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Abstract: The lakehouse architecture has emerged as a transformative paradigm in modern data platforms, unifying data lake flexibility 

with data warehouse performance. As organizations deploy increasingly complex data infrastructures, cost optimization and performance 

engineering have become critical success factors. This paper presents a comprehensive analysis of cost optimization strategies and 

performance engineering techniques for lakehouse architectures. We examine storage layout optimization through partitioning and 

clustering strategies, file sizing and compaction methodologies, compute resource management via auto-scaling and workload isolation, 

query acceleration techniques, and cost governance frameworks. Our analysis demonstrates that properly implemented optimization 

strategies can reduce total cost of ownership by 40-60% while improving query performance by 3-10x. We provide practical guidance for 

data platform engineers and architects seeking to maximize the efficiency and cost-effectiveness of their lakehouse implementations. 
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1. Introduction 
 

The exponential growth of data volumes and the increasing 

complexity of analytical workloads have driven 

organizations to seek unified data architectures that combine 

the flexibility of data lakes with the performance 

characteristics of data warehouses. The lakehouse 

architecture has emerged as a compelling solution, offering 

ACID transactions, schema enforcement, and efficient query 

processing directly on low-cost object storage [1]. 

 

However, the operational efficiency of lakehouse 

implementations varies dramatically based on architectural 

decisions and optimization strategies. Organizations 

frequently encounter cost overruns of 200-300% beyond 

initial projections due to inefficient storage layouts, 

unoptimized compute allocation, and lack of governance 

frameworks [2]. Simultaneously, poorly optimized query 

patterns can result in response times that are orders of 

magnitude slower than necessary, undermining the value 

proposition of lakehouse architectures. 

 

This paper addresses the critical need for systematic cost 

optimization and performance engineering in lakehouse 

environments. We present evidence-based strategies 

spanning storage optimization, compute resource 

management, query acceleration, and financial governance 

that collectively enable organizations to achieve both cost 

efficiency and high performance. 

 

2. Understanding the Lakehouse Architecture 
 

a) Architectural Foundations 

A lakehouse is a unified data architecture that implements 

data warehouse capabilities directly on low-cost object 

storage, eliminating the need for separate data lake and 

warehouse systems [3]. The architecture consists of three 

fundamental layers: the storage layer (typically cloud object 

storage such as Amazon S3, Azure Data Lake Storage, or 

Google Cloud Storage), the metadata layer (managing table 

schemas, partitions, and transaction logs), and the compute 

layer (providing query and processing engines). 

 

The distinguishing characteristic of lakehouse architectures 

is the implementation of table formats such as Delta Lake, 

Apache Iceberg, or Apache Hudi that provide ACID 

transaction guarantees, schema evolution, and time travel 

capabilities on object storage [4]. These table formats 

maintain metadata that enables efficient data pruning, enables 

concurrent reads and writes, and supports consistent views of 

data. 

 

b) Key Architectural Components 

Modern lakehouse implementations integrate several critical 

components. The transaction log serves as the single source 

of truth for table state, recording all changes in an ordered, 

immutable sequence. The metadata layer maintains statistics, 

partition information, and data file manifests that enable 

query engines to efficiently locate and read relevant data. 

Compute engines- whether Spark, Trino, Presto, or 

specialized SQL engines- leverage this metadata to execute 

queries efficiently. Finally, governance layers provide access 

control, data quality validation, and lineage tracking 

capabilities. 

 

c) Advantages Over Traditional Architectures 

Compared to traditional data warehouse architectures, 

lakehouses offer significant advantages in cost structure, 

flexibility, and scalability. Storage costs are typically 10-20x 

lower than proprietary warehouse storage due to the use of 

commodity object storage [5]. The decoupling of storage and 

compute enables independent scaling of each layer, allowing 

organizations to optimize resource allocation. Additionally, 

lakehouses support diverse data types and workloads- from 

SQL analytics to machine learning to streaming- within a 

unified architecture, eliminating costly data duplication and 

complex ETL pipelines. 
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3. The Imperative of Cost Optimization 
 

a) Cost Structure in Lakehouse Environments 

The total cost of ownership for lakehouse implementations 

encompasses multiple dimensions. Storage costs include both 

the raw data storage on object stores and the metadata storage 

requirements. Compute costs span query execution, data 

processing jobs, and continuous operations such as 

compaction and optimization. Network egress charges can be 

substantial, particularly for cross-region data movement or 

external data sharing. Finally, operational overhead includes 

monitoring, governance tooling, and human resources for 

platform management [6]. 

