 2024: 7.101

Cloud-Based Student Management System with
Tkinter and Firebase

G. Venkateshwarlu', Shake Roshini?

Department of Computer Science, Siva Sivani Degree College (Autonomous), Secunderabad, Hyderabad, India

Abstract: Managing student records manually often results in mistakes, wasted effort, and the possibility of losing important information.
Many institutions still rely on paper files or spreadsheets, which are limited in terms of security and scalability. This work introduces a
cloud-enabled Student Management System developed with Python’s Tkinter library and Firebase Firestore. The application provides a
graphical interface for administrators to input and manage student details such as ID, name, course, and marks. Tkinter ensures a simple
and user-friendly front end, while Firebase offers secure, real-time cloud storage. Unlike earlier studies that mainly discussed Tkinter
concepts, this project delivers a complete implementation with source code and verified outputs. The system reduces manual workload,
improves accuracy, and ensures reliable cloud-based storage, making it suitable for small to medium educational institutions.

Keywords: Student Management System, Tkinter, Firebase, Cloud Database, Python GUI

1. Introduction

Efficient handling of student information has become a
critical requirement in modern education. Institutions must
maintain accurate records of personal details, academic
performance, and course enrollment, and be able to retrieve
them quickly when needed. Traditional approaches such as
paper files or spreadsheets are prone to duplication, errors,
and data loss, making them unsuitable for large-scale record
management.

With the advancement of software technologies, automated
student management systems have gained prominence.
Python, known for its simplicity and flexibility, is widely
adopted for such applications. Tkinter, Python’s standard GUI
library, allows developers to design windows, buttons, labels,
and input fields with minimal complexity, enabling the
creation of intuitive desktop applications.

To further enhance accessibility and security, cloud-based
databases are increasingly preferred. Firebase Firestore
provides reliable, real-time cloud storage. By integrating
Tkinter with Firebase, student information can be stored
securely and accessed efficiently. The primary goal of this
project is to design and implement a cloud-based Student
Management System that is simple, user-friendly, and capable
of overcoming the limitations of traditional methods.

2. Literature Survey

Douglas Beniz and Alexy Espindola (2017) explored the use
of Python’s Tkinter library to design graphical interfaces for
beamline operations. Their work demonstrated how widgets
such as buttons, labels, and text fields can be applied
effectively in scientific applications. However, their study
concentrated primarily on interface design and did not extend
to cloud-based storage or complete application development.

Similarly, Sonam Kumari (2023) discussed the creation of
desktop applications with Tkinter, emphasizing its cross-
platform compatibility and ease of use. While the paper
provided detailed explanations of Tkinter components, it did
not present a fully functional student management system

with integrated database
validation.

support or practical output

From these studies, it is evident that most existing research
focuses on explaining Tkinter concepts in isolation. The
integration of cloud databases, end-to-end system
implementation, and demonstration of results remain largely
unexplored, leaving room for further development.

3. Research Gap

Based on the review of prior work, several gaps can be

identified:

e Cloud-based database integration has not been addressed.

e Complete system implementation is missing in most
studies.

e Source code examples are rarely provided.

e Output validation and result analysis are absent.

To bridge these gaps, the proposed project delivers a fully
functional Student Management System using Tkinter with
Firebase Firestore. The system includes implementation
details, source code, and verified outputs, ensuring both
practicality and reliability.

4. Existing System

In many schools and colleges, student information is still
maintained through paper files or basic spreadsheet tools such
as Microsoft Excel. While these methods are simple to adopt,
they quickly become inefficient when the number of records
grows. Searching for a particular student, updating details, or
keeping track of performance becomes time-consuming and
error-prone.

Moreover, these systems lack proper safeguards. Records can
be altered without authorization, misplaced, or even lost
entirely. As a result, institutions face challenges in ensuring
accuracy, security, and reliability. This highlights the need for
a digital solution that can handle large volumes of data while
maintaining integrity and accessibility.

Volume 15 Issue 2, February 2026
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal
www.ijsr.net

Paper |D: SR26202155505

DOI: https://dx.doi.org/10.21275/SR26202155505 174

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064
Impact Factor 2024: 7.101

5. Proposed System

The solution presented in this study is a cloud-based Student
Management System built with Python’s Tkinter library for
the interface and Firebase Firestore for the backend. The
application provides a simple graphical environment where
administrators can input student details such as ID, name,
course, and marks.