 

In typical enterprise lakehouse deployments, compute costs 

constitute 60-75% of total expenditure, storage represents 15-

25%, and network and operational costs account for the 

remainder. However, this distribution varies significantly 

based on workload characteristics, data retention policies, 

and architectural decisions [7]. 

 

b) Cost Drivers and Inefficiency Patterns 

Several common patterns drive cost inefficiency in lakehouse 

environments. Poorly partitioned tables force queries to scan 

excessive data volumes, dramatically increasing compute 

costs and query latency. Small file proliferation- a 

consequence of streaming ingestion or frequent incremental 

writes- impairs query performance and increases metadata 

overhead. Overprovisioned compute clusters that remain idle 

during off-peak hours waste resources, while under 

provisioned clusters during peak demand lead to queue 

delays and poor user experience. Lack of query optimization 

results in full table scans when selective filters could 

dramatically reduce data processed. 

 

c) Business Impact of Cost Optimization 

Effective cost optimization directly impacts business 

outcomes. Organizations that implement comprehensive 

optimization strategies report 40-60% reductions in total 

platform costs, enabling broader data democratization within 

budget constraints [8]. Improved query performance- often 

achieving 3-10x speedups through optimization- translates to 

faster decision-making and enhanced analyst productivity. 

Moreover, predictable cost structures enable accurate 

financial planning and support the business case for expanded 

data initiatives. Conversely, cost overruns and performance 

issues undermine confidence in data platforms and constrain 

analytical capabilities. 

 

4. Storage Layout Optimization 
 
a) Partitioning Strategies 

Partitioning is the primary mechanism for organizing data to 

enable selective data reading and minimize I/O costs. The 

choice of partition keys fundamentally determines query 

performance and cost efficiency. Time-based partitioning 

using date or timestamp columns is most common, enabling 

queries filtered by time periods to read only relevant 

partitions. Multi-level partitioning combines time-based 

partitioning with categorical dimensions such as region, 

product category, or customer segment to further narrow data 

access patterns [9]. 

 

Optimal partition granularity balances between partition 

pruning benefits and metadata overhead. Daily partitions 

work well for datasets with 100GB-1TB of data per day, 

while hourly partitions benefit high-velocity streaming 

workloads. Conversely, excessive partitioning- creating 

thousands of very small partitions- increases metadata 

overhead and planning time. Best practices recommend 

maintaining partition sizes between 256MB and 1GB for 

optimal query performance. 

 

Dynamic partition pruning, available in modern query 

engines, enables partition elimination based on query 

predicates even when partition columns are not directly 

referenced. This technique requires careful coordination 

between partition layout and typical query patterns to 

maximize effectiveness. 

 

b) Data Clustering and Z-Ordering 

Within partitions, data clustering organizes rows to improve 

data locality for commonly filtered columns. Z-ordering (also 

known as space-filling curves) is a multi-dimensional 

clustering technique that co-locates data along multiple 

dimensions simultaneously. Unlike traditional sorting which 

optimizes for a single column, Z-ordering provides good 

locality for queries filtering on any combination of the 

clustered columns [10]. 

 

The implementation of Z-ordering involves computing a Z-

order value for each row based on the interleaved bits of the 

clustering columns, then physically sorting data files by this 

value. This technique proves particularly effective for tables 

with multiple common filter dimensions- for example, 

clustering transaction data by customer_id, product_id, and 

timestamp enables efficient queries filtering on any 

combination of these attributes. 

 

Clustering maintenance requires periodic re-optimization as 

new data arrives. Organizations typically schedule clustering 

operations during off-peak hours, balancing optimization 

benefits against compute costs. The optimal clustering 

frequency depends on data arrival patterns and query 

workload characteristics. 

 

c) Column Statistics and Data Skipping 

Modern table formats maintain column-level statistics- 

including minimum and maximum values, null counts, and 

distinct value counts- for each data file. Query engines 

leverage these statistics for data skipping, eliminating files 

that cannot contain relevant data based on query predicates. 

For example, a query filtering for transactions in January 

2024 can skip all files where the maximum timestamp 

precedes January 1, 2024 [11]. 
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The effectiveness of data skipping depends on data clustering 

and column cardinality. High-cardinality columns with good 

clustering- such as timestamps or sequential identifiers- 

enable aggressive file elimination. Low-cardinality columns 

with random distribution provide minimal skipping 

opportunities. Organizations should prioritize statistics 

collection and clustering for columns frequently used in 

query filters. 

 

5. File Sizing and Compaction Strategies 
 

a) The Small Files Problem 

Small file proliferation represents one of the most pervasive 

performance and cost issues in lakehouse environments. 