Tkinter is responsible for the front-end design, offering an
intuitive layout with labels, entry fields, and buttons. Firebase
Firestore serves as the cloud database, ensuring that student
records are stored securely and can be accessed in real time.
Input validation is included to prevent incomplete entries, and
confirmation messages are displayed to guide users during
data entry. By combining Tkinter with Firebase, the system
ensures both usability and reliability, reducing the risks
associated with manual record keeping.

6. System Design

The architecture of the Student Management System is
divided into two main layers: the graphical interface and the
cloud database. The interface is built using Tkinter, which
provides labels, input fields, and buttons arranged in a simple
layout for ease of use. This design ensures that administrators
can quickly enter student details such as ID, name, course,
and marks without confusion.

On the backend, Firebase Firestore is employed as the cloud
database. It stores student records securely and allows real-
time access from any connected device. The input design
validates that all required fields are completed before
submission, while the output design provides feedback
through confirmation or error messages. This combination of
GUI and cloud storage ensures both usability and reliability.

Use Case Diagram

i

Administrator

~eincludesn
Input Valiation

Class Diagram

StudentApp (GUI)
root Tk

root Tk

id entry: Entry

r—Student Management Appx

}4 -
iddne; Entry. name: eutton ‘ StudentControllor ;
add button, Button J ™) add/studentis) %

—b@ Firebase/Frostore API
FirebazeManager
Y crod: cpadetiitals
/ db. firestore clent
intatllizze app)

Sequence Diagram

User

StudentApp (GUI)
» |

— - -

1. click "Add Student” 7
3. valinatel(

StudazeManager

= 1 Student (Data Object) |
[y wagmeiax ... | e

Button (Add Student) course: Sting/int
e marks (String: Stang/nt)

2. get) entry data

StudentApp (GUI) Fioostore (Database)

4, set) document —->i

- » 5. showinfot) =)
| mesbbaaex C

FirebazeManager Fiosstore [Dlabase

7. System Implementation

The system is implemented in Python, with Firebase
initialized through a service account key to establish a secure
connection to Firestore. Tkinter widgets are used to construct
the application window, including entry fields for student
details and buttons for actions.

When the administrator clicks the “Add Student” button, the
program first checks that all fields are filled. If validation
passes, the data is uploaded to the Firebase Firestore database.
The application then displays a success message, while errors
trigger appropriate alerts. This process confirms that the
system is capable of storing student records in real time and

demonstrates the integration of Tkinter with cloud-based
storage.

8. Source Code

from tkinter import *

from tkinter import messagebox

import os

import firebase admin

from firebase admin import credentials, firestore
CHECK CURRENT WORKING

DIRECTORY
print("Python is running from:", os.getcwd())

Move your serviceAccountKey.json to this folder or use
the full path below

Paper |D: SR26202155505

Volume 15 Issue 2, February 2026
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

WWWw.ijsr.net

DOI: https://dx.doi.org/10.21275/SR26202155505 175

http://www.ijsr.net/

International Journal of Science and Research (IJSR)

ISSN: 2319-7064

Impact Factor 2024: 7.101

try:

Option 1: If JSON is in the current working directory
cred = credentials.Certificate("serviceAccountKey.json")

firebase admin.initialize app(cred)
except FileNotFoundError:

print("Error: serviceAccountKey.json not found. Place it

in the folder above or use full path.")
exit()

except ValueError:
Firebase already initialized
pass

db = firestore.client()

Optional: Test Firebase connection

try:

db.collection("test").document("ok").set({"status":

"connected"})

print("Firebase connected successfully")
except Exception as e:

print("Firebase connection error:", e)
et TKINTER WINDOW ---------emmeemv
root = Tk()
root.title("Student Management System")
root.geometry("600x400")
R LABELS ----------=-—---
Label(root, text="Student Management System",
font=("Arial", 16, "bold")).pack(pady=10)
Label(root, text="Student ID").place(x=50, y=70)
Label(root, text="Name").place(x=50, y=110)
Label(root, text="Course").place(x=50, y=150)
Label(root, text="Marks").place(x=50, y=190)
#ommmmmmm e ENTRY FIELDS ----------------
id_entry = Entry(root)
name_entry = Entry(root)
course_entry = Entry(root)
marks_entry = Entry(root)
id_entry.place(x=150, y=70)
name_entry.place(x=150, y=110)
course_entry.place(x=150, y=150)
marks_entry.place(x=150, y=190)