Streaming ingestion patterns, frequent incremental updates, 

and poorly configured write operations can generate 

thousands or millions of small files, each representing a 

fraction of optimal size. This phenomenon degrades query 

performance through multiple mechanisms: increased 

metadata overhead as query engines must track and plan for 

numerous files, reduced I/O efficiency as storage systems 

perform better with larger sequential reads, and diminished 

effectiveness of compression and encoding schemes on small 

data blocks [12]. 

 

The impact is substantial. Tables with thousands of small 

files can experience query performance degradation of 10-

100x compared to properly sized files. In cloud object 

storage, LIST operations- required to enumerate files during 

query planning- become expensive at scale. Moreover, small 

files increase the burden on metadata services and transaction 

logs. 

 

b) Optimal File Sizing 

Optimal file sizes balance several competing considerations. 

Files should be large enough to achieve efficient I/O 

throughput and compression ratios, yet small enough to 

enable parallel processing and selective reading. For 

columnar formats such as Parquet or ORC, industry best 

practices recommend target file sizes between 128MB and 

1GB, with 256-512MB representing a good default for many 

workloads [13]. 

 

The optimal size varies based on several factors. Wide tables 

with many columns benefit from larger files to amortize file 

opening overhead. Highly selective queries that read few 

columns from columnar formats can work efficiently with 

larger files due to column pruning. Conversely, workloads 

requiring full table scans or processing all columns benefit 

from moderate file sizes that enable higher parallelism. 

 

c) Compaction Strategies 

Compaction consolidates small files into larger, optimally-

sized files while maintaining data organization and applying 

clustering. Modern table formats provide built-in compaction 

capabilities, but effective implementation requires careful 

strategy design. Bin-packing compaction combines small 

files up to the target size, while sort-based compaction 

reorders data during consolidation to improve clustering. 

 

Organizations typically implement tiered compaction 

strategies. Recent partitions- actively receiving writes- 

undergo frequent lightweight compaction to prevent small 

file accumulation. Older, stable partitions receive periodic 

thorough compaction that also performs Z-ordering and 

optimization. Automated compaction policies trigger based 

on file count thresholds, file size distributions, or time 

elapsed since last compaction [14]. 

 

The timing and resource allocation for compaction operations 

significantly impact both cost and availability. Running 

compaction during peak query hours can starve interactive 

workloads of compute resources, while deferring compaction 

too long allows performance degradation. Many 

organizations schedule major compaction during predictable 

off-peak windows and implement continuous micro-

compaction to maintain baseline health. 

 

d) Vacuum and Retention Management 

Table formats supporting ACID transactions maintain 

multiple versions of data files to enable time travel and 

concurrent operations. While valuable, these historical 

versions consume storage and increase costs over time. 

Vacuum operations remove obsolete file versions beyond the 

retention period, reclaiming storage and reducing metadata 

overhead. Organizations must balance retention 

requirements- for time travel, compliance, and recovery 

scenarios- against storage costs and operational complexity. 

 

6. Compute Auto-Scaling and Workload 

Isolation 
 

a) Compute Resource Patterns 

Lakehouse compute workloads exhibit diverse resource 

requirements and temporal patterns. Interactive analytics 

require low-latency query execution with unpredictable 

arrival patterns. Batch ETL jobs process large data volumes 

with predictable schedules but varying resource needs. 

Machine learning workloads combine exploration phases 

requiring rapid iteration with training phases demanding 

sustained compute. Streaming pipelines maintain continuous 

operation with steady resource consumption [15]. 

 

Static compute provisioning- maintaining fixed cluster 

capacity- results in either overprovisioning (wasting 

resources during low demand) or underprovisioning (causing 

queuing and degraded performance during peaks). The gap 

between peak and average utilization often reaches 3-5x in 

enterprise environments, representing substantial 

optimization opportunity. 

 

b) Auto-Scaling Strategies 

Effective auto-scaling adapts compute capacity to workload 

demand, minimizing costs while maintaining performance. 

Reactive scaling responds to observed metrics such as CPU 
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utilization, query queue depth, or memory pressure. 

Predictive scaling leverages historical patterns to proactively 

adjust capacity before demand arrives. Many organizations 

implement hybrid approaches combining both strategies [16]. 

 

Key parameters for auto-scaling include scale-up thresholds 

(the utilization level triggering expansion), scale-down 

thresholds and cooldown periods (preventing oscillation), 

and minimum/maximum cluster sizes (establishing 

operational boundaries). Tuning these parameters requires 

understanding workload characteristics and business 

requirements. Aggressive scaling reduces costs but may 

introduce brief performance degradation during scale-up. 

Conservative scaling maintains consistent performance but 

increases costs. 

 

Serverless compute models, offered by platforms such as 

Databricks SQL Serverless and Snowflake, abstract scaling 

complexity by automatically allocating resources per query. 

These models excel for unpredictable workloads but may 

have higher per-compute costs than optimized cluster 

deployments. 

 

c) Workload Isolation and Resource Allocation 

Workload isolation prevents resource contention between 

different use cases and user groups. Without isolation, large 

batch jobs can starve interactive queries, degrading user 

experience and reducing platform value. Organizations 

implement isolation through dedicated compute clusters, 

resource pools with guaranteed capacity, or query 

prioritization mechanisms [17]. 

 

Multi-cluster architectures dedicate separate compute 

resources to distinct workload types. Interactive analytics run 

on smaller, auto-scaling clusters optimized for low latency. 

ETL workloads execute on larger clusters optimized for 

throughput. This approach provides strong isolation but 

increases management overhead and may leave resources 

underutilized. 

 

Resource pools within shared clusters provide logical 

isolation with physical resource guarantees. Each pool 

receives a minimum allocation and can burst up to a 

maximum when capacity allows. This approach improves 

overall utilization while maintaining performance guarantees 

for critical workloads. 

 

d) Spot Instances and Preemptible Resources 

Cloud providers offer spot instances or preemptible VMs at 

60-90% discounts compared to on-demand pricing, with the 

caveat that instances can be reclaimed with short notice. 

Fault-tolerant batch workloads can leverage spot instances 

for dramatic cost savings. Modern cluster managers can 

maintain mixed fleets combining on-demand instances for 

stable capacity with spot instances for burst capacity, 

automatically handling preemptions through task retry 

mechanisms [18]. 

 

7. Query Acceleration Techniques 
 

a) Caching Strategies 

Caching dramatically reduces query costs and latency by 

storing frequently accessed data or query results closer to 

compute. Result caching stores complete query results, 

serving subsequent identical queries instantly. This technique 

excels for dashboards and reports with repeated queries. 

Delta caching (also called disk caching or local caching) 

stores frequently accessed data files on cluster local storage, 

eliminating repeated reads from remote object storage [19]. 

 

Effective caching strategies consider cache hit rates, storage 

costs, and data freshness requirements. Hot data frequently 

accessed by many users justifies caching costs through 

reduced query latency and object storage access charges. 

Cache eviction policies balance storage constraints against 

access patterns, typically using LRU (Least Recently Used) 

or access frequency heuristics. 

 

b) Materialized Views and Pre-Aggregation 

Materialized views store pre-computed query results as 

physical tables, trading storage and maintenance costs for 

query acceleration. Well-designed materialized views can 

improve query performance by 10-100x for common 

analytical patterns. Pre-aggregation computes and stores 

summary statistics at multiple granularities, enabling instant 

responses to aggregation queries [20]. 

 

The challenge lies in identifying high-value materialization 

opportunities and managing freshness. Organizations 

typically materialize views for frequently executed expensive 

queries, dimensional rollups, and standard metrics. 

Incremental refresh strategies update materialized views 

efficiently as source data changes, balancing freshness 

requirements against refresh costs. 

 

c) Query Optimization and Execution Strategies 

Query optimization involves both logical plan optimization 

(rewriting queries for efficiency) and physical plan 

optimization (selecting efficient execution strategies). 

Modern query optimizers apply predicate pushdown to filter 

data as early as possible, projection pushdown to read only 

required columns, and join reordering to minimize 

intermediate data volumes. Cost-based optimization uses 

statistics to select optimal join algorithms and determine 

parallelism levels [21]. 

 

Broadcast joins replicate small dimension tables to all 

compute nodes, eliminating shuffle operations for star 

schema joins. Adaptive query execution monitors runtime 

statistics and adjusts execution strategies dynamically, 

converting broadcast joins to shuffle joins if broadcast size 

exceeds thresholds or adjusting partition counts based on 

actual data volumes. 
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d) Indexing and Auxiliary Data Structures 

While lakehouse architectures generally avoid traditional 

database indexes, auxiliary data structures provide similar 

benefits. Bloom filters enable efficient existence checks, 

allowing queries to skip files that definitely do not contain 

matching values for high-cardinality columns. Delta Lake 

liquid clustering and Iceberg's hidden partitioning provide 

index-like capabilities without explicit index management 

[22]. 