L S— ADD STUDENT FUNCTION -

def add_student():
sid = id_entry.get()
name = name_entry.get()
course = course_entry.get()
marks = marks_entry.get()
if sid =="" or name ==""
messagebox.showerror("Error", "All fields are
required")

or course == "" or marks ==

return
try:
db.collection("students").document(sid).set({
"name": name,
"course": course,
"marks": marks
1)
messagebox.showinfo("Success", "Student Added
Successfully")
Clear fields after insert
id_entry.delete(0, END)
name_entry.delete(0, END)
course_entry.delete(0, END)
marks_entry.delete(0, END)
except Exception as e:
messagebox.showerror("Database Error", str(e))
L BUTTON --------emem -
Button(root, text="Add Student", command=add_student,
width=15).place(x=200, y=240)
L MAIN LOOP --------m-meme
root.mainloop()

9. System Testing

The application was evaluated using multiple testing
approaches to ensure reliability. Unit testing was carried out
on individual input fields and functions to confirm that each
component behaved as expected. Integration testing verified
the communication between the Tkinter interface and the
Firebase Firestore database, ensuring that data entered
through the GUI was correctly stored in the cloud. Finally,
system-level testing assessed the overall performance of the
application under normal usage conditions. The results
demonstrated that the system consistently handled student
data accurately and maintained secure connectivity with the
cloud database.

10. Result and Output

The completed Student Management System successfully
records student details in Firebase Firestore and provides
immediate feedback through the graphical interface. After
each insertion, the application displays confirmation
messages, assuring the user that the data has been stored
securely. Testing outputs confirmed that records were
available in real time and could be accessed without delay.
This outcome validates the effectiveness of combining
Tkinter with Firebase for building a practical, cloud-based
solution to manage student information.

Volume 15 Issue 2, February 2026
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

Paper |D: SR26202155505

WWWw.ijsr.net

DOI: https://dx.doi.org/10.21275/SR26202155505 176

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064
Impact Factor 2024: 7.101

f? Student Management System - O b4
Student Management System

Student ID

Name

Course

Marks

Add Student
f? Student Management System - O b4
Student Management System

Student ID 282

Name Roshini

Course MCA

Marks Eq

Add Student
% Fircbase thudent managemant system ~ Cloud Sirestore » Databads
R L @ Srotect your Clowd Firestors resources from abuse, such as billing fraud or phishing Configure App Check
“anel view I
25 Firestore Database
@ > 7H &Y More in Google Cloud
Busild - = u ! = B
L : Atudants 3 &2 ¥ Add |
‘ o /B

11. Conclusion

The Student Management System developed with Python’s
Tkinter and Firebase Firestore offers a practical and secure
approach to handling academic records. By shifting from
manual methods to a cloud-based solution, the system reduces
human error, improves efficiency, and ensures that student
information is safely stored and easily accessible. The

graphical interface makes the application straightforward for
administrators to use, while the integration with Firebase
confirms the reliability of cloud technology in educational
contexts. Overall, the project demonstrates that combining
Tkinter with cloud services can deliver a lightweight yet
effective management tool for institutions.

Volume 15 Issue 2, February 2026
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal
www.ijsr.net

Paper |D: SR26202155505

DOI: https://dx.doi.org/10.21275/SR26202155505 177

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064
Impact Factor 2024: 7.101

12. Future Enhancement

Looking ahead, the system can be expanded with additional
features to further support institutional needs. Potential
improvements include search and delete options, attendance
tracking, automated grade report generation, and secure user
authentication. Parent portals and mobile application support
could also be introduced to improve accessibility. Beyond
these, advanced cloud features such as analytics and
dashboards may be integrated to provide deeper insights into
student performance. These enhancements would transform
the system into a comprehensive platform for managing
academic data.

References

[1] Beniz, D., & Espindola, A. (2017). Using Tkinter in
Python to create GUI applications.

[2] Kumari, S. (2023). Empowering desktop applications
with Tkinter.

[3] Google. (n.d.). Firebase Firestore documentation.
Retrieved February 2, 2026, from
https://firebase.google.com/docs/firestore

[4] Python Software Foundation. (n.d.). Tkinter
documentation. Retrieved February 2, 2026, from
https://docs.python.org/3/library/tkinter.html

Volume 15 Issue 2, February 2026
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal
www.ijsr.net

Paper |D: SR26202155505 DOI: https://dx.doi.org/10.21275/SR26202155505

178

http://www.ijsr.net/