 

8. Cost Governance and FinOps for Data 

Platforms 
 

a) Cost Visibility and Attribution 

Effective cost governance begins with comprehensive 

visibility into cost drivers and resource consumption. Tag-

based cost allocation assigns compute and storage costs to 

teams, projects, or cost centers, enabling accountability and 

informed decision-making. Query-level cost attribution 

tracks the resource consumption of individual queries, 

identifying expensive queries and users for optimization 

attention [23]. 

 

Organizations implement cost dashboards providing real-

time visibility into spend trends, cost per query, cost per user, 

and cost by workload type. Anomaly detection alerts teams 

to unexpected cost spikes, enabling rapid investigation and 

remediation. Historical cost analysis identifies optimization 

opportunities and validates the impact of optimization 

initiatives. 

 

b) Budget Controls and Guardrails 

Preventive controls limit cost exposure from runaway queries 

or misconfigured workloads. Query timeout limits abort 

queries exceeding maximum execution time. Data scan limits 

prevent queries from processing excessive data volumes. 

Cluster size caps restrict maximum compute allocation per 

workload. Budget alerts notify stakeholders when spend 

exceeds thresholds, enabling corrective action before 

significant overruns occur [24]. 

 

Organizations balance guardrails against flexibility. Overly 

restrictive controls can hinder legitimate analysis, while 

insufficient controls expose organizations to cost risks. 

Effective governance implements tiered controls, providing 

development environments with strict limits while allowing 

production workloads appropriate resource access with 

monitoring. 

 

c) FinOps Practices for Data Platforms 

FinOps- the practice of bringing financial accountability to 

cloud spending- applies powerfully to data platforms. 

Establish cross-functional teams combining data engineers, 

platform engineers, and finance stakeholders to drive cost 

optimization initiatives. Implement regular cost reviews 

examining trends, identifying optimization opportunities, and 

prioritizing initiatives based on impact and effort [25]. 

 

Showback and chargeback models create cost awareness 

among data platform consumers. Showback reports costs to 

teams without financial transfers, promoting cost-conscious 

behavior through transparency. Chargeback implements 

actual cost allocation and budget transfers, creating strong 

incentives for efficiency. Organizations typically start with 

showback before evolving to chargeback as governance 

maturity increases. 

 

d) Optimization Prioritization and ROI Analysis 

Not all optimization opportunities warrant immediate 

attention. Effective prioritization considers potential cost 

savings, implementation effort, risk, and business impact. 

Quick wins- high-impact, low-effort optimizations- should 

be implemented immediately. Examples include identifying 

and terminating idle clusters, compacting heavily fragmented 

tables, or optimizing obviously inefficient queries. 

 

More substantial initiatives require cost-benefit analysis. 

Implementing comprehensive auto-scaling might require 

significant engineering effort but could reduce compute costs 

by 40-50%. Redesigning table partitioning schemes involves 

data migration risks but may improve query performance by 

orders of magnitude. Organizations should quantify expected 

savings, estimate implementation costs, and prioritize based 

on return on investment [26]. 

 

9. Conclusion 
 

Cost optimization and performance engineering represent 

critical success factors for lakehouse architectures. This 

paper has examined comprehensive strategies spanning 

storage layout optimization, file management, compute 

resource allocation, query acceleration, and financial 

governance. Evidence demonstrates that systematic 

implementation of these strategies can reduce total cost of 

ownership by 40-60% while simultaneously improving query 

performance by 3-10x. 

 

Storage optimization through intelligent partitioning, data 

clustering, and file sizing establishes the foundation for 

efficient data access. Automated compaction and 

maintenance processes prevent performance degradation 

over time. Compute auto-scaling and workload isolation 

ensure resources are available when needed while 

minimizing waste. Query acceleration techniques deliver 

immediate performance improvements for critical workloads. 

Finally, robust cost governance provides the visibility and 

controls necessary for sustainable operations. 

 

Organizations should approach optimization systematically 

rather than opportunistically. Begin with foundational 

elements- establishing cost visibility, implementing basic 

partitioning and file management, and deploying auto-scaling 

for compute resources. Progress to advanced techniques as 

teams gain experience and tooling matures. Continuously 

measure and refine strategies based on observed outcomes 

and changing workload patterns. 
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The lakehouse architecture offers tremendous potential for 

unified, cost-effective data platforms. Realizing this potential 

requires deliberate attention to optimization and governance. 

Organizations that invest in these capabilities position 

themselves to fully leverage their data assets while 

maintaining sustainable cost structures. 
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